1309 lines
37 KiB
C++
1309 lines
37 KiB
C++
// Copyright (C) 2003-2008 Dolphin Project.
|
||
|
||
// This program is free software: you can redistribute it and/or modify
|
||
// it under the terms of the GNU General Public License as published by
|
||
// the Free Software Foundation, version 2.0.
|
||
|
||
// This program is distributed in the hope that it will be useful,
|
||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
// GNU General Public License 2.0 for more details.
|
||
|
||
// A copy of the GPL 2.0 should have been included with the program.
|
||
// If not, see http://www.gnu.org/licenses/
|
||
|
||
// Official SVN repository and contact information can be found at
|
||
// http://code.google.com/p/dolphin-emu/
|
||
|
||
|
||
#include <wx/msgdlg.h>
|
||
|
||
#include <vector>
|
||
#include <string>
|
||
|
||
#include "Common.h" // Common
|
||
#include "pluginspecs_wiimote.h"
|
||
#include "StringUtil.h" // For ArrayToString
|
||
|
||
#include "wiimote_hid.h"
|
||
#include "main.h"
|
||
#include "EmuMain.h"
|
||
#include "EmuSubroutines.h"
|
||
#include "EmuDefinitions.h"
|
||
#include "Config.h" // For g_Config
|
||
|
||
extern SWiimoteInitialize g_WiimoteInitialize;
|
||
|
||
namespace WiiMoteEmu
|
||
{
|
||
|
||
|
||
//****************************************************************************
|
||
// Recorded movements
|
||
//****************************************************************************
|
||
|
||
// Variables: 0 = Wiimote, 1 = Nunchuck
|
||
int g_RecordingPlaying[3]; //g_RecordingPlaying[0] = -1; g_RecordingPlaying[1] = -1;
|
||
int g_RecordingCounter[3]; //g_RecordingCounter[0] = 0; g_RecordingCounter[1] = 0;
|
||
int g_RecordingPoint[3]; //g_RecordingPoint[0] = 0; g_RecordingPoint[1] = 0;
|
||
double g_RecordingStart[3]; //g_RecordingStart[0] = 0; g_RecordingStart[1] = 0;
|
||
double g_RecordingCurrentTime[3]; //g_RecordingCurrentTime[0] = 0; g_RecordingCurrentTime[1] = 0;
|
||
|
||
/* Convert from -350 to -3.5 g. The Nunchuck gravity size is 51 compared to the 26 to 28 for the Wiimote.
|
||
So the maximum g values are higher for the Wiimote. */
|
||
int G2Accelerometer(int _G, int XYZ, int Wm)
|
||
{
|
||
float G = (float)_G / 100.0;
|
||
float Neutral, OneG, Accelerometer;
|
||
|
||
switch(XYZ)
|
||
{
|
||
case 0: // X
|
||
if(Wm == WM_RECORDING_WIIMOTE)
|
||
{
|
||
OneG = (float)g_wm.cal_g.x;
|
||
Neutral = (float)g_wm.cal_zero.x;
|
||
}
|
||
else
|
||
{
|
||
OneG = (float)g_nu.cal_g.x;
|
||
Neutral = (float)g_nu.cal_zero.x;
|
||
}
|
||
break;
|
||
case 1: // Y
|
||
if(Wm == WM_RECORDING_WIIMOTE)
|
||
{
|
||
OneG = (float)g_wm.cal_g.y;
|
||
Neutral = (float)g_wm.cal_zero.y;
|
||
}
|
||
else
|
||
{
|
||
OneG = (float)g_nu.cal_g.y;
|
||
Neutral = (float)g_nu.cal_zero.y;
|
||
}
|
||
break;
|
||
case 2: // Z
|
||
if(Wm == WM_RECORDING_WIIMOTE)
|
||
{
|
||
OneG = (float)g_wm.cal_g.z;
|
||
Neutral = (float)g_wm.cal_zero.z;
|
||
}
|
||
else
|
||
{
|
||
OneG = (float)g_nu.cal_g.z;
|
||
Neutral = (float)g_nu.cal_zero.z;
|
||
}
|
||
break;
|
||
default: PanicAlert("There is a syntax error in a function that is calling G2Accelerometer(%i, %i)", _G, XYZ);
|
||
}
|
||
|
||
Accelerometer = Neutral + (OneG * G);
|
||
int Return = (int)Accelerometer;
|
||
|
||
// Logging
|
||
//INFO_LOG(CONSOLE, "G2Accelerometer():%f %f %f %f\n", Neutral, OneG, G, Accelerometer);
|
||
|
||
// Boundaries
|
||
if (Return > 255) Return = 255;
|
||
if (Return < 0) Return = 0;
|
||
|
||
return Return;
|
||
}
|
||
|
||
template<class IRReportType>
|
||
bool RecordingPlayAccIR(u8 &_x, u8 &_y, u8 &_z, IRReportType &_IR, int Wm)
|
||
{
|
||
// Check if the recording is on
|
||
if (g_RecordingPlaying[Wm] == -1) return false;
|
||
|
||
// Return if the list is empty
|
||
if(VRecording.at(g_RecordingPlaying[Wm]).Recording.size() == 0)
|
||
{
|
||
g_RecordingPlaying[Wm] = -1;
|
||
INFO_LOG(CONSOLE, "Empty\n\n");
|
||
return false;
|
||
}
|
||
|
||
// Return if the playback speed is unset
|
||
if(VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed < 0)
|
||
{
|
||
INFO_LOG(CONSOLE, "PlaybackSpeed empty: %i\n\n", g_RecordingPlaying[Wm]);
|
||
g_RecordingPlaying[Wm] = -1;
|
||
return false;
|
||
}
|
||
|
||
// Get IR bytes
|
||
int IRBytes = VRecording.at(g_RecordingPlaying[Wm]).IRBytes;
|
||
|
||
// Return if the IR mode is wrong
|
||
if (Wm == WM_RECORDING_IR
|
||
&& ( (IRBytes == 12 && !(g_ReportingMode == 0x33))
|
||
|| (IRBytes == 10 && !(g_ReportingMode == 0x36 || g_ReportingMode == 0x37))
|
||
)
|
||
)
|
||
{
|
||
INFO_LOG(CONSOLE, "Wrong IR mode: %i\n\n", g_RecordingPlaying[Wm]);
|
||
g_RecordingPlaying[Wm] = -1;
|
||
return false;
|
||
}
|
||
|
||
// Get starting time
|
||
if(g_RecordingCounter[Wm] == 0)
|
||
{
|
||
INFO_LOG(CONSOLE, "\n\nBegin: %i\n", Wm);
|
||
g_RecordingStart[Wm] = GetDoubleTime();
|
||
}
|
||
|
||
// Get current time
|
||
g_RecordingCurrentTime[Wm] = GetDoubleTime() - g_RecordingStart[Wm];
|
||
|
||
// Modify the current time
|
||
g_RecordingCurrentTime[Wm] *= ((25.0 + (double)VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed * 25.0) / 100.0);
|
||
|
||
// Select reading
|
||
for (int i = 0; i < (int)VRecording.at(g_RecordingPlaying[Wm]).Recording.size(); i++)
|
||
if (VRecording.at(g_RecordingPlaying[Wm]).Recording.at(i).Time > g_RecordingCurrentTime[Wm])
|
||
{
|
||
g_RecordingPoint[Wm] = i;
|
||
break; // Break loop
|
||
}
|
||
|
||
// Return if we are at the end of the list
|
||
if(g_RecordingCurrentTime[Wm] >=
|
||
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(
|
||
VRecording.at(g_RecordingPlaying[Wm]).Recording.size() - 1).Time)
|
||
// Or if we are playing back all observations regardless of time
|
||
//g_RecordingPoint[Wm] = g_RecordingCounter[Wm];
|
||
//if (g_RecordingPoint[Wm] >= VRecording.at(g_RecordingPlaying[Wm]).Recording.size())
|
||
{
|
||
g_RecordingCounter[Wm] = 0;
|
||
g_RecordingPlaying[Wm] = -1;
|
||
g_RecordingStart[Wm] = 0;
|
||
g_RecordingCurrentTime[Wm] = 0;
|
||
INFO_LOG(CONSOLE, "End: %i\n\n", Wm);
|
||
return false;
|
||
}
|
||
|
||
// Update accelerometer values
|
||
_x = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).x, 0, Wm);
|
||
_y = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).y, 1, Wm);
|
||
_z = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).z, 2, Wm);
|
||
// Update IR values
|
||
if(Wm == WM_RECORDING_IR) memcpy(&_IR, VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).IR, IRBytes);
|
||
|
||
if (g_DebugAccelerometer)
|
||
{
|
||
//Console::ClearScreen();
|
||
INFO_LOG(CONSOLE, "Current time: [%i / %i] %f %f\n",
|
||
g_RecordingPoint[Wm], VRecording.at(g_RecordingPlaying[Wm]).Recording.size(),
|
||
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).Time, g_RecordingCurrentTime[Wm]
|
||
);
|
||
INFO_LOG(CONSOLE, "Accel x, y, z: %03u %03u %03u\n", _x, _y, _z);
|
||
}
|
||
//INFO_LOG(CONSOLE, "Accel x, y, z: %03u %03u %03u\n", _x, _y, _z);
|
||
|
||
g_RecordingCounter[Wm]++;
|
||
|
||
return true;
|
||
}
|
||
/* Because the playback is neatly controlled by RecordingPlayAccIR() we use these functions to be able to
|
||
use RecordingPlayAccIR() for both accelerometer and IR recordings */
|
||
bool RecordingPlay(u8 &_x, u8 &_y, u8 &_z, int Wm)
|
||
{
|
||
wm_ir_basic IR;
|
||
return RecordingPlayAccIR(_x, _y, _z, IR, Wm);
|
||
}
|
||
template<class IRReportType>
|
||
bool RecordingPlayIR(IRReportType &_IR)
|
||
{
|
||
u8 x, y, z;
|
||
return RecordingPlayAccIR(x, y, z, _IR, 2);
|
||
}
|
||
|
||
// Return true if this particual numerical key is pressed
|
||
bool IsNumericalKeyPressed(int _Key)
|
||
{
|
||
#ifdef _WIN32
|
||
// Check which key it is
|
||
std::string TmpKey = StringFromFormat("%i", _Key);
|
||
if(GetAsyncKeyState(TmpKey[0]))
|
||
return true;
|
||
else
|
||
// That numerical key is pressed
|
||
return false;
|
||
#else
|
||
// TODO linux port
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
// Check if a switch is pressed
|
||
bool IsSwitchPressed(int _Key)
|
||
{
|
||
#ifdef _WIN32
|
||
// Check if that switch is pressed
|
||
switch (_Key)
|
||
{
|
||
case 0: if (GetAsyncKeyState(VK_SHIFT)) return true;
|
||
case 1: if (GetAsyncKeyState(VK_CONTROL)) return true;
|
||
case 2: if (GetAsyncKeyState(VK_MENU)) return true;
|
||
}
|
||
|
||
// That switch was not pressed
|
||
return false;
|
||
#else
|
||
// TODO linux port
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
// Check if we should start the playback of a recording. Once it has been started it can currently
|
||
// not be stopped, it will always run to the end of the recording.
|
||
int RecordingCheckKeys(int WmNuIr)
|
||
{
|
||
#ifdef _WIN32
|
||
//INFO_LOG(CONSOLE, "RecordingCheckKeys: %i\n", Wiimote);
|
||
|
||
// Check if we have a HotKey match
|
||
bool Match = false;
|
||
int Recording = -1;
|
||
for(int i = 0; i < RECORDING_ROWS; i++)
|
||
{
|
||
// Check all ten numerical keys
|
||
for(int j = 0; j < 10; j++)
|
||
{
|
||
if ((VRecording.at(i).HotKeyWiimote == j && WmNuIr == 0 && IsNumericalKeyPressed(j)
|
||
|| VRecording.at(i).HotKeyNunchuck == j && WmNuIr == 1 && IsNumericalKeyPressed(j)
|
||
|| VRecording.at(i).HotKeyIR == j && WmNuIr == 2 && IsNumericalKeyPressed(j))
|
||
&& (IsSwitchPressed(VRecording.at(i).HotKeySwitch) || VRecording.at(i).HotKeySwitch == 3))
|
||
{
|
||
//INFO_LOG(CONSOLE, "Match: %i %i\n", i, Key);
|
||
Match = true;
|
||
Recording = i;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
// Return nothing if we don't have a match
|
||
if (!Match) return -1;
|
||
|
||
// Return the match
|
||
return Recording;
|
||
#else
|
||
return -1;
|
||
#endif
|
||
}
|
||
|
||
|
||
//******************************************************************************
|
||
// Subroutines
|
||
//******************************************************************************
|
||
|
||
|
||
/////////////////////////////////////////////////////////////////////////
|
||
// Multi System Input Status Check
|
||
// ---------------
|
||
int IsKey(int Key)
|
||
{
|
||
#ifdef _WIN32
|
||
switch(Key)
|
||
{
|
||
// Wiimote
|
||
case g_Wm.MA: return GetAsyncKeyState(VK_LBUTTON);
|
||
case g_Wm.MB: return GetAsyncKeyState(VK_RBUTTON);
|
||
case g_Wm.A: return GetAsyncKeyState(PadMapping[0].Wm.A);
|
||
case g_Wm.B: return GetAsyncKeyState(PadMapping[0].Wm.B);
|
||
case g_Wm.ONE: return GetAsyncKeyState(PadMapping[0].Wm.One);
|
||
case g_Wm.TWO: return GetAsyncKeyState(PadMapping[0].Wm.Two);
|
||
case g_Wm.P: return GetAsyncKeyState(PadMapping[0].Wm.P);
|
||
case g_Wm.M: return GetAsyncKeyState(PadMapping[0].Wm.M);
|
||
case g_Wm.H: return GetAsyncKeyState(PadMapping[0].Wm.H);
|
||
case g_Wm.L: return GetAsyncKeyState(PadMapping[0].Wm.L);
|
||
case g_Wm.R: return GetAsyncKeyState(PadMapping[0].Wm.R);
|
||
case g_Wm.U: return GetAsyncKeyState(PadMapping[0].Wm.U);
|
||
case g_Wm.D: return GetAsyncKeyState(PadMapping[0].Wm.D);
|
||
case g_Wm.PITCH_L: return GetAsyncKeyState(PadMapping[0].Wm.PitchL);
|
||
case g_Wm.PITCH_R: return GetAsyncKeyState(PadMapping[0].Wm.PitchR);
|
||
case g_Wm.SHAKE: return GetAsyncKeyState(PadMapping[0].Wm.Shake);
|
||
|
||
// Nunchuck
|
||
case g_Nc.Z: return GetAsyncKeyState(PadMapping[0].Nc.Z);
|
||
case g_Nc.C: return GetAsyncKeyState(PadMapping[0].Nc.C);
|
||
case g_Nc.L: return GetAsyncKeyState(PadMapping[0].Nc.L);
|
||
case g_Nc.R: return GetAsyncKeyState(PadMapping[0].Nc.R);
|
||
case g_Nc.U: return GetAsyncKeyState(PadMapping[0].Nc.U);
|
||
case g_Nc.D: return GetAsyncKeyState(PadMapping[0].Nc.D);
|
||
case g_Nc.SHAKE: return GetAsyncKeyState(PadMapping[0].Nc.Shake);
|
||
|
||
// Classic Controller
|
||
case g_Cc.A: return GetAsyncKeyState(PadMapping[0].Cc.A);
|
||
case g_Cc.B: return GetAsyncKeyState(PadMapping[0].Cc.B);
|
||
case g_Cc.X: return GetAsyncKeyState(PadMapping[0].Cc.X);
|
||
case g_Cc.Y: return GetAsyncKeyState(PadMapping[0].Cc.Y);
|
||
case g_Cc.P: return GetAsyncKeyState(PadMapping[0].Cc.P); // Default is O instead of P
|
||
case g_Cc.M: return GetAsyncKeyState(PadMapping[0].Cc.M); // Default is N instead of M
|
||
case g_Cc.H: return GetAsyncKeyState(PadMapping[0].Cc.H); // Default is U instead of H
|
||
|
||
case g_Cc.Tl: return GetAsyncKeyState(PadMapping[0].Cc.Tl); // Digital left trigger
|
||
case g_Cc.Zl: return GetAsyncKeyState(PadMapping[0].Cc.Zl);
|
||
case g_Cc.Zr: return GetAsyncKeyState(PadMapping[0].Cc.Zr);
|
||
case g_Cc.Tr: return GetAsyncKeyState(PadMapping[0].Cc.Tr); // Digital right trigger
|
||
|
||
case g_Cc.Dl: return GetAsyncKeyState(PadMapping[0].Cc.Dl); // Digital left
|
||
case g_Cc.Du: return GetAsyncKeyState(PadMapping[0].Cc.Du); // Up
|
||
case g_Cc.Dr: return GetAsyncKeyState(PadMapping[0].Cc.Dr); // Right
|
||
case g_Cc.Dd: return GetAsyncKeyState(PadMapping[0].Cc.Dd); // Down
|
||
|
||
case g_Cc.Ll: return GetAsyncKeyState(PadMapping[0].Cc.Ll); // Left analog
|
||
case g_Cc.Lu: return GetAsyncKeyState(PadMapping[0].Cc.Lu);
|
||
case g_Cc.Lr: return GetAsyncKeyState(PadMapping[0].Cc.Lr);
|
||
case g_Cc.Ld: return GetAsyncKeyState(PadMapping[0].Cc.Ld);
|
||
|
||
case g_Cc.Rl: return GetAsyncKeyState(PadMapping[0].Cc.Rl); // Right analog
|
||
case g_Cc.Ru: return GetAsyncKeyState(PadMapping[0].Cc.Ru);
|
||
case g_Cc.Rr: return GetAsyncKeyState(PadMapping[0].Cc.Rr);
|
||
case g_Cc.Rd: return GetAsyncKeyState(PadMapping[0].Cc.Rd);
|
||
|
||
// This should not happen
|
||
default: PanicAlert("There is syntax error in a function that is calling IsKey(%i)", Key); return false;
|
||
}
|
||
#else
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
|
||
// Wiimote core buttons
|
||
void FillReportInfo(wm_core& _core)
|
||
{
|
||
/* This has to be filled with zeroes (and not for example 0xff) because when no buttons are pressed the
|
||
value is 00 00 */
|
||
memset(&_core, 0x00, sizeof(wm_core));
|
||
|
||
// Check that Dolphin is in focus
|
||
if (!IsFocus()) return;
|
||
|
||
// Check the mouse position. Don't allow mouse clicks from outside the window.
|
||
float x, y; GetMousePos(x, y);
|
||
bool InsideScreen = !(x < 0 || x > 1 || y < 0 || y > 1);
|
||
|
||
// Allow both mouse buttons and keyboard to press a and b
|
||
if((IsKey(g_Wm.MA) && InsideScreen) || IsKey(g_Wm.A))
|
||
_core.a = 1;
|
||
if((IsKey(g_Wm.MB) && InsideScreen) || IsKey(g_Wm.B))
|
||
_core.b = 1;
|
||
|
||
_core.one = IsKey(g_Wm.ONE) ? 1 : 0;
|
||
_core.two = IsKey(g_Wm.TWO) ? 1 : 0;
|
||
_core.plus = IsKey(g_Wm.P) ? 1 : 0;
|
||
_core.minus = IsKey(g_Wm.M) ? 1 : 0;
|
||
_core.home = IsKey(g_Wm.H) ? 1 : 0;
|
||
|
||
/* Sideways controls (for example for Wario Land) if the Wiimote is intended to be held sideways */
|
||
if(g_Config.bSidewaysDPad)
|
||
{
|
||
_core.left = IsKey(g_Wm.D) ? 1 : 0;
|
||
_core.up = IsKey(g_Wm.L) ? 1 : 0;
|
||
_core.right = IsKey(g_Wm.U) ? 1 : 0;
|
||
_core.down = IsKey(g_Wm.R) ? 1 : 0;
|
||
}
|
||
else
|
||
{
|
||
_core.left = IsKey(g_Wm.L) ? 1 : 0;
|
||
_core.up = IsKey(g_Wm.U) ? 1 : 0;
|
||
_core.right = IsKey(g_Wm.R) ? 1 : 0;
|
||
_core.down = IsKey(g_Wm.D) ? 1 : 0;
|
||
}
|
||
}
|
||
|
||
|
||
// Wiimote accelerometer
|
||
/* The accelerometer x, y and z values range from 0x00 to 0xff with the default
|
||
netural values being [y = 0x84, x = 0x84, z = 0x9f] according to a
|
||
source. The extremes are 0x00 for (-) and 0xff for (+). It's important that
|
||
all values are not 0x80, the mouse pointer can disappear from the screen
|
||
permanently then, until z is adjusted back. This is because the game detects
|
||
a steep pitch of the Wiimote then. */
|
||
|
||
|
||
// Global declarations for FillReportAcc: These variables are global so they
|
||
//can be changed during debugging int A = 0, B = 128, C = 64; // for debugging
|
||
//int a = 1, b = 1, c = 2, d = -2; // for debugging int consoleDisplay = 0;
|
||
|
||
// For all functions
|
||
u8 g_x, g_y, g_z, g_X, g_Y, g_Z;
|
||
|
||
// For the shake function, 0 = Wiimote, 1 = Nunchuck
|
||
int Shake[] = {-1, -1};
|
||
|
||
// For the tilt function, the size of this list determines how fast Y returns to its neutral value
|
||
std::vector<u8> yhist(15, 0); float KbDegree;
|
||
|
||
|
||
// Single shake of Wiimote while holding it sideways (Wario Land pound ground)
|
||
void SingleShake(u8 &_y, u8 &_z, int i)
|
||
{
|
||
#ifdef _WIN32
|
||
// Shake Wiimote with S, Nunchuck with D
|
||
if((i == 0 && IsKey(g_Wm.SHAKE)) || (i == 1 && IsKey(g_Nc.SHAKE)))
|
||
{
|
||
_z = 0;
|
||
_y = 0;
|
||
Shake[i] = 2;
|
||
}
|
||
else if(Shake[i] == 2)
|
||
{
|
||
// This works regardless of calibration, in Wario Land
|
||
_z = g_wm.cal_zero.z - 2;
|
||
_y = 0;
|
||
Shake[i] = 1;
|
||
}
|
||
else if(Shake[i] == 1)
|
||
{
|
||
Shake[i] = -1;
|
||
}
|
||
#endif
|
||
//if (Shake[i] > -1) INFO_LOG(CONSOLE, "Shake: %i\n", Shake[i]);
|
||
}
|
||
|
||
|
||
/* Tilting Wiimote with gamepad. We can guess that the game will calculate a
|
||
Wiimote pitch and use it as a measure of the tilting of the Wiimote. We are
|
||
interested in this tilting range 90<39> to -90<39> */
|
||
void TiltWiimoteGamepad(float &Roll, float &Pitch)
|
||
{
|
||
// Return if we have no pads
|
||
if (NumGoodPads == 0) return;
|
||
|
||
// This has to be changed if multiple Wiimotes are to be supported later
|
||
const int Page = 0;
|
||
|
||
/* Adjust the pad state values, including a downscaling from the original
|
||
0x8000 size values to 0x80. The only reason we do this is that the code
|
||
below crrently assume that the range is 0 to 255 for all axes. If we
|
||
lose any precision by doing this we could consider not doing this
|
||
adjustment. And instead for example upsize the XInput trigger from 0x80
|
||
to 0x8000. */
|
||
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
|
||
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
|
||
float Lx = (float)_Lx;
|
||
float Ly = (float)_Ly;
|
||
float Rx = (float)_Rx;
|
||
float Ry = (float)_Ry;
|
||
float Tl = (float)_Tl;
|
||
float Tr = (float)_Tr;
|
||
|
||
// Save the Range in degrees, 45<34> and 90<39> are good values in some games
|
||
float RollRange = (float)g_Config.Trigger.Range.Roll;
|
||
float PitchRange = (float)g_Config.Trigger.Range.Pitch;
|
||
|
||
// The trigger currently only controls pitch
|
||
if (g_Config.Trigger.Type == g_Config.Trigger.TRIGGER)
|
||
{
|
||
// Make the range the same dimension as the analog stick
|
||
Tl = Tl / 2;
|
||
Tr = Tr / 2;
|
||
// Invert
|
||
if (PadMapping[Page].bPitchInvert) { Tl = -Tl; Tr = -Tr; }
|
||
// The final value
|
||
Pitch = Tl * (PitchRange / 128.0)
|
||
- Tr * (PitchRange / 128.0);
|
||
}
|
||
|
||
/* For the analog stick roll us by default set to the X-axis, pitch is by
|
||
default set to the Y-axis. By changing the axis mapping and the invert
|
||
options this can be altered in any way */
|
||
else if (g_Config.Trigger.Type == g_Config.Trigger.ANALOG1)
|
||
{
|
||
// Adjust the trigger to go between negative and positive values
|
||
Lx = Lx - 128.0;
|
||
Ly = Ly - 128.0;
|
||
// Invert
|
||
if (PadMapping[Page].bRollInvert) Lx = -Lx; // else Tr = -Tr;
|
||
if (PadMapping[Page].bPitchInvert) Ly = -Ly; // else Tr = -Tr;
|
||
// Produce the final value
|
||
Roll = Lx * (RollRange / 128.0);
|
||
Pitch = Ly * (PitchRange / 128.0);
|
||
}
|
||
// Otherwise we are using ANALOG2
|
||
else
|
||
{
|
||
// Adjust the trigger to go between negative and positive values
|
||
Rx = Rx - 128.0;
|
||
Ry = Ry - 128.0;
|
||
// Invert
|
||
if (PadMapping[Page].bRollInvert) Rx = -Rx; // else Tr = -Tr;
|
||
if (PadMapping[Page].bPitchInvert) Ry = -Ry; // else Tr = -Tr;
|
||
// Produce the final value
|
||
Roll = Rx * (RollRange / 128.0);
|
||
Pitch = Ry * (PitchRange / 128.0);
|
||
}
|
||
|
||
// Adjustment to prevent a slightly to high angle
|
||
if (Pitch >= PitchRange) Pitch = PitchRange - 0.1;
|
||
if (Roll >= RollRange) Roll = RollRange - 0.1;
|
||
}
|
||
|
||
|
||
// Tilting Wiimote with keyboard
|
||
void TiltWiimoteKeyboard(float &Roll, float &Pitch)
|
||
{
|
||
#ifdef _WIN32
|
||
if(IsKey(g_Wm.PITCH_L))
|
||
{
|
||
// Stop at the upper end of the range
|
||
if(KbDegree < g_Config.Trigger.Range.Pitch)
|
||
KbDegree += 3; // aim left
|
||
}
|
||
else if(IsKey(g_Wm.PITCH_R))
|
||
{
|
||
// Stop at the lower end of the range
|
||
if(KbDegree > -g_Config.Trigger.Range.Pitch)
|
||
KbDegree -= 3; // aim right
|
||
}
|
||
|
||
// Check for inactivity in the tilting, the Y value will be reset after ten inactive updates
|
||
// Check for activity
|
||
yhist[yhist.size() - 1] = (
|
||
IsKey(g_Wm.PITCH_L)
|
||
||IsKey(g_Wm.PITCH_R)
|
||
);
|
||
|
||
// Move all items back, and check if any of them are true
|
||
bool ypressed = false;
|
||
for (int i = 1; i < (int)yhist.size(); i++)
|
||
{
|
||
yhist[i-1] = yhist[i];
|
||
if(yhist[i]) ypressed = true;
|
||
}
|
||
// Tilting was not used a single time, reset the angle to zero
|
||
if(!ypressed)
|
||
{
|
||
KbDegree = 0;
|
||
}
|
||
else
|
||
{
|
||
Pitch = KbDegree;
|
||
//INFO_LOG(CONSOLE, "Degree: %2.1f\n", KbDegree);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
// Tilting Wiimote (Wario Land aiming, Mario Kart steering and other things)
|
||
void Tilt(u8 &_x, u8 &_y, u8 &_z)
|
||
{
|
||
// Ceck if it's on
|
||
if (g_Config.Trigger.Type == g_Config.Trigger.TRIGGER_OFF) return;
|
||
|
||
// Set to zero
|
||
float Roll = 0, Pitch = 0;
|
||
|
||
// Select input method and return the x, y, x values
|
||
if (g_Config.Trigger.Type == g_Config.Trigger.KEYBOARD)
|
||
TiltWiimoteKeyboard(Roll, Pitch);
|
||
else if (g_Config.Trigger.Type == g_Config.Trigger.TRIGGER || g_Config.Trigger.Type == g_Config.Trigger.ANALOG1 || g_Config.Trigger.Type == g_Config.Trigger.ANALOG2)
|
||
TiltWiimoteGamepad(Roll, Pitch);
|
||
|
||
// Adjust angles, it's only needed if both roll and pitch is used together
|
||
if (g_Config.Trigger.Range.Roll != 0 && g_Config.Trigger.Range.Pitch != 0) AdjustAngles(Roll, Pitch);
|
||
|
||
// Calculate the accelerometer value from this tilt angle
|
||
//PitchDegreeToAccelerometer(Roll, Pitch, _x, _y, _z, g_Config.Trigger.Roll, g_Config.Trigger.Pitch);
|
||
PitchDegreeToAccelerometer(Roll, Pitch, _x, _y, _z);
|
||
|
||
if (g_DebugData)
|
||
{
|
||
/*INFO_LOG(CONSOLE, "L:%2.1f R:%2.1f Lx:%2.1f Range:%2.1f Degree:%2.1f L:%i R:%i\n",
|
||
Tl, Tr, Lx, Range, Degree, PadState[Page].Axis.Tl, PadState[Page].Axis.Tr);*/
|
||
/*INFO_LOG(CONSOLE, "Roll:%2.1f Pitch:%2.1f\n", Roll, Pitch);*/
|
||
}
|
||
}
|
||
|
||
void FillReportAcc(wm_accel& _acc)
|
||
{
|
||
// Recorded movements
|
||
// Check for a playback command
|
||
if(g_RecordingPlaying[0] < 0)
|
||
{
|
||
g_RecordingPlaying[0] = RecordingCheckKeys(0);
|
||
}
|
||
else
|
||
{
|
||
// If the recording reached the end or failed somehow we will not return
|
||
if (RecordingPlay(_acc.x, _acc.y, _acc.z, 0)) return;
|
||
//INFO_LOG(CONSOLE, "X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
|
||
}
|
||
|
||
// The default values can change so we need to update them all the time
|
||
g_X = g_wm.cal_zero.x;
|
||
g_Y = g_wm.cal_zero.y;
|
||
g_Z = g_wm.cal_zero.z + g_wm.cal_g.z;
|
||
|
||
|
||
// Check that Dolphin is in focus
|
||
if (!IsFocus())
|
||
{
|
||
_acc.x = g_X;
|
||
_acc.y = g_y;
|
||
_acc.z = g_z;
|
||
return;
|
||
}
|
||
|
||
// Wiimote to Gamepad translations
|
||
|
||
// The following functions may or may not update these values
|
||
g_x = g_X;
|
||
g_y = g_Y;
|
||
g_z = g_Z;
|
||
|
||
// Shake the Wiimote
|
||
SingleShake(g_y, g_z, 0);
|
||
|
||
// Tilt Wiimote, allow the shake function to interrupt it
|
||
if (Shake[0] == -1) Tilt(g_x, g_y, g_z);
|
||
|
||
// Write final values
|
||
_acc.x = g_x;
|
||
_acc.y = g_y;
|
||
_acc.z = g_z;
|
||
|
||
|
||
// Debugging for translating Wiimote to Keyboard (or Gamepad)
|
||
/*
|
||
|
||
// Toogle console display
|
||
if(GetAsyncKeyState('U'))
|
||
{
|
||
if(consoleDisplay < 2)
|
||
consoleDisplay ++;
|
||
else
|
||
consoleDisplay = 0;
|
||
}
|
||
|
||
if(GetAsyncKeyState('5'))
|
||
A-=1;
|
||
else if(GetAsyncKeyState('6'))
|
||
A+=1;
|
||
if(GetAsyncKeyState('7'))
|
||
B-=1;
|
||
else if(GetAsyncKeyState('8'))
|
||
B+=1;
|
||
if(GetAsyncKeyState('9'))
|
||
C-=1;
|
||
else if(GetAsyncKeyState('0'))
|
||
C+=1;
|
||
|
||
else if(GetAsyncKeyState(VK_NUMPAD3))
|
||
d-=1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD6))
|
||
d+=1;
|
||
else if(GetAsyncKeyState(VK_ADD))
|
||
yhistsize-=1;
|
||
else if(GetAsyncKeyState(VK_SUBTRACT))
|
||
yhistsize+=1;
|
||
|
||
|
||
if(GetAsyncKeyState(VK_INSERT))
|
||
AX-=1;
|
||
else if(GetAsyncKeyState(VK_DELETE))
|
||
AX+=1;
|
||
else if(GetAsyncKeyState(VK_HOME))
|
||
AY-=1;
|
||
else if(GetAsyncKeyState(VK_END))
|
||
AY+=1;
|
||
else if(GetAsyncKeyState(VK_SHIFT))
|
||
AZ-=1;
|
||
else if(GetAsyncKeyState(VK_CONTROL))
|
||
AZ+=1;
|
||
|
||
if(GetAsyncKeyState(VK_NUMPAD1))
|
||
X+=1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD2))
|
||
X-=1;
|
||
if(GetAsyncKeyState(VK_NUMPAD4))
|
||
Y+=1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD5))
|
||
Y-=1;
|
||
if(GetAsyncKeyState(VK_NUMPAD7))
|
||
Z+=1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD8))
|
||
Z-=1;
|
||
|
||
|
||
//if(consoleDisplay == 0)
|
||
INFO_LOG(CONSOLE, "x: %03i | y: %03i | z: %03i | A:%i B:%i C:%i a:%i b:%i c:%i d:%i X:%i Y:%i Z:%i\n",
|
||
_acc.x, _acc.y, _acc.z,
|
||
A, B, C,
|
||
a, b, c, d,
|
||
X, Y, Z
|
||
);
|
||
INFO_LOG(CONSOLE, "x: %03i | y: %03i | z: %03i | X:%i Y:%i Z:%i | AX:%i AY:%i AZ:%i \n",
|
||
_acc.x, _acc.y, _acc.z,
|
||
X, Y, Z,
|
||
AX, AY, AZ
|
||
);*/
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
int Top = TOP, Left = LEFT, Right = RIGHT,
|
||
Bottom = BOTTOM, SensorBarRadius = SENSOR_BAR_RADIUS;
|
||
*/
|
||
|
||
// The extended 12 byte (3 byte per object) reporting
|
||
void FillReportIR(wm_ir_extended& _ir0, wm_ir_extended& _ir1)
|
||
{
|
||
// Recorded movements
|
||
// Check for a playback command
|
||
if(g_RecordingPlaying[2] < 0)
|
||
{
|
||
g_RecordingPlaying[2] = RecordingCheckKeys(2);
|
||
}
|
||
else
|
||
{
|
||
//INFO_LOG(CONSOLE, "X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
|
||
if (RecordingPlayIR(_ir0)) return;
|
||
}
|
||
|
||
/* Fill with 0xff if empty. The real Wiimote seems to use 0xff when it
|
||
doesn't see a certain point, at least from how WiiMoteReal::SendEvent()
|
||
works. */
|
||
memset(&_ir0, 0xff, sizeof(wm_ir_extended));
|
||
memset(&_ir1, 0xff, sizeof(wm_ir_extended));
|
||
|
||
float MouseX, MouseY;
|
||
GetMousePos(MouseX, MouseY);
|
||
|
||
// If we are outside the screen leave the values at 0xff
|
||
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
|
||
|
||
// Position calculation
|
||
int y0 = g_Config.iIRTop + (MouseY * g_Config.iIRHeight);
|
||
int y1 = y0;
|
||
// The distance between the x positions are two sensor bar radii
|
||
int x0 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) - SENSOR_BAR_RADIUS;
|
||
int x1 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) + SENSOR_BAR_RADIUS;
|
||
// Debugging for calibration
|
||
/*
|
||
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_RIGHT))
|
||
Right +=1;
|
||
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_RIGHT))
|
||
Right -=1;
|
||
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_LEFT))
|
||
Left +=1;
|
||
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_LEFT))
|
||
Left -=1;
|
||
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_UP))
|
||
Top += 1;
|
||
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_UP))
|
||
Top -= 1;
|
||
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_DOWN))
|
||
Bottom += 1;
|
||
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_DOWN))
|
||
Bottom -= 1;
|
||
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_NUMPAD0))
|
||
SensorBarRadius += 1;
|
||
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_NUMPAD0))
|
||
SensorBarRadius -= 1;
|
||
|
||
//Console::ClearScreen();
|
||
//if(consoleDisplay == 1)
|
||
INFO_LOG(CONSOLE, "x0:%03i x1:%03i y0:%03i y1:%03i | T:%i L:%i R:%i B:%i S:%i\n",
|
||
x0, x1, y0, y1, Top, Left, Right, Bottom, SensorBarRadius
|
||
);*/
|
||
|
||
|
||
// Converted to IR data
|
||
// The width is 0 to 1023
|
||
// The height is 0 to 767
|
||
x0 = 1023 - x0;
|
||
_ir0.x = x0 & 0xff; _ir0.xHi = x0 >> 8;
|
||
_ir0.y = y0 & 0xff; _ir0.yHi = y0 >> 8;
|
||
// The size can be between 0 and 15 and is probably not important
|
||
_ir0.size = 10;
|
||
|
||
x1 = 1023 - x1;
|
||
_ir1.x = x1 & 0xff; _ir1.xHi = x1 >> 8;
|
||
_ir1.y = y1 & 0xff; _ir1.yHi = y1 >> 8;
|
||
_ir1.size = 10;
|
||
}
|
||
|
||
// The 10 byte reporting used when an extension is connected
|
||
void FillReportIRBasic(wm_ir_basic& _ir0, wm_ir_basic& _ir1)
|
||
{
|
||
|
||
// Recorded movements
|
||
// Check for a playback command
|
||
if(g_RecordingPlaying[2] < 0)
|
||
{
|
||
g_RecordingPlaying[2] = RecordingCheckKeys(2);
|
||
}
|
||
// We are playing back a recording, we don't accept any manual input this time
|
||
else
|
||
{
|
||
//INFO_LOG(CONSOLE, "X, Y, Z: %u %u %u\n", _acc.x, _acc.y, _acc.z);
|
||
if (RecordingPlayIR(_ir0)) return;
|
||
}
|
||
|
||
// Fill with 0xff if empty
|
||
memset(&_ir0, 0xff, sizeof(wm_ir_basic));
|
||
memset(&_ir1, 0xff, sizeof(wm_ir_basic));
|
||
|
||
float MouseX, MouseY;
|
||
GetMousePos(MouseX, MouseY);
|
||
|
||
// If we are outside the screen leave the values at 0xff
|
||
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
|
||
|
||
int y1 = g_Config.iIRTop + (MouseY * g_Config.iIRHeight);
|
||
int y2 = g_Config.iIRTop + (MouseY * g_Config.iIRHeight);
|
||
|
||
int x1 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) - SENSOR_BAR_RADIUS;
|
||
int x2 = g_Config.iIRLeft + (MouseX * g_Config.iIRWidth) + SENSOR_BAR_RADIUS;
|
||
|
||
/* As with the extented report we settle with emulating two out of four
|
||
possible objects the only difference is that we don't report any size of
|
||
the tracked object here */
|
||
x1 = 1023 - x1;
|
||
_ir0.x1 = x1 & 0xff; _ir0.x1Hi = (x1 >> 8); // we are dealing with 2 bit values here
|
||
_ir0.y1 = y1 & 0xff; _ir0.y1Hi = (y1 >> 8);
|
||
|
||
x2 = 1023 - x2;
|
||
_ir0.x2 = x2 & 0xff; _ir0.x2Hi = (x2 >> 8);
|
||
_ir0.y2 = y2 & 0xff; _ir0.y2Hi = (y2 >> 8);
|
||
|
||
|
||
// Debugging for calibration
|
||
/*
|
||
if(GetAsyncKeyState(VK_NUMPAD1))
|
||
Right +=1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD2))
|
||
Right -=1;
|
||
if(GetAsyncKeyState(VK_NUMPAD4))
|
||
Left +=1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD5))
|
||
Left -=1;
|
||
if(GetAsyncKeyState(VK_NUMPAD7))
|
||
Top += 1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD8))
|
||
Top -= 1;
|
||
if(GetAsyncKeyState(VK_NUMPAD6))
|
||
Bottom += 1;
|
||
else if(GetAsyncKeyState(VK_NUMPAD3))
|
||
Bottom -= 1;
|
||
if(GetAsyncKeyState(VK_INSERT))
|
||
SensorBarRadius += 1;
|
||
else if(GetAsyncKeyState(VK_DELETE))
|
||
SensorBarRadius -= 1;
|
||
|
||
//ClearScreen();
|
||
//if(consoleDisplay == 1)
|
||
|
||
INFO_LOG(CONSOLE, "x1:%03i x2:%03i y1:%03i y2:%03i irx1:%02x y1:%02x x2:%02x y2:%02x | T:%i L:%i R:%i B:%i S:%i\n",
|
||
x1, x2, y1, y2, _ir0.x1, _ir0.y1, _ir1.x2, _ir1.y2, Top, Left, Right, Bottom, SensorBarRadius
|
||
);
|
||
INFO_LOG(CONSOLE, "\n");
|
||
INFO_LOG(CONSOLE, "ir0.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir0.y1:%02x y1h:%02x y2:%02x y2h:%02x | ir1.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir1.y1:%02x y1h:%02x y2:%02x y2h:%02x\n",
|
||
_ir0.x1, _ir0.x1Hi, _ir0.x2, _ir0.x2Hi,
|
||
_ir0.y1, _ir0.y1Hi, _ir0.y2, _ir0.y2Hi,
|
||
_ir1.x1, _ir1.x1Hi, _ir1.x2, _ir1.x2Hi,
|
||
_ir1.y1, _ir1.y1Hi, _ir1.y2, _ir1.y2Hi
|
||
);*/
|
||
// ------------------
|
||
}
|
||
|
||
|
||
//*****************************************************************************
|
||
// Extensions
|
||
//*****************************************************************************
|
||
|
||
|
||
/* Generate the 6 byte extension report for the Nunchuck, encrypted. The bytes
|
||
are JX JY AX AY AZ BT. */
|
||
void FillReportExtension(wm_extension& _ext)
|
||
{
|
||
// Recorded movements
|
||
// Check for a playback command
|
||
if(g_RecordingPlaying[1] < 0) g_RecordingPlaying[1] = RecordingCheckKeys(1);
|
||
|
||
// We should not play back the accelerometer values
|
||
if (!(g_RecordingPlaying[1] >= 0 && RecordingPlay(_ext.ax, _ext.ay, _ext.az, 1)))
|
||
{
|
||
// Use the neutral values
|
||
_ext.ax = g_nu.cal_zero.x;
|
||
_ext.ay = g_nu.cal_zero.y;
|
||
_ext.az = g_nu.cal_zero.z + g_nu.cal_g.z;
|
||
}
|
||
|
||
// Shake the Wiimote
|
||
SingleShake(_ext.ay, _ext.az, 1);
|
||
|
||
// The default joystick and button values unless we use them
|
||
_ext.jx = g_nu.jx.center;
|
||
_ext.jy = g_nu.jy.center;
|
||
_ext.bt = 0x03; // 0x03 means no button pressed, the button is zero active
|
||
|
||
// Update the analog stick
|
||
if (g_Config.Nunchuck.Type == g_Config.Nunchuck.KEYBOARD)
|
||
{
|
||
// Set the max values to the current calibration values
|
||
if(IsKey(g_Nc.L)) // x
|
||
_ext.jx = g_nu.jx.min;
|
||
if(IsKey(g_Nc.R))
|
||
_ext.jx = g_nu.jx.max;
|
||
|
||
if(IsKey(g_Nc.D)) // y
|
||
_ext.jy = g_nu.jy.min;
|
||
if(IsKey(g_Nc.U))
|
||
_ext.jy = g_nu.jy.max;
|
||
}
|
||
else
|
||
{
|
||
// Get adjusted pad state values
|
||
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
|
||
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
|
||
// The Y-axis is inverted
|
||
_Ly = 0xff - _Ly;
|
||
_Ry = 0xff - _Ry;
|
||
|
||
/* This is if we are also using a real Nunchuck that we are sharing the
|
||
calibration with. It's not needed if we are using our default
|
||
values. We adjust the values to the configured range, we even allow
|
||
the center to not be 0x80. */
|
||
if(g_nu.jx.max != 0xff || g_nu.jy.max != 0xff
|
||
|| g_nu.jx.min != 0 || g_nu.jy.min != 0
|
||
|| g_nu.jx.center != 0x80 || g_nu.jy.center != 0x80)
|
||
{
|
||
float Lx = (float)_Lx;
|
||
float Ly = (float)_Ly;
|
||
float Rx = (float)_Rx;
|
||
float Ry = (float)_Ry;
|
||
// float Tl = (float)_Tl;
|
||
// float Tr = (float)_Tr;
|
||
|
||
float XRangePos = (float) (g_nu.jx.max - g_nu.jx.center);
|
||
float XRangeNeg = (float) (g_nu.jx.center - g_nu.jx.min);
|
||
float YRangePos = (float) (g_nu.jy.max - g_nu.jy.center);
|
||
float YRangeNeg = (float) (g_nu.jy.center - g_nu.jy.min);
|
||
if (Lx > 0x80) Lx = Lx * (XRangePos / 128.0);
|
||
if (Lx < 0x80) Lx = Lx * (XRangeNeg / 128.0);
|
||
if (Lx == 0x80) Lx = (float)g_nu.jx.center;
|
||
if (Ly > 0x80) Ly = Ly * (YRangePos / 128.0);
|
||
if (Ly < 0x80) Ly = Ly * (YRangeNeg / 128.0);
|
||
if (Ly == 0x80) Lx = (float)g_nu.jy.center;
|
||
// Boundaries
|
||
_Lx = (int)Lx;
|
||
_Ly = (int)Ly;
|
||
_Rx = (int)Rx;
|
||
_Ry = (int)Ry;
|
||
if (_Lx > 0xff) _Lx = 0xff; if (_Lx < 0) _Lx = 0;
|
||
if (_Rx > 0xff) _Rx = 0xff; if (_Rx < 0) _Rx = 0;
|
||
if (_Ly > 0xff) _Ly = 0xff; if (_Ly < 0) _Ly = 0;
|
||
if (_Ry > 0xff) _Ry = 0xff; if (_Ry < 0) _Ry = 0;
|
||
}
|
||
|
||
if (g_Config.Nunchuck.Type == g_Config.Nunchuck.ANALOG1)
|
||
{
|
||
_ext.jx = _Lx;
|
||
_ext.jy = _Ly;
|
||
}
|
||
else // ANALOG2
|
||
{
|
||
_ext.jx = _Rx;
|
||
_ext.jy = _Ry;
|
||
}
|
||
}
|
||
|
||
if(IsKey(g_Nc.C))
|
||
_ext.bt = 0x01;
|
||
if(IsKey(g_Nc.Z))
|
||
_ext.bt = 0x02;
|
||
if(IsKey(g_Nc.C) && IsKey(g_Nc.Z))
|
||
_ext.bt = 0x00;
|
||
|
||
/* Here we encrypt the report */
|
||
|
||
// Create a temporary storage for the data
|
||
u8 Tmp[sizeof(_ext)];
|
||
// Clear the array by copying zeroes to it
|
||
memset(Tmp, 0, sizeof(_ext));
|
||
// Copy the data to it
|
||
memcpy(Tmp, &_ext, sizeof(_ext));
|
||
// Encrypt it
|
||
wiimote_encrypt(&g_ExtKey, Tmp, 0x00, sizeof(_ext));
|
||
// Write it back to the struct
|
||
memcpy(&_ext, Tmp, sizeof(_ext));
|
||
}
|
||
|
||
|
||
/* Generate the 6 byte extension report for the Classic Controller, encrypted.
|
||
The bytes are ... */
|
||
void FillReportClassicExtension(wm_classic_extension& _ext)
|
||
{
|
||
/* These are the default neutral values for the analog triggers and sticks */
|
||
u8 Rx = g_cc.Rx.center, Ry = g_cc.Ry.center,
|
||
Lx = g_cc.Lx.center, Ly = g_cc.Ly.center,
|
||
lT = g_cc.Tl.neutral, rT = g_cc.Tl.neutral;
|
||
|
||
_ext.b1.padding = 0x01; // 0x01 means not pressed
|
||
_ext.b1.bRT = 0x01;
|
||
_ext.b1.bP = 0x01;
|
||
_ext.b1.bH = 0x01;
|
||
_ext.b1.bM = 0x01;
|
||
_ext.b1.bLT = 0x01;
|
||
_ext.b1.bdD = 0x01;
|
||
_ext.b1.bdR = 0x01;
|
||
|
||
_ext.b2.bdU = 0x01;
|
||
_ext.b2.bdL = 0x01;
|
||
_ext.b2.bZR = 0x01;
|
||
_ext.b2.bX = 0x01;
|
||
_ext.b2.bA = 0x01;
|
||
_ext.b2.bY = 0x01;
|
||
_ext.b2.bB = 0x01;
|
||
_ext.b2.bZL = 0x01;
|
||
|
||
// Check that Dolphin is in focus
|
||
if (IsFocus())
|
||
{
|
||
/* Left and right analog sticks and analog triggers
|
||
|
||
u8 Lx : 6; // byte 0
|
||
u8 Rx : 2;
|
||
u8 Ly : 6; // byte 1
|
||
u8 Rx2 : 2;
|
||
u8 Ry : 5; // byte 2
|
||
u8 lT : 2;
|
||
u8 Rx3 : 1;
|
||
u8 rT : 5; // byte 3
|
||
u8 lT2 : 3;
|
||
|
||
We use a 200 range (28 to 228) for the left analog stick and a 176 range
|
||
(40 to 216) for the right analog stick to match our calibration values
|
||
in classic_calibration
|
||
*/
|
||
|
||
// Update the left analog stick
|
||
if (g_Config.ClassicController.LType == g_Config.ClassicController.KEYBOARD)
|
||
{
|
||
if(IsKey(g_Cc.Ll)) // Left analog left
|
||
Lx = g_cc.Lx.min;
|
||
if(IsKey(g_Cc.Lu)) // up
|
||
Ly = g_cc.Ly.max;
|
||
if(IsKey(g_Cc.Lr)) // right
|
||
Lx = g_cc.Lx.max;
|
||
if(IsKey(g_Cc.Ld)) // down
|
||
Ly = g_cc.Ly.min;
|
||
|
||
}
|
||
else
|
||
{
|
||
// Get adjusted pad state values
|
||
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
|
||
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
|
||
// The Y-axis is inverted
|
||
_Ly = 0xff - _Ly;
|
||
_Ry = 0xff - _Ry;
|
||
|
||
/* This is if we are also using a real Classic Controller that we
|
||
are sharing the calibration with. It's not needed if we are
|
||
using our default values. We adjust the values to the configured
|
||
range.
|
||
|
||
Status: Not added, we are not currently sharing the calibration
|
||
with the real Classic Controller
|
||
*/
|
||
|
||
if (g_Config.ClassicController.LType == g_Config.ClassicController.ANALOG1)
|
||
{
|
||
Lx = _Lx;
|
||
Ly = _Ly;
|
||
}
|
||
else // ANALOG2
|
||
{
|
||
Lx = _Rx;
|
||
Ly = _Ry;
|
||
}
|
||
}
|
||
|
||
// Update the right analog stick
|
||
if (g_Config.ClassicController.RType == g_Config.ClassicController.KEYBOARD)
|
||
{
|
||
if(IsKey(g_Cc.Rl)) // Right analog left
|
||
Rx = g_cc.Rx.min;
|
||
if(IsKey(g_Cc.Ru)) // up
|
||
Ry = g_cc.Ry.max;
|
||
if(IsKey(g_Cc.Rr)) // right
|
||
Rx = g_cc.Rx.max;
|
||
if(IsKey(g_Cc.Rd)) // down
|
||
Ry = g_cc.Ry.min;
|
||
}
|
||
else
|
||
{
|
||
// Get adjusted pad state values
|
||
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
|
||
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
|
||
// The Y-axis is inverted
|
||
_Ly = 0xff - _Ly;
|
||
_Ry = 0xff - _Ry;
|
||
|
||
/* This is if we are also using a real Classic Controller that we
|
||
are sharing the calibration with. It's not needed if we are
|
||
using our default values. We adjust the values to the configured
|
||
range.
|
||
|
||
Status: Not added, we are not currently sharing the calibration
|
||
with the real Classic Controller
|
||
*/
|
||
|
||
if (g_Config.ClassicController.RType == g_Config.ClassicController.ANALOG1)
|
||
{
|
||
Rx = _Lx;
|
||
Ry = _Ly;
|
||
}
|
||
else // ANALOG2
|
||
{
|
||
Rx = _Rx;
|
||
Ry = _Ry;
|
||
}
|
||
}
|
||
|
||
// Update the left and right analog triggers
|
||
if (g_Config.ClassicController.TType == g_Config.ClassicController.KEYBOARD)
|
||
{
|
||
if(IsKey(g_Cc.Tl)) // analog left trigger
|
||
{ _ext.b1.bLT = 0x00; lT = 0x1f; }
|
||
if(IsKey(g_Cc.Tr)) // analog right trigger
|
||
{ _ext.b1.bRT = 0x00; rT = 0x1f; }
|
||
}
|
||
else // g_Config.ClassicController.TRIGGER
|
||
{
|
||
// Get adjusted pad state values
|
||
int _Lx, _Ly, _Rx, _Ry, _Tl, _Tr;
|
||
PadStateAdjustments(_Lx, _Ly, _Rx, _Ry, _Tl, _Tr);
|
||
|
||
/* This is if we are also using a real Classic Controller that we
|
||
are sharing the calibration with. It's not needed if we are
|
||
using our default values. We adjust the values to the configured
|
||
range.
|
||
|
||
Status: Not added, we are not currently sharing the calibration
|
||
with the real Classic Controller
|
||
*/
|
||
|
||
// Check if the trigger is fully pressed, then update the digital
|
||
// trigger values to
|
||
if (_Tl == 0xff) _ext.b1.bLT = 0x00;
|
||
if (_Tr == 0xff) _ext.b1.bRT = 0x00;
|
||
|
||
// These can be copied directly, the bitshift further down fix this
|
||
// value to
|
||
lT = _Tl;
|
||
rT = _Tr;
|
||
}
|
||
|
||
|
||
|
||
/* D-Pad
|
||
|
||
u8 b1;
|
||
0:
|
||
6: bdD
|
||
7: bdR
|
||
|
||
u8 b2;
|
||
0: bdU
|
||
1: bdL
|
||
*/
|
||
if(IsKey(g_Cc.Dl)) _ext.b2.bdL = 0x00; // Digital left
|
||
if(IsKey(g_Cc.Du)) _ext.b2.bdU = 0x00; // Up
|
||
if(IsKey(g_Cc.Dr)) _ext.b1.bdR = 0x00; // Right
|
||
if(IsKey(g_Cc.Dd)) _ext.b1.bdD = 0x00; // Down
|
||
|
||
/* Buttons
|
||
u8 b1;
|
||
0:
|
||
6: -
|
||
7: -
|
||
|
||
u8 b2;
|
||
0: -
|
||
1: -
|
||
2: bZr
|
||
3: bX
|
||
4: bA
|
||
5: bY
|
||
6: bB
|
||
7: bZl
|
||
*/
|
||
if(IsKey(g_Cc.A))
|
||
_ext.b2.bA = 0x00;
|
||
|
||
if(IsKey(g_Cc.B))
|
||
_ext.b2.bB = 0x00;
|
||
|
||
if(IsKey(g_Cc.Y))
|
||
_ext.b2.bY = 0x00;
|
||
|
||
if(IsKey(g_Cc.X))
|
||
_ext.b2.bX = 0x00;
|
||
|
||
if(IsKey(g_Cc.P)) // O instead of P
|
||
_ext.b1.bP = 0x00;
|
||
|
||
if(IsKey(g_Cc.M)) // N instead of M
|
||
_ext.b1.bM = 0x00;
|
||
|
||
if(IsKey(g_Cc.H)) // Home button
|
||
_ext.b1.bH = 0x00;
|
||
|
||
if(IsKey(g_Cc.Zl)) // Digital left trigger
|
||
_ext.b2.bZL = 0x00;
|
||
|
||
if(IsKey(g_Cc.Zr)) // Digital right trigger
|
||
_ext.b2.bZR = 0x00;
|
||
|
||
// All buttons pressed
|
||
//if(GetAsyncKeyState('C') && GetAsyncKeyState('Z'))
|
||
// { _ext.b2.bA = 0x01; _ext.b2.bB = 0x01; }
|
||
}
|
||
|
||
|
||
// Convert data for reporting
|
||
_ext.Lx = (Lx >> 2);
|
||
_ext.Ly = (Ly >> 2);
|
||
// 5 bit to 1 bit
|
||
_ext.Rx = (Rx >> 3) & 0x01;
|
||
// 5 bit to the next 2 bit
|
||
_ext.Rx2 = ((Rx >> 3) >> 1) & 0x03;
|
||
// 5 bit to the next 2 bit
|
||
_ext.Rx3 = ((Rx >> 3) >> 3) & 0x03;
|
||
_ext.Ry = (Ry >> 3);
|
||
|
||
// 5 bit to 3 bit
|
||
_ext.lT = (lT >> 3) & 0x07;
|
||
// 5 bit to the highest two bits
|
||
_ext.lT2 = (lT >> 3) >> 3;
|
||
_ext.rT = (rT >> 3);
|
||
|
||
|
||
/* Here we encrypt the report */
|
||
|
||
// Create a temporary storage for the data
|
||
u8 Tmp[sizeof(_ext)];
|
||
// Clear the array by copying zeroes to it
|
||
memset(Tmp, 0, sizeof(_ext));
|
||
// Copy the data to it
|
||
memcpy(Tmp, &_ext, sizeof(_ext));
|
||
// Encrypt it
|
||
wiimote_encrypt(&g_ExtKey, Tmp, 0x00, sizeof(_ext));
|
||
// Write it back to the struct
|
||
memcpy(&_ext, Tmp, sizeof(_ext));
|
||
}
|
||
} // end of namespace
|