dolphin/Source/UnitTests/VideoCommon/VertexLoaderTest.cpp

1085 lines
33 KiB
C++

// Copyright 2014 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <unordered_set>
#include <gtest/gtest.h> // NOLINT
#include "Common/BitUtils.h"
#include "Common/Common.h"
#include "Common/MathUtil.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexLoaderManager.h"
TEST(VertexLoaderUID, UniqueEnough)
{
std::unordered_set<VertexLoaderUID> uids;
TVtxDesc vtx_desc;
VAT vat;
uids.insert(VertexLoaderUID(vtx_desc, vat));
vtx_desc.low.Hex = 0x76543210;
vtx_desc.high.Hex = 0xFEDCBA98;
EXPECT_EQ(uids.end(), uids.find(VertexLoaderUID(vtx_desc, vat)));
uids.insert(VertexLoaderUID(vtx_desc, vat));
vat.g0.Hex = 0xFFFFFFFF;
vat.g1.Hex = 0xFFFFFFFF;
vat.g2.Hex = 0xFFFFFFFF;
EXPECT_EQ(uids.end(), uids.find(VertexLoaderUID(vtx_desc, vat)));
uids.insert(VertexLoaderUID(vtx_desc, vat));
}
static u8 input_memory[16 * 1024 * 1024];
static u8 output_memory[16 * 1024 * 1024];
class VertexLoaderTest : public testing::Test
{
protected:
void SetUp() override
{
memset(input_memory, 0, sizeof(input_memory));
memset(output_memory, 0xFF, sizeof(input_memory));
m_vtx_desc.low.Hex = 0;
m_vtx_desc.high.Hex = 0;
m_vtx_attr.g0.Hex = 0;
m_vtx_attr.g1.Hex = 0;
m_vtx_attr.g2.Hex = 0;
m_loader = nullptr;
ResetPointers();
}
void CreateAndCheckSizes(size_t input_size, size_t output_size)
{
m_loader = VertexLoaderBase::CreateVertexLoader(m_vtx_desc, m_vtx_attr);
ASSERT_EQ(input_size, m_loader->m_vertex_size);
ASSERT_EQ((int)output_size, m_loader->m_native_vtx_decl.stride);
}
template <typename T>
void Input(T val)
{
// Write swapped.
m_src.Write<T, true>(val);
}
void ExpectOut(float expected)
{
// Read unswapped.
const float actual = m_dst.Read<float, false>();
if (!actual || actual != actual)
EXPECT_EQ(Common::BitCast<u32>(expected), Common::BitCast<u32>(actual));
else
EXPECT_EQ(expected, actual);
}
void RunVertices(int count, int expected_count = -1)
{
if (expected_count == -1)
expected_count = count;
ResetPointers();
int actual_count = m_loader->RunVertices(m_src.GetPointer(), m_dst.GetPointer(), count);
EXPECT_EQ(actual_count, expected_count);
}
void ResetPointers()
{
m_src = DataReader(input_memory, input_memory + sizeof(input_memory));
m_dst = DataReader(output_memory, output_memory + sizeof(output_memory));
}
DataReader m_src;
DataReader m_dst;
TVtxDesc m_vtx_desc;
VAT m_vtx_attr;
std::unique_ptr<VertexLoaderBase> m_loader;
};
class VertexLoaderParamTest
: public VertexLoaderTest,
public ::testing::WithParamInterface<
std::tuple<VertexComponentFormat, ComponentFormat, CoordComponentCount, int>>
{
};
INSTANTIATE_TEST_SUITE_P(
AllCombinations, VertexLoaderParamTest,
::testing::Combine(
::testing::Values(VertexComponentFormat::Direct, VertexComponentFormat::Index8,
VertexComponentFormat::Index16),
::testing::Values(ComponentFormat::UByte, ComponentFormat::Byte, ComponentFormat::UShort,
ComponentFormat::Short, ComponentFormat::Float,
ComponentFormat::InvalidFloat5, ComponentFormat::InvalidFloat6,
ComponentFormat::InvalidFloat7),
::testing::Values(CoordComponentCount::XY, CoordComponentCount::XYZ),
::testing::Values(0, 1, 31) // frac
));
TEST_P(VertexLoaderParamTest, PositionAll)
{
VertexComponentFormat addr;
ComponentFormat format;
CoordComponentCount elements;
int frac;
std::tie(addr, format, elements, frac) = GetParam();
this->m_vtx_desc.low.Position = addr;
this->m_vtx_attr.g0.PosFormat = format;
this->m_vtx_attr.g0.PosElements = elements;
this->m_vtx_attr.g0.PosFrac = frac;
this->m_vtx_attr.g0.ByteDequant = true;
const u32 elem_size = GetElementSize(format);
const u32 elem_count = elements == CoordComponentCount::XY ? 2 : 3;
std::vector<float> values = {
std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::denorm_min(),
std::numeric_limits<float>::min(),
std::numeric_limits<float>::max(),
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity(),
-0x8000,
-0x80,
-1,
-0.0,
0,
1,
123,
0x7F,
0xFF,
0x7FFF,
0xFFFF,
12345678,
};
ASSERT_EQ(0u, values.size() % 2);
ASSERT_EQ(0u, values.size() % 3);
int count = (int)values.size() / elem_count;
size_t input_size = elem_count * elem_size;
if (IsIndexed(addr))
{
input_size = addr == VertexComponentFormat::Index8 ? 1 : 2;
for (int i = 0; i < count; i++)
{
if (addr == VertexComponentFormat::Index8)
Input<u8>(i);
else
Input<u16>(i);
}
VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer();
g_main_cp_state.array_strides[CPArray::Position] = elem_count * elem_size;
}
CreateAndCheckSizes(input_size, elem_count * sizeof(float));
for (float value : values)
{
switch (format)
{
case ComponentFormat::UByte:
Input(MathUtil::SaturatingCast<u8>(value));
break;
case ComponentFormat::Byte:
Input(MathUtil::SaturatingCast<s8>(value));
break;
case ComponentFormat::UShort:
Input(MathUtil::SaturatingCast<u16>(value));
break;
case ComponentFormat::Short:
Input(MathUtil::SaturatingCast<s16>(value));
break;
case ComponentFormat::Float:
case ComponentFormat::InvalidFloat5:
case ComponentFormat::InvalidFloat6:
case ComponentFormat::InvalidFloat7:
Input(value);
break;
}
}
RunVertices(count);
float scale = 1.f / (1u << (format >= ComponentFormat::Float ? 0 : frac));
for (auto iter = values.begin(); iter != values.end();)
{
float f, g;
switch (format)
{
case ComponentFormat::UByte:
f = MathUtil::SaturatingCast<u8>(*iter++);
g = MathUtil::SaturatingCast<u8>(*iter++);
break;
case ComponentFormat::Byte:
f = MathUtil::SaturatingCast<s8>(*iter++);
g = MathUtil::SaturatingCast<s8>(*iter++);
break;
case ComponentFormat::UShort:
f = MathUtil::SaturatingCast<u16>(*iter++);
g = MathUtil::SaturatingCast<u16>(*iter++);
break;
case ComponentFormat::Short:
f = MathUtil::SaturatingCast<s16>(*iter++);
g = MathUtil::SaturatingCast<s16>(*iter++);
break;
case ComponentFormat::Float:
case ComponentFormat::InvalidFloat5:
case ComponentFormat::InvalidFloat6:
case ComponentFormat::InvalidFloat7:
f = *iter++;
g = *iter++;
break;
default:
FAIL() << "Unknown format";
}
ExpectOut(f * scale);
ExpectOut(g * scale);
}
}
TEST_F(VertexLoaderTest, PositionIndex16FloatXY)
{
m_vtx_desc.low.Position = VertexComponentFormat::Index16;
m_vtx_attr.g0.PosFormat = ComponentFormat::Float;
CreateAndCheckSizes(sizeof(u16), 2 * sizeof(float));
Input<u16>(1);
Input<u16>(0);
VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer();
g_main_cp_state.array_strides[CPArray::Position] = sizeof(float); // ;)
Input(1.f);
Input(2.f);
Input(3.f);
RunVertices(2);
ExpectOut(2);
ExpectOut(3);
ExpectOut(1);
ExpectOut(2);
}
class VertexLoaderSpeedTest : public VertexLoaderTest,
public ::testing::WithParamInterface<std::tuple<ComponentFormat, int>>
{
};
INSTANTIATE_TEST_SUITE_P(
FormatsAndElements, VertexLoaderSpeedTest,
::testing::Combine(::testing::Values(ComponentFormat::UByte, ComponentFormat::Byte,
ComponentFormat::UShort, ComponentFormat::Short,
ComponentFormat::Float),
::testing::Values(0, 1)));
TEST_P(VertexLoaderSpeedTest, PositionDirectAll)
{
ComponentFormat format;
int elements_i;
std::tie(format, elements_i) = GetParam();
CoordComponentCount elements = static_cast<CoordComponentCount>(elements_i);
fmt::print("format: {}, elements: {}\n", format, elements);
const u32 elem_count = elements == CoordComponentCount::XY ? 2 : 3;
m_vtx_desc.low.Position = VertexComponentFormat::Direct;
m_vtx_attr.g0.PosFormat = format;
m_vtx_attr.g0.PosElements = elements;
const size_t elem_size = GetElementSize(format);
CreateAndCheckSizes(elem_count * elem_size, elem_count * sizeof(float));
for (int i = 0; i < 1000; ++i)
RunVertices(100000);
}
TEST_P(VertexLoaderSpeedTest, TexCoordSingleElement)
{
ComponentFormat format;
int elements_i;
std::tie(format, elements_i) = GetParam();
TexComponentCount elements = static_cast<TexComponentCount>(elements_i);
fmt::print("format: {}, elements: {}\n", format, elements);
const u32 elem_count = elements == TexComponentCount::S ? 1 : 2;
m_vtx_desc.low.Position = VertexComponentFormat::Direct;
m_vtx_attr.g0.PosFormat = ComponentFormat::Byte;
m_vtx_desc.high.Tex0Coord = VertexComponentFormat::Direct;
m_vtx_attr.g0.Tex0CoordFormat = format;
m_vtx_attr.g0.Tex0CoordElements = elements;
const size_t elem_size = GetElementSize(format);
CreateAndCheckSizes(2 * sizeof(s8) + elem_count * elem_size,
2 * sizeof(float) + elem_count * sizeof(float));
for (int i = 0; i < 1000; ++i)
RunVertices(100000);
}
TEST_F(VertexLoaderTest, LargeFloatVertexSpeed)
{
// Enables most attributes in floating point indexed mode to test speed.
m_vtx_desc.low.PosMatIdx = 1;
m_vtx_desc.low.Tex0MatIdx = 1;
m_vtx_desc.low.Tex1MatIdx = 1;
m_vtx_desc.low.Tex2MatIdx = 1;
m_vtx_desc.low.Tex3MatIdx = 1;
m_vtx_desc.low.Tex4MatIdx = 1;
m_vtx_desc.low.Tex5MatIdx = 1;
m_vtx_desc.low.Tex6MatIdx = 1;
m_vtx_desc.low.Tex7MatIdx = 1;
m_vtx_desc.low.Position = VertexComponentFormat::Index16;
m_vtx_desc.low.Normal = VertexComponentFormat::Index16;
m_vtx_desc.low.Color0 = VertexComponentFormat::Index16;
m_vtx_desc.low.Color1 = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex0Coord = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex1Coord = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex2Coord = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex3Coord = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex4Coord = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex5Coord = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex6Coord = VertexComponentFormat::Index16;
m_vtx_desc.high.Tex7Coord = VertexComponentFormat::Index16;
m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ;
m_vtx_attr.g0.PosFormat = ComponentFormat::Float;
m_vtx_attr.g0.NormalElements = NormalComponentCount::NTB;
m_vtx_attr.g0.NormalFormat = ComponentFormat::Float;
m_vtx_attr.g0.Color0Elements = ColorComponentCount::RGBA;
m_vtx_attr.g0.Color0Comp = ColorFormat::RGBA8888;
m_vtx_attr.g0.Color1Elements = ColorComponentCount::RGBA;
m_vtx_attr.g0.Color1Comp = ColorFormat::RGBA8888;
m_vtx_attr.g0.Tex0CoordElements = TexComponentCount::ST;
m_vtx_attr.g0.Tex0CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex1CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex1CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex2CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex2CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex3CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex3CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex4CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex4CoordFormat = ComponentFormat::Float;
m_vtx_attr.g2.Tex5CoordElements = TexComponentCount::ST;
m_vtx_attr.g2.Tex5CoordFormat = ComponentFormat::Float;
m_vtx_attr.g2.Tex6CoordElements = TexComponentCount::ST;
m_vtx_attr.g2.Tex6CoordFormat = ComponentFormat::Float;
m_vtx_attr.g2.Tex7CoordElements = TexComponentCount::ST;
m_vtx_attr.g2.Tex7CoordFormat = ComponentFormat::Float;
CreateAndCheckSizes(33, 156);
for (int i = 0; i < NUM_VERTEX_COMPONENT_ARRAYS; i++)
{
VertexLoaderManager::cached_arraybases[static_cast<CPArray>(i)] = m_src.GetPointer();
g_main_cp_state.array_strides[static_cast<CPArray>(i)] = 129;
}
// This test is only done 100x in a row since it's ~20x slower using the
// current vertex loader implementation.
for (int i = 0; i < 100; ++i)
RunVertices(100000);
}
TEST_F(VertexLoaderTest, DirectAllComponents)
{
m_vtx_desc.low.PosMatIdx = 1;
m_vtx_desc.low.Tex0MatIdx = 1;
m_vtx_desc.low.Tex1MatIdx = 1;
m_vtx_desc.low.Tex2MatIdx = 1;
m_vtx_desc.low.Tex3MatIdx = 1;
m_vtx_desc.low.Tex4MatIdx = 1;
m_vtx_desc.low.Tex5MatIdx = 1;
m_vtx_desc.low.Tex6MatIdx = 1;
m_vtx_desc.low.Tex7MatIdx = 1;
m_vtx_desc.low.Position = VertexComponentFormat::Direct;
m_vtx_desc.low.Normal = VertexComponentFormat::Direct;
m_vtx_desc.low.Color0 = VertexComponentFormat::Direct;
m_vtx_desc.low.Color1 = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex0Coord = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex1Coord = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex2Coord = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex3Coord = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex4Coord = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex5Coord = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex6Coord = VertexComponentFormat::Direct;
m_vtx_desc.high.Tex7Coord = VertexComponentFormat::Direct;
m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ;
m_vtx_attr.g0.PosFormat = ComponentFormat::Float;
m_vtx_attr.g0.NormalElements = NormalComponentCount::NTB;
m_vtx_attr.g0.NormalFormat = ComponentFormat::Float;
m_vtx_attr.g0.Color0Elements = ColorComponentCount::RGBA;
m_vtx_attr.g0.Color0Comp = ColorFormat::RGBA8888;
m_vtx_attr.g0.Color1Elements = ColorComponentCount::RGBA;
m_vtx_attr.g0.Color1Comp = ColorFormat::RGBA8888;
m_vtx_attr.g0.Tex0CoordElements = TexComponentCount::ST;
m_vtx_attr.g0.Tex0CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex1CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex1CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex2CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex2CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex3CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex3CoordFormat = ComponentFormat::Float;
m_vtx_attr.g1.Tex4CoordElements = TexComponentCount::ST;
m_vtx_attr.g1.Tex4CoordFormat = ComponentFormat::Float;
m_vtx_attr.g2.Tex5CoordElements = TexComponentCount::ST;
m_vtx_attr.g2.Tex5CoordFormat = ComponentFormat::Float;
m_vtx_attr.g2.Tex6CoordElements = TexComponentCount::ST;
m_vtx_attr.g2.Tex6CoordFormat = ComponentFormat::Float;
m_vtx_attr.g2.Tex7CoordElements = TexComponentCount::ST;
m_vtx_attr.g2.Tex7CoordFormat = ComponentFormat::Float;
CreateAndCheckSizes(129, 39 * sizeof(float));
// Pos matrix idx
Input<u8>(20);
// Tex matrix idx
Input<u8>(0);
Input<u8>(1);
Input<u8>(2);
Input<u8>(3);
Input<u8>(4);
Input<u8>(5);
Input<u8>(6);
Input<u8>(7);
// Position
Input(-1.0f);
Input(-2.0f);
Input(-3.0f);
// Normal
Input(-4.0f);
Input(-5.0f);
Input(-6.0f);
// Tangent
Input(-7.0f);
Input(-8.0f);
Input(-9.0f);
// Binormal
Input(-10.0f);
Input(-11.0f);
Input(-12.0f);
// Colors
Input<u32>(0x01234567);
Input<u32>(0x89abcdef);
// Texture coordinates
Input(0.1f);
Input(-0.9f);
Input(1.1f);
Input(-1.9f);
Input(2.1f);
Input(-2.9f);
Input(3.1f);
Input(-3.9f);
Input(4.1f);
Input(-4.9f);
Input(5.1f);
Input(-5.9f);
Input(6.1f);
Input(-6.9f);
Input(7.1f);
Input(-7.9f);
RunVertices(1);
// Position matrix
ASSERT_EQ(m_loader->m_native_vtx_decl.posmtx.offset, 0 * sizeof(float));
EXPECT_EQ((m_dst.Read<u32, false>()), 20u);
// Position
ASSERT_EQ(m_loader->m_native_vtx_decl.position.offset, 1 * sizeof(float));
ExpectOut(-1.0f);
ExpectOut(-2.0f);
ExpectOut(-3.0f);
// Normal
ASSERT_EQ(m_loader->m_native_vtx_decl.normals[0].offset, 4 * sizeof(float));
ExpectOut(-4.0f);
ExpectOut(-5.0f);
ExpectOut(-6.0f);
// Tangent
ASSERT_EQ(m_loader->m_native_vtx_decl.normals[1].offset, 7 * sizeof(float));
ExpectOut(-7.0f);
ExpectOut(-8.0f);
ExpectOut(-9.0f);
// Binormal
ASSERT_EQ(m_loader->m_native_vtx_decl.normals[2].offset, 10 * sizeof(float));
ExpectOut(-10.0f);
ExpectOut(-11.0f);
ExpectOut(-12.0f);
// Colors
ASSERT_EQ(m_loader->m_native_vtx_decl.colors[0].offset, 13 * sizeof(float));
EXPECT_EQ((m_dst.Read<u32, true>()), 0x01234567u);
ASSERT_EQ(m_loader->m_native_vtx_decl.colors[1].offset, 14 * sizeof(float));
EXPECT_EQ((m_dst.Read<u32, true>()), 0x89abcdefu);
// Texture coordinates and matrices (interleaved)
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[0].offset, 15 * sizeof(float));
ExpectOut(0.1f); // S
ExpectOut(-0.9f); // T
ExpectOut(0.0f); // matrix (yes, a float)
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[1].offset, 18 * sizeof(float));
ExpectOut(1.1f);
ExpectOut(-1.9f);
ExpectOut(1.0f);
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[2].offset, 21 * sizeof(float));
ExpectOut(2.1f);
ExpectOut(-2.9f);
ExpectOut(2.0f);
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[3].offset, 24 * sizeof(float));
ExpectOut(3.1f);
ExpectOut(-3.9f);
ExpectOut(3.0f);
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[4].offset, 27 * sizeof(float));
ExpectOut(4.1f);
ExpectOut(-4.9f);
ExpectOut(4.0f);
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[5].offset, 30 * sizeof(float));
ExpectOut(5.1f);
ExpectOut(-5.9f);
ExpectOut(5.0f);
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[6].offset, 33 * sizeof(float));
ExpectOut(6.1f);
ExpectOut(-6.9f);
ExpectOut(6.0f);
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[7].offset, 36 * sizeof(float));
ExpectOut(7.1f);
ExpectOut(-7.9f);
ExpectOut(7.0f);
}
class VertexLoaderNormalTest
: public VertexLoaderTest,
public ::testing::WithParamInterface<
std::tuple<VertexComponentFormat, ComponentFormat, NormalComponentCount, bool>>
{
};
INSTANTIATE_TEST_SUITE_P(
AllCombinations, VertexLoaderNormalTest,
::testing::Combine(
::testing::Values(VertexComponentFormat::NotPresent, VertexComponentFormat::Direct,
VertexComponentFormat::Index8, VertexComponentFormat::Index16),
::testing::Values(ComponentFormat::UByte, ComponentFormat::Byte, ComponentFormat::UShort,
ComponentFormat::Short, ComponentFormat::Float,
ComponentFormat::InvalidFloat5, ComponentFormat::InvalidFloat6,
ComponentFormat::InvalidFloat7),
::testing::Values(NormalComponentCount::N, NormalComponentCount::NTB),
::testing::Values(false, true)));
TEST_P(VertexLoaderNormalTest, NormalAll)
{
VertexComponentFormat addr;
ComponentFormat format;
NormalComponentCount elements;
bool index3;
std::tie(addr, format, elements, index3) = GetParam();
m_vtx_desc.low.Position = VertexComponentFormat::Direct;
m_vtx_attr.g0.PosFormat = ComponentFormat::Float;
m_vtx_attr.g0.PosElements = CoordComponentCount::XY;
m_vtx_attr.g0.PosFrac = 0;
m_vtx_desc.low.Normal = addr;
m_vtx_attr.g0.NormalFormat = format;
m_vtx_attr.g0.NormalElements = elements;
m_vtx_attr.g0.NormalIndex3 = index3;
const u32 in_size = [&]() -> u32 {
if (addr == VertexComponentFormat::NotPresent)
return 0;
if (IsIndexed(addr))
{
const u32 base_size = (addr == VertexComponentFormat::Index8) ? 1 : 2;
if (elements == NormalComponentCount::NTB)
return (index3 ? 3 : 1) * base_size;
else
return 1 * base_size;
}
else
{
const u32 base_count = (elements == NormalComponentCount::NTB) ? 9 : 3;
const u32 base_size = GetElementSize(format);
return base_count * base_size;
}
}();
const u32 out_size = [&]() -> u32 {
if (addr == VertexComponentFormat::NotPresent)
return 0;
const u32 base_count = (elements == NormalComponentCount::NTB) ? 9 : 3;
return base_count * sizeof(float);
}();
CreateAndCheckSizes(2 * sizeof(float) + in_size, 2 * sizeof(float) + out_size);
auto input_with_expected_type = [&](float value) {
switch (format)
{
case ComponentFormat::UByte:
Input<u8>(value * (1 << 7));
break;
case ComponentFormat::Byte:
Input<s8>(value * (1 << 6));
break;
case ComponentFormat::UShort:
Input<u16>(value * (1 << 15));
break;
case ComponentFormat::Short:
Input<s16>(value * (1 << 14));
break;
case ComponentFormat::Float:
case ComponentFormat::InvalidFloat5:
case ComponentFormat::InvalidFloat6:
case ComponentFormat::InvalidFloat7:
Input<float>(value);
break;
}
};
auto create_normal = [&](int counter_base) {
if (addr == VertexComponentFormat::Direct)
{
input_with_expected_type(counter_base / 32.f);
input_with_expected_type((counter_base + 1) / 32.f);
input_with_expected_type((counter_base + 2) / 32.f);
}
else if (addr == VertexComponentFormat::Index8)
{
// We set up arrays so that this works
Input<u8>(counter_base);
}
else if (addr == VertexComponentFormat::Index16)
{
Input<u16>(counter_base);
}
// Do nothing for NotPresent
};
auto create_tangent_and_binormal = [&](int counter_base) {
if (IsIndexed(addr))
{
// With NormalIndex3, specifying the same index 3 times should give the same result
// as specifying one index in non-index3 mode (as the index is biased by bytes).
// If index3 is disabled, we don't want to write any more indices.
if (index3)
{
// Tangent
create_normal(counter_base);
// Binormal
create_normal(counter_base);
}
}
else
{
// Tangent
create_normal(counter_base + 3);
// Binormal
create_normal(counter_base + 6);
}
};
// Create our two vertices
// Position 1
Input(4.0f);
Input(8.0f);
// Normal 1
create_normal(1);
if (elements == NormalComponentCount::NTB)
{
create_tangent_and_binormal(1);
}
// Position 2
Input(6.0f);
Input(12.0f);
// Normal 1
create_normal(10);
if (elements == NormalComponentCount::NTB)
{
create_tangent_and_binormal(10);
}
// Create an array for indexed representations
for (int i = 0; i < NUM_VERTEX_COMPONENT_ARRAYS; i++)
{
VertexLoaderManager::cached_arraybases[static_cast<CPArray>(i)] = m_src.GetPointer();
g_main_cp_state.array_strides[static_cast<CPArray>(i)] = GetElementSize(format);
}
for (int i = 0; i < 32; i++)
input_with_expected_type(i / 32.f);
// Pre-fill these values to detect if they're modified
VertexLoaderManager::binormal_cache = {42.f, 43.f, 44.f, 45.f};
VertexLoaderManager::tangent_cache = {46.f, 47.f, 48.f, 49.f};
RunVertices(2);
// First vertex, position
ExpectOut(4.0f);
ExpectOut(8.0f);
if (addr != VertexComponentFormat::NotPresent)
{
// Normal
ExpectOut(1 / 32.f);
ExpectOut(2 / 32.f);
ExpectOut(3 / 32.f);
if (elements == NormalComponentCount::NTB)
{
// Tangent
ExpectOut(4 / 32.f);
ExpectOut(5 / 32.f);
ExpectOut(6 / 32.f);
// Binormal
ExpectOut(7 / 32.f);
ExpectOut(8 / 32.f);
ExpectOut(9 / 32.f);
}
}
// Second vertex, position
ExpectOut(6.0f);
ExpectOut(12.0f);
if (addr != VertexComponentFormat::NotPresent)
{
// Normal
ExpectOut(10 / 32.f);
ExpectOut(11 / 32.f);
ExpectOut(12 / 32.f);
if (elements == NormalComponentCount::NTB)
{
// Tangent
ExpectOut(13 / 32.f);
ExpectOut(14 / 32.f);
ExpectOut(15 / 32.f);
// Binormal
ExpectOut(16 / 32.f);
ExpectOut(17 / 32.f);
ExpectOut(18 / 32.f);
EXPECT_EQ(VertexLoaderManager::tangent_cache[0], 13 / 32.f);
EXPECT_EQ(VertexLoaderManager::tangent_cache[1], 14 / 32.f);
EXPECT_EQ(VertexLoaderManager::tangent_cache[2], 15 / 32.f);
// Last index is padding/junk
EXPECT_EQ(VertexLoaderManager::binormal_cache[0], 16 / 32.f);
EXPECT_EQ(VertexLoaderManager::binormal_cache[1], 17 / 32.f);
EXPECT_EQ(VertexLoaderManager::binormal_cache[2], 18 / 32.f);
}
}
if (addr == VertexComponentFormat::NotPresent || elements == NormalComponentCount::N)
{
// Expect these to not be written
EXPECT_EQ(VertexLoaderManager::binormal_cache[0], 42.f);
EXPECT_EQ(VertexLoaderManager::binormal_cache[1], 43.f);
EXPECT_EQ(VertexLoaderManager::binormal_cache[2], 44.f);
EXPECT_EQ(VertexLoaderManager::binormal_cache[3], 45.f);
EXPECT_EQ(VertexLoaderManager::tangent_cache[0], 46.f);
EXPECT_EQ(VertexLoaderManager::tangent_cache[1], 47.f);
EXPECT_EQ(VertexLoaderManager::tangent_cache[2], 48.f);
EXPECT_EQ(VertexLoaderManager::tangent_cache[3], 49.f);
}
}
class VertexLoaderSkippedColorsTest : public VertexLoaderTest,
public ::testing::WithParamInterface<std::tuple<bool, bool>>
{
};
INSTANTIATE_TEST_SUITE_P(AllCombinations, VertexLoaderSkippedColorsTest,
::testing::Combine(::testing::Values(false, true),
::testing::Values(false, true)));
TEST_P(VertexLoaderSkippedColorsTest, SkippedColors)
{
bool enable_color_0, enable_color_1;
std::tie(enable_color_0, enable_color_1) = GetParam();
size_t input_size = 1;
size_t output_size = 3 * sizeof(float);
size_t color_0_offset = 0;
size_t color_1_offset = 0;
m_vtx_desc.low.Position = VertexComponentFormat::Index8;
if (enable_color_0)
{
m_vtx_desc.low.Color0 = VertexComponentFormat::Index8;
input_size++;
color_0_offset = output_size;
output_size += sizeof(u32);
}
if (enable_color_1)
{
m_vtx_desc.low.Color1 = VertexComponentFormat::Index8;
input_size++;
color_1_offset = output_size;
output_size += sizeof(u32);
}
m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ;
m_vtx_attr.g0.PosFormat = ComponentFormat::Float;
m_vtx_attr.g0.Color0Elements = ColorComponentCount::RGBA;
m_vtx_attr.g0.Color0Comp = ColorFormat::RGBA8888;
m_vtx_attr.g0.Color1Elements = ColorComponentCount::RGBA;
m_vtx_attr.g0.Color1Comp = ColorFormat::RGBA8888;
CreateAndCheckSizes(input_size, output_size);
// Vertex 0
Input<u8>(1);
if (enable_color_0)
Input<u8>(1);
if (enable_color_1)
Input<u8>(1);
// Vertex 1
Input<u8>(0);
if (enable_color_0)
Input<u8>(0);
if (enable_color_1)
Input<u8>(0);
// Position array
VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer();
g_main_cp_state.array_strides[CPArray::Position] =
sizeof(float); // so 1, 2, 3 for index 0; 2, 3, 4 for index 1
Input(1.f);
Input(2.f);
Input(3.f);
Input(4.f);
// Color array 0
VertexLoaderManager::cached_arraybases[CPArray::Color0] = m_src.GetPointer();
g_main_cp_state.array_strides[CPArray::Color0] = sizeof(u32);
Input<u32>(0x00010203u);
Input<u32>(0x04050607u);
// Color array 1
VertexLoaderManager::cached_arraybases[CPArray::Color1] = m_src.GetPointer();
g_main_cp_state.array_strides[CPArray::Color1] = sizeof(u32);
Input<u32>(0x08090a0bu);
Input<u32>(0x0c0d0e0fu);
ASSERT_EQ(m_loader->m_native_vtx_decl.colors[0].enable, enable_color_0);
if (enable_color_0)
{
ASSERT_EQ(m_loader->m_native_vtx_decl.colors[0].offset, color_0_offset);
}
ASSERT_EQ(m_loader->m_native_vtx_decl.colors[1].enable, enable_color_1);
if (enable_color_1)
{
ASSERT_EQ(m_loader->m_native_vtx_decl.colors[1].offset, color_1_offset);
}
RunVertices(2);
// Vertex 0
ExpectOut(2);
ExpectOut(3);
ExpectOut(4);
if (enable_color_0)
{
EXPECT_EQ((m_dst.Read<u32, true>()), 0x04050607u);
}
if (enable_color_1)
{
EXPECT_EQ((m_dst.Read<u32, true>()), 0x0c0d0e0fu);
}
// Vertex 1
ExpectOut(1);
ExpectOut(2);
ExpectOut(3);
if (enable_color_0)
{
EXPECT_EQ((m_dst.Read<u32, true>()), 0x00010203u);
}
if (enable_color_1)
{
EXPECT_EQ((m_dst.Read<u32, true>()), 0x08090a0bu);
}
}
class VertexLoaderSkippedTexCoordsTest : public VertexLoaderTest,
public ::testing::WithParamInterface<u32>
{
public:
static constexpr u32 NUM_COMPONENTS_TO_TEST = 3;
static constexpr u32 NUM_PARAMETERS_PER_COMPONENT = 3;
static constexpr u32 NUM_COMBINATIONS =
1 << (NUM_COMPONENTS_TO_TEST * NUM_PARAMETERS_PER_COMPONENT);
};
INSTANTIATE_TEST_SUITE_P(AllCombinations, VertexLoaderSkippedTexCoordsTest,
::testing::Range(0u, VertexLoaderSkippedTexCoordsTest::NUM_COMBINATIONS));
TEST_P(VertexLoaderSkippedTexCoordsTest, SkippedTextures)
{
std::array<bool, NUM_COMPONENTS_TO_TEST> enable_tex, enable_matrix, use_st;
const u32 param = GetParam();
for (u32 component = 0; component < NUM_COMPONENTS_TO_TEST; component++)
{
const u32 bits = param >> (component * NUM_PARAMETERS_PER_COMPONENT);
enable_tex[component] = (bits & 1);
enable_matrix[component] = (bits & 2);
use_st[component] = (bits & 4);
}
size_t input_size = 1;
size_t output_size = 3 * sizeof(float);
std::array<bool, NUM_COMPONENTS_TO_TEST> component_enabled{};
std::array<size_t, NUM_COMPONENTS_TO_TEST> component_offset{};
m_vtx_desc.low.Position = VertexComponentFormat::Index8;
m_vtx_attr.g0.PosElements = CoordComponentCount::XYZ;
m_vtx_attr.g0.PosFormat = ComponentFormat::Float;
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
if (enable_matrix[i] || enable_tex[i])
{
component_enabled[i] = true;
component_offset[i] = output_size;
if (enable_matrix[i])
{
output_size += 3 * sizeof(float);
}
else
{
if (use_st[i])
{
output_size += 2 * sizeof(float);
}
else
{
output_size += sizeof(float);
}
}
}
if (enable_matrix[i])
{
m_vtx_desc.low.TexMatIdx[i] = enable_matrix[i];
input_size++;
}
if (enable_tex[i])
{
m_vtx_desc.high.TexCoord[i] = VertexComponentFormat::Index8;
input_size++;
}
m_vtx_attr.SetTexElements(i, use_st[i] ? TexComponentCount::ST : TexComponentCount::S);
m_vtx_attr.SetTexFormat(i, ComponentFormat::Float);
m_vtx_attr.SetTexFrac(i, 0);
}
CreateAndCheckSizes(input_size, output_size);
// Vertex 0
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
if (enable_matrix[i])
Input<u8>(u8(20 + i));
}
Input<u8>(1); // Position
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
if (enable_tex[i])
Input<u8>(1);
}
// Vertex 1
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
if (enable_matrix[i])
Input<u8>(u8(10 + i));
}
Input<u8>(0); // Position
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
if (enable_tex[i])
Input<u8>(0);
}
// Position array
VertexLoaderManager::cached_arraybases[CPArray::Position] = m_src.GetPointer();
g_main_cp_state.array_strides[CPArray::Position] =
sizeof(float); // so 1, 2, 3 for index 0; 2, 3, 4 for index 1
Input(1.f);
Input(2.f);
Input(3.f);
Input(4.f);
// Texture coord arrays
for (u8 i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
VertexLoaderManager::cached_arraybases[CPArray::TexCoord0 + i] = m_src.GetPointer();
g_main_cp_state.array_strides[CPArray::TexCoord0 + i] = 2 * sizeof(float);
Input<float>(i * 100 + 11);
Input<float>(i * 100 + 12);
Input<float>(i * 100 + 21);
Input<float>(i * 100 + 22);
}
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[i].enable, component_enabled[i]);
if (component_enabled[i])
{
ASSERT_EQ(m_loader->m_native_vtx_decl.texcoords[i].offset, component_offset[i]);
}
}
RunVertices(2);
// Vertex 0
ExpectOut(2);
ExpectOut(3);
ExpectOut(4);
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
size_t num_read = 0;
if (enable_tex[i])
{
ExpectOut(i * 100 + 21);
num_read++;
if (use_st[i])
{
ExpectOut(i * 100 + 22);
num_read++;
}
}
if (enable_matrix[i])
{
// With a matrix there are always 3 components; otherwise-unused components should be 0
while (num_read++ < 2)
ExpectOut(0);
ExpectOut(20 + i);
}
}
// Vertex 1
ExpectOut(1);
ExpectOut(2);
ExpectOut(3);
for (size_t i = 0; i < NUM_COMPONENTS_TO_TEST; i++)
{
size_t num_read = 0;
if (enable_tex[i])
{
ExpectOut(i * 100 + 11);
num_read++;
if (use_st[i])
{
ExpectOut(i * 100 + 12);
num_read++;
}
}
if (enable_matrix[i])
{
// With a matrix there are always 3 components; otherwise-unused components should be 0
while (num_read++ < 2)
ExpectOut(0);
ExpectOut(10 + i);
}
}
}
// For gtest, which doesn't know about our fmt::formatters by default
static void PrintTo(const VertexComponentFormat& t, std::ostream* os)
{
*os << fmt::to_string(t);
}
static void PrintTo(const ComponentFormat& t, std::ostream* os)
{
*os << fmt::to_string(t);
}
static void PrintTo(const CoordComponentCount& t, std::ostream* os)
{
*os << fmt::to_string(t);
}
static void PrintTo(const NormalComponentCount& t, std::ostream* os)
{
*os << fmt::to_string(t);
}