dolphin/Source/Core/InputCommon/ControllerEmu/ControllerEmu.h

238 lines
8.0 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <cmath>
#include <memory>
#include <mutex>
#include <string>
#include <type_traits>
#include <vector>
#include "Common/BitUtils.h"
#include "Common/Common.h"
#include "Common/IniFile.h"
#include "Common/MathUtil.h"
#include "InputCommon/ControlReference/ExpressionParser.h"
#include "InputCommon/ControllerInterface/CoreDevice.h"
class ControllerInterface;
const char* const named_directions[] = {_trans("Up"), _trans("Down"), _trans("Left"),
_trans("Right")};
class ControlReference;
namespace ControllerEmu
{
class ControlGroup;
// Represents calibration data found on Wii Remotes + extensions with a zero and a max value.
// (e.g. accelerometer data)
// Bits of precision specified to handle common situation of differing precision in the actual data.
template <typename T, size_t Bits>
struct TwoPointCalibration
{
TwoPointCalibration() = default;
TwoPointCalibration(const T& zero_, const T& max_) : zero{zero_}, max{max_} {}
// Sanity check is that max and zero are not equal.
constexpr bool IsSane() const
{
if constexpr (std::is_arithmetic_v<T>)
{
return max != zero;
}
else
{
return std::equal(std::begin(max.data), std::end(max.data), std::begin(zero.data),
std::not_equal_to<>());
}
}
static constexpr size_t BITS_OF_PRECISION = Bits;
T zero;
T max;
};
// Represents calibration data with a min, zero, and max value. (e.g. joystick data)
template <typename T, size_t Bits>
struct ThreePointCalibration
{
ThreePointCalibration() = default;
ThreePointCalibration(const T& min_, const T& zero_, const T& max_)
: min{min_}, zero{zero_}, max{max_}
{
}
// Sanity check is that min and max are on opposite sides of the zero value.
constexpr bool IsSane() const
{
if constexpr (std::is_arithmetic_v<T>)
{
return MathUtil::Sign(zero - min) * MathUtil::Sign(zero - max) == -1;
}
else
{
for (size_t i = 0; i != std::size(zero.data); ++i)
{
if (MathUtil::Sign(zero.data[i] - min.data[i]) *
MathUtil::Sign(zero.data[i] - max.data[i]) !=
-1)
{
return false;
}
}
return true;
}
}
static constexpr size_t BITS_OF_PRECISION = Bits;
T min;
T zero;
T max;
};
// Represents a raw/uncalibrated N-dimensional value of input data. (e.g. Joystick X and Y)
// A normalized value can be calculated with a provided {Two,Three}PointCalibration.
// Values are adjusted with mismatched bits of precision.
// Underlying type may be an unsigned type or a a Common::TVecN<> of an unsigned type.
template <typename T, size_t Bits>
struct RawValue
{
constexpr RawValue() = default;
constexpr explicit RawValue(const T& value_) : value{value_} {}
static constexpr size_t BITS_OF_PRECISION = Bits;
T value;
constexpr bool operator==(const RawValue& other) const = default;
template <typename OtherT, size_t OtherBits>
auto GetNormalizedValue(const TwoPointCalibration<OtherT, OtherBits>& calibration) const
{
const auto value_expansion =
std::max(0, int(calibration.BITS_OF_PRECISION) - int(BITS_OF_PRECISION));
const auto calibration_expansion =
std::max(0, int(BITS_OF_PRECISION) - int(calibration.BITS_OF_PRECISION));
const auto calibration_zero = ExpandValue(calibration.zero, calibration_expansion) * 1.f;
const auto calibration_max = ExpandValue(calibration.max, calibration_expansion) * 1.f;
// Multiplication by 1.f to floatify either a scalar or a Vec.
return (ExpandValue(value, value_expansion) * 1.f - calibration_zero) /
(calibration_max - calibration_zero);
}
template <typename OtherT, size_t OtherBits>
auto GetNormalizedValue(const ThreePointCalibration<OtherT, OtherBits>& calibration) const
{
const auto value_expansion =
std::max(0, int(calibration.BITS_OF_PRECISION) - int(BITS_OF_PRECISION));
const auto calibration_expansion =
std::max(0, int(BITS_OF_PRECISION) - int(calibration.BITS_OF_PRECISION));
const auto calibration_min = ExpandValue(calibration.min, calibration_expansion) * 1.f;
const auto calibration_zero = ExpandValue(calibration.zero, calibration_expansion) * 1.f;
const auto calibration_max = ExpandValue(calibration.max, calibration_expansion) * 1.f;
const auto use_max = calibration.zero < value;
// Multiplication by 1.f to floatify either a scalar or a Vec.
return (ExpandValue(value, value_expansion) * 1.f - calibration_zero) /
(use_max * 1.f * (calibration_max - calibration_zero) +
!use_max * 1.f * (calibration_zero - calibration_min));
}
template <typename OtherT>
static OtherT ExpandValue(OtherT value, size_t bits)
{
if constexpr (std::is_arithmetic_v<OtherT>)
{
return Common::ExpandValue(value, bits);
}
else
{
for (size_t i = 0; i != std::size(value.data); ++i)
value.data[i] = Common::ExpandValue(value.data[i], bits);
return value;
}
}
};
class EmulatedController
{
public:
virtual ~EmulatedController();
virtual std::string GetName() const = 0;
virtual std::string GetDisplayName() const;
virtual void LoadDefaults(const ControllerInterface& ciface);
virtual void LoadConfig(IniFile::Section* sec, const std::string& base = "");
virtual void SaveConfig(IniFile::Section* sec, const std::string& base = "");
bool IsDefaultDeviceConnected() const;
const ciface::Core::DeviceQualifier& GetDefaultDevice() const;
void SetDefaultDevice(const std::string& device);
void SetDefaultDevice(ciface::Core::DeviceQualifier devq);
void UpdateReferences(const ControllerInterface& devi);
void UpdateSingleControlReference(const ControllerInterface& devi, ControlReference* ref);
// This returns a lock that should be held before calling State() on any control
// references and GetState(), by extension. This prevents a race condition
// which happens while handling a hotplug event because a control reference's State()
// could be called before we have finished updating the reference.
[[nodiscard]] static std::unique_lock<std::recursive_mutex> GetStateLock();
const ciface::ExpressionParser::ControlEnvironment::VariableContainer&
GetExpressionVariables() const;
// Resets the values while keeping the list.
void ResetExpressionVariables();
std::vector<std::unique_ptr<ControlGroup>> groups;
// Maps a float from -1.0..+1.0 to an integer of the provided values.
template <typename T, typename F>
static T MapFloat(F input_value, T zero_value, T neg_1_value = std::numeric_limits<T>::min(),
T pos_1_value = std::numeric_limits<T>::max())
{
static_assert(std::is_integral<T>(), "T is only sane for int types.");
static_assert(std::is_floating_point<F>(), "F is only sane for float types.");
static_assert(std::numeric_limits<long long>::min() <= std::numeric_limits<T>::min() &&
std::numeric_limits<long long>::max() >= std::numeric_limits<T>::max(),
"long long is not a superset of T. use of std::llround is not sane.");
// Here we round when converting from float to int.
// After applying our deadzone, resizing, and reshaping math
// we sometimes have a near-zero value which is slightly negative. (e.g. -0.0001)
// Casting would round down but rounding will yield our "zero_value".
if (input_value > 0)
return T(std::llround((pos_1_value - zero_value) * input_value + zero_value));
else
return T(std::llround((zero_value - neg_1_value) * input_value + zero_value));
}
protected:
// TODO: Wiimote attachments actually end up using their parent controller value for this,
// so theirs won't be used (and thus shouldn't even exist).
ciface::ExpressionParser::ControlEnvironment::VariableContainer m_expression_vars;
void UpdateReferences(ciface::ExpressionParser::ControlEnvironment& env);
private:
ciface::Core::DeviceQualifier m_default_device;
bool m_default_device_is_connected{false};
};
} // namespace ControllerEmu