dolphin/Source/Core/VideoCommon/PixelShaderGen.cpp

1045 lines
39 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <cassert>
#include <cmath>
#include <cstdio>
#include <locale.h>
#ifdef __APPLE__
#include <xlocale.h>
#endif
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/LightingShaderGen.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/PixelShaderGen.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h" // for texture projection mode
static const char *tevKSelTableC[] =
{
"255,255,255", // 1 = 0x00
"223,223,223", // 7_8 = 0x01
"191,191,191", // 3_4 = 0x02
"159,159,159", // 5_8 = 0x03
"127,127,127", // 1_2 = 0x04
"95,95,95", // 3_8 = 0x05
"63,63,63", // 1_4 = 0x06
"31,31,31", // 1_8 = 0x07
"ERROR1", // 0x08
"ERROR2", // 0x09
"ERROR3", // 0x0a
"ERROR4", // 0x0b
I_KCOLORS"[0].rgb", // K0 = 0x0C
I_KCOLORS"[1].rgb", // K1 = 0x0D
I_KCOLORS"[2].rgb", // K2 = 0x0E
I_KCOLORS"[3].rgb", // K3 = 0x0F
I_KCOLORS"[0].rrr", // K0_R = 0x10
I_KCOLORS"[1].rrr", // K1_R = 0x11
I_KCOLORS"[2].rrr", // K2_R = 0x12
I_KCOLORS"[3].rrr", // K3_R = 0x13
I_KCOLORS"[0].ggg", // K0_G = 0x14
I_KCOLORS"[1].ggg", // K1_G = 0x15
I_KCOLORS"[2].ggg", // K2_G = 0x16
I_KCOLORS"[3].ggg", // K3_G = 0x17
I_KCOLORS"[0].bbb", // K0_B = 0x18
I_KCOLORS"[1].bbb", // K1_B = 0x19
I_KCOLORS"[2].bbb", // K2_B = 0x1A
I_KCOLORS"[3].bbb", // K3_B = 0x1B
I_KCOLORS"[0].aaa", // K0_A = 0x1C
I_KCOLORS"[1].aaa", // K1_A = 0x1D
I_KCOLORS"[2].aaa", // K2_A = 0x1E
I_KCOLORS"[3].aaa", // K3_A = 0x1F
};
static const char *tevKSelTableA[] =
{
"255", // 1 = 0x00
"223", // 7_8 = 0x01
"191", // 3_4 = 0x02
"159", // 5_8 = 0x03
"127", // 1_2 = 0x04
"95", // 3_8 = 0x05
"63", // 1_4 = 0x06
"31", // 1_8 = 0x07
"ERROR5", // 0x08
"ERROR6", // 0x09
"ERROR7", // 0x0a
"ERROR8", // 0x0b
"ERROR9", // 0x0c
"ERROR10", // 0x0d
"ERROR11", // 0x0e
"ERROR12", // 0x0f
I_KCOLORS"[0].r", // K0_R = 0x10
I_KCOLORS"[1].r", // K1_R = 0x11
I_KCOLORS"[2].r", // K2_R = 0x12
I_KCOLORS"[3].r", // K3_R = 0x13
I_KCOLORS"[0].g", // K0_G = 0x14
I_KCOLORS"[1].g", // K1_G = 0x15
I_KCOLORS"[2].g", // K2_G = 0x16
I_KCOLORS"[3].g", // K3_G = 0x17
I_KCOLORS"[0].b", // K0_B = 0x18
I_KCOLORS"[1].b", // K1_B = 0x19
I_KCOLORS"[2].b", // K2_B = 0x1A
I_KCOLORS"[3].b", // K3_B = 0x1B
I_KCOLORS"[0].a", // K0_A = 0x1C
I_KCOLORS"[1].a", // K1_A = 0x1D
I_KCOLORS"[2].a", // K2_A = 0x1E
I_KCOLORS"[3].a", // K3_A = 0x1F
};
static const char *tevScaleTable[] =
{
"", // SCALE_1
" << 1", // SCALE_2
" << 2", // SCALE_4
" >> 1", // DIVIDE_2
};
static const char *tevBiasTable[] =
{
"", // ZERO,
"+ 128", // ADDHALF,
"- 128", // SUBHALF,
"",
};
static const char *tevOpTable[] = {
"+", // TEVOP_ADD = 0,
"-", // TEVOP_SUB = 1,
};
static const char *tevCInputTable[] =
{
"prev.rgb", // CPREV,
"prev.aaa", // APREV,
"c0.rgb", // C0,
"c0.aaa", // A0,
"c1.rgb", // C1,
"c1.aaa", // A1,
"c2.rgb", // C2,
"c2.aaa", // A2,
"textemp.rgb", // TEXC,
"textemp.aaa", // TEXA,
"rastemp.rgb", // RASC,
"rastemp.aaa", // RASA,
"int3(255,255,255)", // ONE
"int3(127,127,127)", // HALF
"konsttemp.rgb", // KONST
"int3(0,0,0)", // ZERO
};
static const char *tevAInputTable[] =
{
"prev", // APREV,
"c0", // A0,
"c1", // A1,
"c2", // A2,
"textemp", // TEXA,
"rastemp", // RASA,
"konsttemp", // KONST, (hw1 had quarter)
"int4(0,0,0,0)", // ZERO
};
static const char *tevRasTable[] =
{
"int4(round(colors_0 * 255.0))",
"int4(round(colors_1 * 255.0))",
"ERROR13", //2
"ERROR14", //3
"ERROR15", //4
"(int4(1, 1, 1, 1) * alphabump)", // bump alpha (0..248)
"(int4(1, 1, 1, 1) * (alphabump | (alphabump >> 5)))", // normalized bump alpha (0..255)
"int4(0, 0, 0, 0)", // zero
};
static const char *tevCOutputTable[] = { "prev.rgb", "c0.rgb", "c1.rgb", "c2.rgb" };
static const char *tevAOutputTable[] = { "prev.a", "c0.a", "c1.a", "c2.a" };
static char text[16384];
template<class T> static inline void WriteStage(T& out, pixel_shader_uid_data& uid_data, int n, API_TYPE ApiType, const char swapModeTable[4][5]);
template<class T> static inline void SampleTexture(T& out, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType);
template<class T> static inline void WriteAlphaTest(T& out, pixel_shader_uid_data& uid_data, API_TYPE ApiType,DSTALPHA_MODE dstAlphaMode, bool per_pixel_depth);
template<class T> static inline void WriteFog(T& out, pixel_shader_uid_data& uid_data);
template<class T>
static inline void GeneratePixelShader(T& out, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components)
{
// Non-uid template parameters will write to the dummy data (=> gets optimized out)
pixel_shader_uid_data dummy_data;
pixel_shader_uid_data& uid_data = (&out.template GetUidData<pixel_shader_uid_data>() != nullptr)
? out.template GetUidData<pixel_shader_uid_data>() : dummy_data;
out.SetBuffer(text);
const bool is_writing_shadercode = (out.GetBuffer() != nullptr);
#ifndef ANDROID
locale_t locale;
locale_t old_locale;
if (is_writing_shadercode)
{
locale = newlocale(LC_NUMERIC_MASK, "C", nullptr); // New locale for compilation
old_locale = uselocale(locale); // Apply the locale for this thread
}
#endif
if (is_writing_shadercode)
text[sizeof(text) - 1] = 0x7C; // canary
unsigned int numStages = bpmem.genMode.numtevstages + 1;
unsigned int numTexgen = bpmem.genMode.numtexgens;
const bool forced_early_z = g_ActiveConfig.backend_info.bSupportsEarlyZ && bpmem.UseEarlyDepthTest() && (g_ActiveConfig.bFastDepthCalc || bpmem.alpha_test.TestResult() == AlphaTest::UNDETERMINED);
const bool per_pixel_depth = (bpmem.ztex2.op != ZTEXTURE_DISABLE && bpmem.UseLateDepthTest()) || (!g_ActiveConfig.bFastDepthCalc && bpmem.zmode.testenable && !forced_early_z);
out.Write("//Pixel Shader for TEV stages\n");
out.Write("//%i TEV stages, %i texgens, %i IND stages\n",
numStages, numTexgen, bpmem.genMode.numindstages);
uid_data.dstAlphaMode = dstAlphaMode;
uid_data.genMode_numindstages = bpmem.genMode.numindstages;
uid_data.genMode_numtevstages = bpmem.genMode.numtevstages;
uid_data.genMode_numtexgens = bpmem.genMode.numtexgens;
// dot product for integer vectors
out.Write("int idot(int3 x, int3 y)\n"
"{\n"
"\tint3 tmp = x * y;\n"
"\treturn tmp.x + tmp.y + tmp.z;\n"
"}\n");
out.Write("int idot(int4 x, int4 y)\n"
"{\n"
"\tint4 tmp = x * y;\n"
"\treturn tmp.x + tmp.y + tmp.z + tmp.w;\n"
"}\n\n");
if (ApiType == API_OPENGL)
{
// Fmod implementation gleaned from Nvidia
// At http://http.developer.nvidia.com/Cg/fmod.html
out.Write("float fmod( float x, float y )\n");
out.Write("{\n");
out.Write("\tfloat z = fract( abs( x / y) ) * abs( y );\n");
out.Write("\treturn (x < 0.0) ? -z : z;\n");
out.Write("}\n");
// Declare samplers
for (int i = 0; i < 8; ++i)
out.Write("uniform sampler2D samp%d;\n", i);
}
else // D3D
{
// Declare samplers
for (int i = 0; i < 8; ++i)
out.Write("sampler samp%d : register(s%d);\n", i, i);
out.Write("\n");
for (int i = 0; i < 8; ++i)
out.Write("Texture2D Tex%d : register(t%d);\n", i, i);
}
out.Write("\n");
if (ApiType == API_OPENGL)
out.Write("layout(std140%s) uniform PSBlock {\n", g_ActiveConfig.backend_info.bSupportShadingLanguage420pack ? ", binding = 1" : "");
DeclareUniform(out, ApiType, C_COLORS, "int4", I_COLORS"[4]");
DeclareUniform(out, ApiType, C_KCOLORS, "int4", I_KCOLORS"[4]");
DeclareUniform(out, ApiType, C_ALPHA, "int4", I_ALPHA);
DeclareUniform(out, ApiType, C_TEXDIMS, "float4", I_TEXDIMS"[8]");
DeclareUniform(out, ApiType, C_ZBIAS, "int4", I_ZBIAS"[2]");
DeclareUniform(out, ApiType, C_INDTEXSCALE, "int4", I_INDTEXSCALE"[2]");
DeclareUniform(out, ApiType, C_INDTEXMTX, "int4", I_INDTEXMTX"[6]");
DeclareUniform(out, ApiType, C_FOGCOLOR, "int4", I_FOGCOLOR);
DeclareUniform(out, ApiType, C_FOGI, "int4", I_FOGI);
DeclareUniform(out, ApiType, C_FOGF, "float4", I_FOGF"[2]");
// For pixel lighting - TODO: Should only be defined when per pixel lighting is enabled!
DeclareUniform(out, ApiType, C_PLIGHT_COLORS, "int4", I_PLIGHT_COLORS"[8]");
DeclareUniform(out, ApiType, C_PLIGHTS, "float4", I_PLIGHTS"[32]");
DeclareUniform(out, ApiType, C_PMATERIALS, "int4", I_PMATERIALS"[4]");
if (ApiType == API_OPENGL)
out.Write("};\n");
if (ApiType == API_OPENGL)
{
out.Write("out vec4 ocol0;\n");
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
out.Write("out vec4 ocol1;\n");
if (per_pixel_depth)
out.Write("#define depth gl_FragDepth\n");
out.Write("centroid in float4 colors_02;\n");
out.Write("centroid in float4 colors_12;\n");
// compute window position if needed because binding semantic WPOS is not widely supported
// Let's set up attributes
for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i)
{
out.Write("centroid in float3 uv%d_2;\n", i);
}
out.Write("centroid in float4 clipPos_2;\n");
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
out.Write("centroid in float4 Normal_2;\n");
}
if (forced_early_z)
{
// HACK: This doesn't force the driver to write to depth buffer if alpha test fails.
// It just allows it, but it seems that all drivers do.
out.Write("layout(early_fragment_tests) in;\n");
}
else if (bpmem.UseEarlyDepthTest() && (g_ActiveConfig.bFastDepthCalc || bpmem.alpha_test.TestResult() == AlphaTest::UNDETERMINED) && is_writing_shadercode)
{
static bool warn_once = true;
if (warn_once)
WARN_LOG(VIDEO, "Early z test enabled but not possible to emulate with current configuration. Make sure to enable fast depth calculations. If this message still shows up your hardware isn't able to emulate the feature properly (a GPU with D3D 11.0 / OGL 4.2 support is required).");
warn_once = false;
}
out.Write("void main()\n{\n");
}
else // D3D
{
if (forced_early_z)
{
out.Write("[earlydepthstencil]\n");
}
else if (bpmem.UseEarlyDepthTest() && (g_ActiveConfig.bFastDepthCalc || bpmem.alpha_test.TestResult() == AlphaTest::UNDETERMINED) && is_writing_shadercode)
{
static bool warn_once = true;
if (warn_once)
WARN_LOG(VIDEO, "Early z test enabled but not possible to emulate with current configuration. Make sure to enable fast depth calculations. If this message still shows up your hardware isn't able to emulate the feature properly (a GPU with D3D 11.0 / OGL 4.2 support is required).");
warn_once = false;
}
out.Write("void main(\n");
out.Write(" out float4 ocol0 : SV_Target0,%s%s\n in float4 rawpos : SV_Position,\n",
dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND ? "\n out float4 ocol1 : SV_Target1," : "",
per_pixel_depth ? "\n out float depth : SV_Depth," : "");
// Use centroid sampling to make MSAA work properly
const char* optCentroid = "centroid";
out.Write(" in %s float4 colors_0 : COLOR0,\n", optCentroid);
out.Write(" in %s float4 colors_1 : COLOR1", optCentroid);
// compute window position if needed because binding semantic WPOS is not widely supported
for (unsigned int i = 0; i < numTexgen; ++i)
out.Write(",\n in %s float3 uv%d : TEXCOORD%d", optCentroid, i, i);
out.Write(",\n in %s float4 clipPos : TEXCOORD%d", optCentroid, numTexgen);
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
out.Write(",\n in %s float4 Normal : TEXCOORD%d", optCentroid, numTexgen + 1);
out.Write(" ) {\n");
}
out.Write("\tint4 c0 = " I_COLORS"[1], c1 = " I_COLORS"[2], c2 = " I_COLORS"[3], prev = " I_COLORS"[0];\n"
"\tint4 rastemp = int4(0, 0, 0, 0), textemp = int4(0, 0, 0, 0), konsttemp = int4(0, 0, 0, 0);\n"
"\tint3 comp16 = int3(1, 256, 0), comp24 = int3(1, 256, 256*256);\n"
"\tint alphabump=0;\n"
"\tint3 tevcoord=int3(0, 0, 0);\n"
"\tint2 wrappedcoord=int2(0,0), tempcoord=int2(0,0);\n\n");
if (ApiType == API_OPENGL)
{
// On Mali, global variables must be initialized as constants.
// This is why we initialize these variables locally instead.
out.Write("\tfloat4 rawpos = gl_FragCoord;\n");
out.Write("\tfloat4 colors_0 = colors_02;\n");
out.Write("\tfloat4 colors_1 = colors_12;\n");
// compute window position if needed because binding semantic WPOS is not widely supported
// Let's set up attributes
if (numTexgen)
{
for (unsigned int i = 0; i < xfregs.numTexGen.numTexGens; ++i)
{
out.Write("\tfloat3 uv%d = uv%d_2;\n", i, i);
}
}
out.Write("\tfloat4 clipPos = clipPos_2;\n");
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
out.Write("\tfloat4 Normal = Normal_2;\n");
}
}
if (g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting)
{
out.Write("\tfloat3 _norm0 = normalize(Normal.xyz);\n\n");
out.Write("\tfloat3 pos = float3(clipPos.x,clipPos.y,Normal.w);\n");
out.Write("\tint4 lacc;\n"
"\tfloat3 ldir, h;\n"
"\tfloat dist, dist2, attn;\n");
out.SetConstantsUsed(C_PLIGHT_COLORS, C_PLIGHT_COLORS+7); // TODO: Can be optimized further
out.SetConstantsUsed(C_PLIGHTS, C_PLIGHTS+31); // TODO: Can be optimized further
out.SetConstantsUsed(C_PMATERIALS, C_PMATERIALS+3);
uid_data.components = components;
GenerateLightingShader<T>(out, uid_data.lighting, components, I_PMATERIALS, I_PLIGHT_COLORS, I_PLIGHTS, "colors_", "colors_");
}
out.Write("\tclipPos = float4(rawpos.x, rawpos.y, clipPos.z, clipPos.w);\n");
// HACK to handle cases where the tex gen is not enabled
if (numTexgen == 0)
{
out.Write("\tint2 fixpoint_uv0 = int2(0, 0);\n\n");
}
else
{
out.SetConstantsUsed(C_TEXDIMS, C_TEXDIMS+numTexgen-1);
for (unsigned int i = 0; i < numTexgen; ++i)
{
// optional perspective divides
uid_data.texMtxInfo_n_projection |= xfregs.texMtxInfo[i].projection << i;
if (xfregs.texMtxInfo[i].projection == XF_TEXPROJ_STQ)
{
out.Write("\tif (uv%d.z != 0.0)\n", i);
out.Write("\t\tuv%d.xy = uv%d.xy / uv%d.z;\n", i, i, i);
}
out.Write("\tint2 fixpoint_uv%d = int2(round(uv%d.xy * " I_TEXDIMS"[%d].zw * 128.0));\n\n", i, i, i);
// TODO: S24 overflows here?
}
}
// indirect texture map lookup
int nIndirectStagesUsed = 0;
if (bpmem.genMode.numindstages > 0)
{
for (unsigned int i = 0; i < numStages; ++i)
{
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages)
nIndirectStagesUsed |= 1 << bpmem.tevind[i].bt;
}
}
uid_data.nIndirectStagesUsed = nIndirectStagesUsed;
for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
{
if (nIndirectStagesUsed & (1 << i))
{
unsigned int texcoord = bpmem.tevindref.getTexCoord(i);
unsigned int texmap = bpmem.tevindref.getTexMap(i);
uid_data.SetTevindrefValues(i, texcoord, texmap);
if (texcoord < numTexgen)
{
out.SetConstantsUsed(C_INDTEXSCALE+i/2,C_INDTEXSCALE+i/2);
out.Write("\ttempcoord = fixpoint_uv%d >> " I_INDTEXSCALE"[%d].%s;\n", texcoord, i / 2, (i & 1) ? "zw" : "xy");
}
else
out.Write("\ttempcoord = int2(0, 0);\n");
out.Write("\tint3 iindtex%d = ", i);
SampleTexture<T>(out, "(float2(tempcoord)/128.0)", "abg", texmap, ApiType);
}
}
// Uid fields for BuildSwapModeTable are set in WriteStage
char swapModeTable[4][5];
const char* swapColors = "rgba";
for (int i = 0; i < 4; i++)
{
swapModeTable[i][0] = swapColors[bpmem.tevksel[i*2].swap1];
swapModeTable[i][1] = swapColors[bpmem.tevksel[i*2].swap2];
swapModeTable[i][2] = swapColors[bpmem.tevksel[i*2+1].swap1];
swapModeTable[i][3] = swapColors[bpmem.tevksel[i*2+1].swap2];
swapModeTable[i][4] = '\0';
}
for (unsigned int i = 0; i < numStages; i++)
WriteStage<T>(out, uid_data, i, ApiType, swapModeTable); // build the equation for this stage
#define MY_STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
bool enable_pl = g_ActiveConfig.bEnablePixelLighting && g_ActiveConfig.backend_info.bSupportsPixelLighting;
uid_data.num_values = (enable_pl) ? sizeof(uid_data) : MY_STRUCT_OFFSET(uid_data,stagehash[numStages]);
if (numStages)
{
// The results of the last texenv stage are put onto the screen,
// regardless of the used destination register
if (bpmem.combiners[numStages - 1].colorC.dest != 0)
{
out.Write("\tprev.rgb = %s;\n", tevCOutputTable[bpmem.combiners[numStages - 1].colorC.dest]);
}
if (bpmem.combiners[numStages - 1].alphaC.dest != 0)
{
out.Write("\tprev.a = %s;\n", tevAOutputTable[bpmem.combiners[numStages - 1].alphaC.dest]);
}
}
out.Write("\tprev = prev & 255;\n");
AlphaTest::TEST_RESULT Pretest = bpmem.alpha_test.TestResult();
uid_data.Pretest = Pretest;
// NOTE: Fragment may not be discarded if alpha test always fails and early depth test is enabled
// (in this case we need to write a depth value if depth test passes regardless of the alpha testing result)
if (Pretest == AlphaTest::UNDETERMINED || (Pretest == AlphaTest::FAIL && bpmem.UseLateDepthTest()))
WriteAlphaTest<T>(out, uid_data, ApiType, dstAlphaMode, per_pixel_depth);
// FastDepth means to trust the depth generated in perspective division.
// It should be correct, but it seems not to be as accurate as required. TODO: Find out why!
// For disabled FastDepth we just calculate the depth value again.
// The performance impact of this additional calculation doesn't matter, but it prevents
// the host GPU driver from performing any early depth test optimizations.
if (g_ActiveConfig.bFastDepthCalc)
out.Write("\tint zCoord = int(round(rawpos.z * float(0xFFFFFF)));\n");
else
{
out.SetConstantsUsed(C_ZBIAS+1, C_ZBIAS+1);
// the screen space depth value = far z + (clip z / clip w) * z range
out.Write("\tint zCoord = " I_ZBIAS"[1].x + int(round((clipPos.z / clipPos.w) * float(" I_ZBIAS"[1].y)));\n");
}
// depth texture can safely be ignored if the result won't be written to the depth buffer (early_ztest) and isn't used for fog either
const bool skip_ztexture = !per_pixel_depth && !bpmem.fog.c_proj_fsel.fsel;
uid_data.ztex_op = bpmem.ztex2.op;
uid_data.per_pixel_depth = per_pixel_depth;
uid_data.forced_early_z = forced_early_z;
uid_data.fast_depth_calc = g_ActiveConfig.bFastDepthCalc;
uid_data.early_ztest = bpmem.UseEarlyDepthTest();
uid_data.fog_fsel = bpmem.fog.c_proj_fsel.fsel;
// Note: z-textures are not written to depth buffer if early depth test is used
if (per_pixel_depth && bpmem.UseEarlyDepthTest())
out.Write("\tdepth = float(zCoord) / float(0xFFFFFF);\n");
// Note: depth texture output is only written to depth buffer if late depth test is used
// theoretical final depth value is used for fog calculation, though, so we have to emulate ztextures anyway
if (bpmem.ztex2.op != ZTEXTURE_DISABLE && !skip_ztexture)
{
// use the texture input of the last texture stage (textemp), hopefully this has been read and is in correct format...
out.SetConstantsUsed(C_ZBIAS, C_ZBIAS+1);
out.Write("\tzCoord = idot(" I_ZBIAS"[0].xyzw, textemp.xyzw) + " I_ZBIAS"[1].w %s;\n",
(bpmem.ztex2.op == ZTEXTURE_ADD) ? "+ zCoord" : "");
out.Write("\tzCoord = zCoord & 0xFFFFFF;\n");
}
if (per_pixel_depth && bpmem.UseLateDepthTest())
out.Write("\tdepth = float(zCoord) / float(0xFFFFFF);\n");
if (dstAlphaMode == DSTALPHA_ALPHA_PASS)
{
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
out.Write("\tocol0 = float4(float3(prev.rgb), float(" I_ALPHA".a)) / 255.0;\n");
}
else
{
WriteFog<T>(out, uid_data);
out.Write("\tocol0 = float4(prev) / 255.0;\n");
}
// Use dual-source color blending to perform dst alpha in a single pass
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
{
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
// Colors will be blended against the alpha from ocol1 and
// the alpha from ocol0 will be written to the framebuffer.
out.Write("\tocol1 = float4(prev) / 255.0;\n");
out.Write("\tocol0.a = float(" I_ALPHA".a) / 255.0;\n");
}
out.Write("}\n");
if (is_writing_shadercode)
{
if (text[sizeof(text) - 1] != 0x7C)
PanicAlert("PixelShader generator - buffer too small, canary has been eaten!");
#ifndef ANDROID
uselocale(old_locale); // restore locale
freelocale(locale);
#endif
}
}
template<class T>
static inline void WriteStage(T& out, pixel_shader_uid_data& uid_data, int n, API_TYPE ApiType, const char swapModeTable[4][5])
{
int texcoord = bpmem.tevorders[n/2].getTexCoord(n&1);
bool bHasTexCoord = (u32)texcoord < bpmem.genMode.numtexgens;
bool bHasIndStage = bpmem.tevind[n].IsActive() && bpmem.tevind[n].bt < bpmem.genMode.numindstages;
// HACK to handle cases where the tex gen is not enabled
if (!bHasTexCoord)
texcoord = 0;
out.Write("\t// TEV stage %d\n", n);
uid_data.stagehash[n].hasindstage = bHasIndStage;
uid_data.stagehash[n].tevorders_texcoord = texcoord;
if (bHasIndStage)
{
uid_data.stagehash[n].tevind = bpmem.tevind[n].hex & 0x7FFFFF;
out.Write("\t// indirect op\n");
// perform the indirect op on the incoming regular coordinates using iindtex%d as the offset coords
if (bpmem.tevind[n].bs != ITBA_OFF)
{
const char *tevIndAlphaSel[] = {"", "x", "y", "z"};
const char *tevIndAlphaMask[] = {"248", "224", "240", "248"}; // 0b11111000, 0b11100000, 0b11110000, 0b11111000
out.Write("alphabump = iindtex%d.%s & %s;\n",
bpmem.tevind[n].bt,
tevIndAlphaSel[bpmem.tevind[n].bs],
tevIndAlphaMask[bpmem.tevind[n].fmt]);
}
else
{
// TODO: Should we reset alphabump to 0 here?
}
// format
const char *tevIndFmtMask[] = {"255", "31", "15", "7" };
out.Write("\tint3 iindtevcrd%d = iindtex%d & %s;\n", n, bpmem.tevind[n].bt, tevIndFmtMask[bpmem.tevind[n].fmt]);
// bias - TODO: Check if this needs to be this complicated..
const char *tevIndBiasField[] = {"", "x", "y", "xy", "z", "xz", "yz", "xyz"}; // indexed by bias
const char *tevIndBiasAdd[] = {"-128", "1", "1", "1" }; // indexed by fmt
if (bpmem.tevind[n].bias == ITB_S || bpmem.tevind[n].bias == ITB_T || bpmem.tevind[n].bias == ITB_U)
out.Write("\tiindtevcrd%d.%s += int(%s);\n", n, tevIndBiasField[bpmem.tevind[n].bias], tevIndBiasAdd[bpmem.tevind[n].fmt]);
else if (bpmem.tevind[n].bias == ITB_ST || bpmem.tevind[n].bias == ITB_SU || bpmem.tevind[n].bias == ITB_TU)
out.Write("\tiindtevcrd%d.%s += int2(%s, %s);\n", n, tevIndBiasField[bpmem.tevind[n].bias], tevIndBiasAdd[bpmem.tevind[n].fmt], tevIndBiasAdd[bpmem.tevind[n].fmt]);
else if (bpmem.tevind[n].bias == ITB_STU)
out.Write("\tiindtevcrd%d.%s += int3(%s, %s, %s);\n", n, tevIndBiasField[bpmem.tevind[n].bias], tevIndBiasAdd[bpmem.tevind[n].fmt], tevIndBiasAdd[bpmem.tevind[n].fmt], tevIndBiasAdd[bpmem.tevind[n].fmt]);
// multiply by offset matrix and scale - calculations are likely to overflow badly,
// yet it works out since we only care about the lower 23 bits (+1 sign bit) of the result
if (bpmem.tevind[n].mid != 0)
{
if (bpmem.tevind[n].mid <= 3)
{
int mtxidx = 2*(bpmem.tevind[n].mid-1);
out.SetConstantsUsed(C_INDTEXMTX+mtxidx, C_INDTEXMTX+mtxidx);
out.Write("\tint2 indtevtrans%d = int2(idot(" I_INDTEXMTX"[%d].xyz, iindtevcrd%d), idot(" I_INDTEXMTX"[%d].xyz, iindtevcrd%d)) >> 3;\n", n, mtxidx, n, mtxidx+1, n);
// TODO: should use a shader uid branch for this for better performance
out.Write("\tif (" I_INDTEXMTX"[%d].w >= 0) indtevtrans%d = indtevtrans%d >> " I_INDTEXMTX"[%d].w;\n", mtxidx, n, n, mtxidx);
out.Write("\telse indtevtrans%d = indtevtrans%d << (-" I_INDTEXMTX"[%d].w);\n", n, n, mtxidx);
}
else if (bpmem.tevind[n].mid <= 7 && bHasTexCoord)
{ // s matrix
_assert_(bpmem.tevind[n].mid >= 5);
int mtxidx = 2*(bpmem.tevind[n].mid-5);
out.SetConstantsUsed(C_INDTEXMTX+mtxidx, C_INDTEXMTX+mtxidx);
out.Write("\tint2 indtevtrans%d = int2(fixpoint_uv%d * iindtevcrd%d.xx) >> 8;\n", n, texcoord, n);
out.Write("\tif (" I_INDTEXMTX"[%d].w >= 0) indtevtrans%d = indtevtrans%d >> " I_INDTEXMTX"[%d].w;\n", mtxidx, n, n, mtxidx);
out.Write("\telse indtevtrans%d = indtevtrans%d << (-" I_INDTEXMTX"[%d].w);\n", n, n, mtxidx);
}
else if (bpmem.tevind[n].mid <= 11 && bHasTexCoord)
{ // t matrix
_assert_(bpmem.tevind[n].mid >= 9);
int mtxidx = 2*(bpmem.tevind[n].mid-9);
out.SetConstantsUsed(C_INDTEXMTX+mtxidx, C_INDTEXMTX+mtxidx);
out.Write("\tint2 indtevtrans%d = int2(fixpoint_uv%d * iindtevcrd%d.yy) >> 8;\n", n, texcoord, n);
out.Write("\tif (" I_INDTEXMTX"[%d].w >= 0) indtevtrans%d = indtevtrans%d >> " I_INDTEXMTX"[%d].w;\n", mtxidx, n, n, mtxidx);
out.Write("\telse indtevtrans%d = indtevtrans%d << (-" I_INDTEXMTX"[%d].w);\n", n, n, mtxidx);
}
else
{
out.Write("\tint2 indtevtrans%d = int2(0, 0);\n", n);
}
}
else
{
out.Write("\tint2 indtevtrans%d = int2(0, 0);\n", n);
}
// ---------
// Wrapping
// ---------
const char *tevIndWrapStart[] = {"0", "(256<<7)", "(128<<7)", "(64<<7)", "(32<<7)", "(16<<7)", "1" }; // TODO: Should the last one be 1 or (1<<7)?
// wrap S
if (bpmem.tevind[n].sw == ITW_OFF)
out.Write("\twrappedcoord.x = fixpoint_uv%d.x;\n", texcoord);
else if (bpmem.tevind[n].sw == ITW_0)
out.Write("\twrappedcoord.x = 0;\n");
else
out.Write("\twrappedcoord.x = fixpoint_uv%d.x %% %s;\n", texcoord, tevIndWrapStart[bpmem.tevind[n].sw]);
// wrap T
if (bpmem.tevind[n].tw == ITW_OFF)
out.Write("\twrappedcoord.y = fixpoint_uv%d.y;\n", texcoord);
else if (bpmem.tevind[n].tw == ITW_0)
out.Write("\twrappedcoord.y = 0;\n");
else
out.Write("\twrappedcoord.y = fixpoint_uv%d.y %% %s;\n", texcoord, tevIndWrapStart[bpmem.tevind[n].tw]);
if (bpmem.tevind[n].fb_addprev) // add previous tevcoord
out.Write("\ttevcoord.xy += wrappedcoord + indtevtrans%d;\n", n);
else
out.Write("\ttevcoord.xy = wrappedcoord + indtevtrans%d;\n", n);
// Emulate s24 overflows
out.Write("\ttevcoord.xy = (tevcoord.xy << 8) >> 8;\n");
}
TevStageCombiner::ColorCombiner &cc = bpmem.combiners[n].colorC;
TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[n].alphaC;
uid_data.stagehash[n].cc = cc.hex & 0xFFFFFF;
uid_data.stagehash[n].ac = ac.hex & 0xFFFFF0; // Storing rswap and tswap later
if (cc.a == TEVCOLORARG_RASA || cc.a == TEVCOLORARG_RASC ||
cc.b == TEVCOLORARG_RASA || cc.b == TEVCOLORARG_RASC ||
cc.c == TEVCOLORARG_RASA || cc.c == TEVCOLORARG_RASC ||
cc.d == TEVCOLORARG_RASA || cc.d == TEVCOLORARG_RASC ||
ac.a == TEVALPHAARG_RASA || ac.b == TEVALPHAARG_RASA ||
ac.c == TEVALPHAARG_RASA || ac.d == TEVALPHAARG_RASA)
{
const int i = bpmem.combiners[n].alphaC.rswap;
uid_data.stagehash[n].ac |= bpmem.combiners[n].alphaC.rswap;
uid_data.stagehash[n].tevksel_swap1a = bpmem.tevksel[i*2].swap1;
uid_data.stagehash[n].tevksel_swap2a = bpmem.tevksel[i*2].swap2;
uid_data.stagehash[n].tevksel_swap1b = bpmem.tevksel[i*2+1].swap1;
uid_data.stagehash[n].tevksel_swap2b = bpmem.tevksel[i*2+1].swap2;
uid_data.stagehash[n].tevorders_colorchan = bpmem.tevorders[n / 2].getColorChan(n & 1);
const char *rasswap = swapModeTable[bpmem.combiners[n].alphaC.rswap];
out.Write("\trastemp = %s.%s;\n", tevRasTable[bpmem.tevorders[n / 2].getColorChan(n & 1)], rasswap);
}
uid_data.stagehash[n].tevorders_enable = bpmem.tevorders[n / 2].getEnable(n & 1);
if (bpmem.tevorders[n/2].getEnable(n&1))
{
int texmap = bpmem.tevorders[n/2].getTexMap(n&1);
if (!bHasIndStage)
{
// calc tevcord
if (bHasTexCoord)
out.Write("\ttevcoord.xy = fixpoint_uv%d;\n", texcoord);
else
out.Write("\ttevcoord.xy = int2(0, 0);\n");
}
const int i = bpmem.combiners[n].alphaC.tswap;
uid_data.stagehash[n].ac |= bpmem.combiners[n].alphaC.tswap << 2;
uid_data.stagehash[n].tevksel_swap1c = bpmem.tevksel[i*2].swap1;
uid_data.stagehash[n].tevksel_swap2c = bpmem.tevksel[i*2].swap2;
uid_data.stagehash[n].tevksel_swap1d = bpmem.tevksel[i*2+1].swap1;
uid_data.stagehash[n].tevksel_swap2d = bpmem.tevksel[i*2+1].swap2;
uid_data.stagehash[n].tevorders_texmap= bpmem.tevorders[n/2].getTexMap(n&1);
const char *texswap = swapModeTable[bpmem.combiners[n].alphaC.tswap];
uid_data.SetTevindrefTexmap(i, texmap);
out.Write("\ttextemp = ");
SampleTexture<T>(out, "(float2(tevcoord.xy)/128.0)", texswap, texmap, ApiType);
}
else
{
out.Write("\ttextemp = int4(255, 255, 255, 255);\n");
}
if (cc.a == TEVCOLORARG_KONST || cc.b == TEVCOLORARG_KONST ||
cc.c == TEVCOLORARG_KONST || cc.d == TEVCOLORARG_KONST ||
ac.a == TEVALPHAARG_KONST || ac.b == TEVALPHAARG_KONST ||
ac.c == TEVALPHAARG_KONST || ac.d == TEVALPHAARG_KONST)
{
int kc = bpmem.tevksel[n / 2].getKC(n & 1);
int ka = bpmem.tevksel[n / 2].getKA(n & 1);
uid_data.stagehash[n].tevksel_kc = kc;
uid_data.stagehash[n].tevksel_ka = ka;
out.Write("\tkonsttemp = int4(%s, %s);\n", tevKSelTableC[kc], tevKSelTableA[ka]);
if (kc > 7)
out.SetConstantsUsed(C_KCOLORS+((kc-0xc)%4),C_KCOLORS+((kc-0xc)%4));
if (ka > 7)
out.SetConstantsUsed(C_KCOLORS+((ka-0xc)%4),C_KCOLORS+((ka-0xc)%4));
}
if (cc.d == TEVCOLORARG_C0 || cc.d == TEVCOLORARG_A0 || ac.d == TEVALPHAARG_A0)
out.SetConstantsUsed(C_COLORS+1,C_COLORS+1);
if (cc.d == TEVCOLORARG_C1 || cc.d == TEVCOLORARG_A1 || ac.d == TEVALPHAARG_A1)
out.SetConstantsUsed(C_COLORS+2,C_COLORS+2);
if (cc.d == TEVCOLORARG_C2 || cc.d == TEVCOLORARG_A2 || ac.d == TEVALPHAARG_A2)
out.SetConstantsUsed(C_COLORS+3,C_COLORS+3);
if (cc.dest >= GX_TEVREG0 && cc.dest <= GX_TEVREG2)
out.SetConstantsUsed(C_COLORS+cc.dest, C_COLORS+cc.dest);
if (ac.dest >= GX_TEVREG0 && ac.dest <= GX_TEVREG2)
out.SetConstantsUsed(C_COLORS+ac.dest, C_COLORS+ac.dest);
out.Write("\t// color combine\n");
out.Write("\t%s = clamp(", tevCOutputTable[cc.dest]);
// combine the color channel
if (cc.bias != TevBias_COMPARE) // if not compare
{
//normal color combiner goes here
if (cc.shift > TEVSCALE_1)
out.Write("(");
if (!(cc.d == TEVCOLORARG_ZERO && cc.op == TEVOP_ADD))
out.Write("%s %s ", tevCInputTable[cc.d], tevOpTable[cc.op]);
out.Write("((%s&255) * (int3(255,255,255) - (%s&255)) + (%s&255) * (%s&255)) / 255", tevCInputTable[cc.a], tevCInputTable[cc.c], tevCInputTable[cc.b], tevCInputTable[cc.c]);
out.Write(" %s", tevBiasTable[cc.bias]);
if (cc.shift > TEVSCALE_1)
out.Write(")%s", tevScaleTable[cc.shift]);
}
else
{
const char *function_table[] =
{
"(((%s.r&255) > %s.r) ? (%s&255): int3(0,0,0))", // TEVCMP_R8_GT
"(((%s.r&255) == %s.r) ? (%s&255): int3(0,0,0))", // TEVCMP_R8_EQ
"((idot((%s.rgb&255), comp16) > idot((%s.rgb&255), comp16)) ? (%s&255): int3(0,0,0))", // TEVCMP_GR16_GT
"((idot((%s.rgb&255), comp16) == idot((%s.rgb&255), comp16)) ? (%s&255): int3(0,0,0))", // TEVCMP_GR16_EQ
"((idot((%s.rgb&255), comp24) > idot((%s.rgb&255), comp24)) ? (%s&255): int3(0,0,0))", // TEVCMP_BGR24_GT
"((idot((%s.rgb&255), comp24) == idot((%s.rgb&255), comp24)) ? (%s&255): int3(0,0,0))", // TEVCMP_BGR24_EQ
"int3(max(sign(int3((%s.rgb&255)) - int3((%s.rgb&255))), int3(0,0,0)) * (%s&255))", // TEVCMP_RGB8_GT
"int3((int3(255,255,255) - max(sign(abs(int3((%s.rgb&255)) - int3((%s.rgb&255)))), int3(0,0,0))) * (%s&255))" // TEVCMP_RGB8_EQ
};
int mode = (cc.shift<<1)|cc.op;
out.Write(" %s + ", tevCInputTable[cc.d]);
out.Write(function_table[mode], tevCInputTable[cc.a],
tevCInputTable[cc.b], tevCInputTable[cc.c]);
}
if (cc.clamp)
out.Write(", int3(0,0,0), int3(255,255,255))");
else
out.Write(", int3(-1024,-1024,-1024), int3(1023,1023,1023))");
out.Write(";\n");
out.Write("\t// alpha combine\n");
out.Write("\t%s = clamp(", tevAOutputTable[ac.dest]);
if (ac.bias != TevBias_COMPARE) // if not compare
{
//normal alpha combiner goes here
if (ac.shift > 0)
out.Write("(");
if (!(ac.d == TEVALPHAARG_ZERO && ac.op == TEVOP_ADD))
out.Write("%s.a %s ", tevAInputTable[ac.d], tevOpTable[ac.op]);
out.Write("((%s.a&255) * (255 - (%s.a&255)) + (%s.a&255) * (%s.a&255)) / 255", tevAInputTable[ac.a], tevAInputTable[ac.c], tevAInputTable[ac.b], tevAInputTable[ac.c]);
out.Write(" %s",tevBiasTable[ac.bias]);
if (ac.shift>0)
out.Write(")%s", tevScaleTable[ac.shift]);
}
else
{
const char *function_table[] =
{
"(((%s.r&255) > (%s.r&255)) ? (%s.a&255) : 0)", // TEVCMP_R8_GT
"(((%s.r&255) == (%s.r&255)) ? (%s.a&255) : 0)", // TEVCMP_R8_EQ
"((idot((%s.rgb&255), comp16) > idot((%s.rgb&255), comp16)) ? (%s.a&255) : 0)", // TEVCMP_GR16_GT
"((idot((%s.rgb&255), comp16) == idot((%s.rgb&255), comp16)) ? (%s.a&255) : 0)", // TEVCMP_GR16_EQ
"((idot((%s.rgb&255), comp24) > idot((%s.rgb&255), comp24)) ? (%s.a&255) : 0)", // TEVCMP_BGR24_GT
"((idot((%s.rgb&255), comp24) == idot((%s.rgb&255), comp24)) ? (%s.a&255) : 0)", // TEVCMP_BGR24_EQ
"(((%s.a&255) > (%s.a&255)) ? (%s.a&255) : 0)", // TEVCMP_A8_GT
"(((%s.a&255) == (%s.a&255)) ? (%s.a&255) : 0)" // TEVCMP_A8_EQ
};
int mode = (ac.shift<<1)|ac.op;
out.Write(" %s.a + ", tevAInputTable[ac.d]);
out.Write(function_table[mode], tevAInputTable[ac.a],
tevAInputTable[ac.b], tevAInputTable[ac.c]);
}
if (ac.clamp)
out.Write(", 0, 255)");
else
out.Write(", -1024, 1023)");
out.Write(";\n\n");
}
template<class T>
static inline void SampleTexture(T& out, const char *texcoords, const char *texswap, int texmap, API_TYPE ApiType)
{
out.SetConstantsUsed(C_TEXDIMS+texmap,C_TEXDIMS+texmap);
if (ApiType == API_D3D)
out.Write("int4(round(255.0 * Tex%d.Sample(samp%d,%s.xy * " I_TEXDIMS"[%d].xy))).%s;\n", texmap,texmap, texcoords, texmap, texswap);
else
out.Write("int4(round(255.0 * texture(samp%d,%s.xy * " I_TEXDIMS"[%d].xy))).%s;\n", texmap, texcoords, texmap, texswap);
}
static const char *tevAlphaFuncsTable[] =
{
"(false)", // NEVER
"(prev.a < %s)", // LESS
"(prev.a == %s)", // EQUAL
"(prev.a <= %s)", // LEQUAL
"(prev.a > %s)", // GREATER
"(prev.a != %s)", // NEQUAL
"(prev.a >= %s)", // GEQUAL
"(true)" // ALWAYS
};
static const char *tevAlphaFunclogicTable[] =
{
" && ", // and
" || ", // or
" != ", // xor
" == " // xnor
};
template<class T>
static inline void WriteAlphaTest(T& out, pixel_shader_uid_data& uid_data, API_TYPE ApiType, DSTALPHA_MODE dstAlphaMode, bool per_pixel_depth)
{
static const char *alphaRef[2] =
{
I_ALPHA".r",
I_ALPHA".g"
};
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
out.Write("\tif(!( ");
uid_data.alpha_test_comp0 = bpmem.alpha_test.comp0;
uid_data.alpha_test_comp1 = bpmem.alpha_test.comp1;
uid_data.alpha_test_logic = bpmem.alpha_test.logic;
// Lookup the first component from the alpha function table
int compindex = bpmem.alpha_test.comp0;
out.Write(tevAlphaFuncsTable[compindex], alphaRef[0]);
out.Write("%s", tevAlphaFunclogicTable[bpmem.alpha_test.logic]); // lookup the logic op
// Lookup the second component from the alpha function table
compindex = bpmem.alpha_test.comp1;
out.Write(tevAlphaFuncsTable[compindex], alphaRef[1]);
out.Write(")) {\n");
out.Write("\t\tocol0 = float4(0.0, 0.0, 0.0, 0.0);\n");
if (dstAlphaMode == DSTALPHA_DUAL_SOURCE_BLEND)
out.Write("\t\tocol1 = float4(0.0, 0.0, 0.0, 0.0);\n");
if (per_pixel_depth)
out.Write("\t\tdepth = 1.0;\n");
// HAXX: zcomploc (aka early_ztest) is a way to control whether depth test is done before
// or after texturing and alpha test. PC graphics APIs have no way to support this
// feature properly as of 2012: Depth buffer and depth test are not
// programmable and the depth test is always done after texturing.
// Most importantly, they do not allow writing to the z-buffer without
// writing a color value (unless color writing is disabled altogether).
// We implement "depth test before texturing" by disabling alpha test when early-z is in use.
// It seems to be less buggy than not to update the depth buffer if alpha test fails,
// but both ways wouldn't be accurate.
// OpenGL 4.2 has a flag which allows the driver to still update the depth buffer
// if alpha test fails. The driver doesn't have to, but I assume they all do because
// it's the much faster code path for the GPU.
uid_data.alpha_test_use_zcomploc_hack = bpmem.UseEarlyDepthTest() && bpmem.zmode.updateenable && !g_ActiveConfig.backend_info.bSupportsEarlyZ;
if (!uid_data.alpha_test_use_zcomploc_hack)
{
out.Write("\t\tdiscard;\n");
if (ApiType != API_D3D)
out.Write("\t\treturn;\n");
}
out.Write("}\n");
}
static const char *tevFogFuncsTable[] =
{
"", // No Fog
"", // ?
"", // Linear
"", // ?
"\tfog = 1.0 - exp2(-8.0 * fog);\n", // exp
"\tfog = 1.0 - exp2(-8.0 * fog * fog);\n", // exp2
"\tfog = exp2(-8.0 * (1.0 - fog));\n", // backward exp
"\tfog = 1.0 - fog;\n fog = exp2(-8.0 * fog * fog);\n" // backward exp2
};
template<class T>
static inline void WriteFog(T& out, pixel_shader_uid_data& uid_data)
{
uid_data.fog_fsel = bpmem.fog.c_proj_fsel.fsel;
if (bpmem.fog.c_proj_fsel.fsel == 0)
return; // no Fog
uid_data.fog_proj = bpmem.fog.c_proj_fsel.proj;
out.SetConstantsUsed(C_FOGCOLOR, C_FOGCOLOR);
out.SetConstantsUsed(C_FOGI, C_FOGI);
out.SetConstantsUsed(C_FOGF, C_FOGF+1);
if (bpmem.fog.c_proj_fsel.proj == 0)
{
// perspective
// ze = A/(B - (Zs >> B_SHF)
// TODO: Verify that we want to drop lower bits here! (currently taken over from software renderer)
// Maybe we want to use "ze = (A << B_SHF)/((B << B_SHF) - Zs)" instead?
// That's equivalent, but keeps the lower bits of Zs.
out.Write("\tfloat ze = (" I_FOGF"[1].x * 16777215.0) / float(" I_FOGI".y - (zCoord >> " I_FOGI".w));\n");
}
else
{
// orthographic
// ze = a*Zs (here, no B_SHF)
out.Write("\tfloat ze = " I_FOGF"[1].x * float(zCoord) / 16777215.0;\n");
}
// x_adjust = sqrt((x-center)^2 + k^2)/k
// ze *= x_adjust
// TODO Instead of this theoretical calculation, we should use the
// coefficient table given in the fog range BP registers!
uid_data.fog_RangeBaseEnabled = bpmem.fogRange.Base.Enabled;
if (bpmem.fogRange.Base.Enabled)
{
out.SetConstantsUsed(C_FOGF, C_FOGF);
out.Write("\tfloat x_adjust = (2.0 * (clipPos.x / " I_FOGF"[0].y)) - 1.0 - " I_FOGF"[0].x;\n");
out.Write("\tx_adjust = sqrt(x_adjust * x_adjust + " I_FOGF"[0].z * " I_FOGF"[0].z) / " I_FOGF"[0].z;\n");
out.Write("\tze *= x_adjust;\n");
}
out.Write("\tfloat fog = clamp(ze - " I_FOGF"[1].z, 0.0, 1.0);\n");
if (bpmem.fog.c_proj_fsel.fsel > 3)
{
out.Write("%s", tevFogFuncsTable[bpmem.fog.c_proj_fsel.fsel]);
}
else
{
if (bpmem.fog.c_proj_fsel.fsel != 2 && out.GetBuffer() != nullptr)
WARN_LOG(VIDEO, "Unknown Fog Type! %08x", bpmem.fog.c_proj_fsel.fsel);
}
out.Write("\tint ifog = int(round(fog * 256.0));\n");
out.Write("\tprev.rgb = (prev.rgb * (256 - ifog) + " I_FOGCOLOR".rgb * ifog) >> 8;\n");
}
void GetPixelShaderUid(PixelShaderUid& object, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components)
{
GeneratePixelShader<PixelShaderUid>(object, dstAlphaMode, ApiType, components);
}
void GeneratePixelShaderCode(PixelShaderCode& object, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components)
{
GeneratePixelShader<PixelShaderCode>(object, dstAlphaMode, ApiType, components);
}
void GetPixelShaderConstantProfile(PixelShaderConstantProfile& object, DSTALPHA_MODE dstAlphaMode, API_TYPE ApiType, u32 components)
{
GeneratePixelShader<PixelShaderConstantProfile>(object, dstAlphaMode, ApiType, components);
}