dolphin/Source/Core/VideoBackends/D3D/Render.cpp

1259 lines
46 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/D3D/Render.h"
#include <array>
#include <cinttypes>
#include <cmath>
#include <cstring>
#include <memory>
#include <string>
#include <strsafe.h>
#include <tuple>
#include <unordered_map>
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Core/Core.h"
#include "VideoBackends/D3D/BoundingBox.h"
#include "VideoBackends/D3D/D3DBase.h"
#include "VideoBackends/D3D/D3DState.h"
#include "VideoBackends/D3D/D3DUtil.h"
#include "VideoBackends/D3D/FramebufferManager.h"
#include "VideoBackends/D3D/GeometryShaderCache.h"
#include "VideoBackends/D3D/PixelShaderCache.h"
#include "VideoBackends/D3D/Television.h"
#include "VideoBackends/D3D/TextureCache.h"
#include "VideoBackends/D3D/VertexShaderCache.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/SamplerCommon.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
namespace DX11
{
// Nvidia stereo blitting struct defined in "nvstereo.h" from the Nvidia SDK
typedef struct _Nv_Stereo_Image_Header
{
unsigned int dwSignature;
unsigned int dwWidth;
unsigned int dwHeight;
unsigned int dwBPP;
unsigned int dwFlags;
} NVSTEREOIMAGEHEADER, *LPNVSTEREOIMAGEHEADER;
#define NVSTEREO_IMAGE_SIGNATURE 0x4433564e
struct GXPipelineState
{
std::array<SamplerState, 8> samplers;
BlendState blend;
ZMode zmode;
RasterizerState raster;
};
static u32 s_last_multisamples = 1;
static bool s_last_stereo_mode = false;
static bool s_last_xfb_mode = false;
static bool s_last_fullscreen_mode = false;
static Television s_television;
static std::array<ID3D11BlendState*, 4> s_clear_blend_states{};
static std::array<ID3D11DepthStencilState*, 3> s_clear_depth_states{};
static ID3D11BlendState* s_reset_blend_state = nullptr;
static ID3D11DepthStencilState* s_reset_depth_state = nullptr;
static ID3D11RasterizerState* s_reset_rast_state = nullptr;
static ID3D11Texture2D* s_screenshot_texture = nullptr;
static D3DTexture2D* s_3d_vision_texture = nullptr;
static GXPipelineState s_gx_state;
static StateCache s_gx_state_cache;
static void SetupDeviceObjects()
{
s_television.Init();
HRESULT hr;
D3D11_DEPTH_STENCIL_DESC ddesc;
ddesc.DepthEnable = FALSE;
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
ddesc.DepthFunc = D3D11_COMPARISON_ALWAYS;
ddesc.StencilEnable = FALSE;
ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
hr = D3D::device->CreateDepthStencilState(&ddesc, &s_clear_depth_states[0]);
CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen");
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
ddesc.DepthEnable = TRUE;
hr = D3D::device->CreateDepthStencilState(&ddesc, &s_clear_depth_states[1]);
CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen");
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
hr = D3D::device->CreateDepthStencilState(&ddesc, &s_clear_depth_states[2]);
CHECK(hr == S_OK, "Create depth state for Renderer::ClearScreen");
D3D::SetDebugObjectName(s_clear_depth_states[0],
"depth state for Renderer::ClearScreen (depth buffer disabled)");
D3D::SetDebugObjectName(
s_clear_depth_states[1],
"depth state for Renderer::ClearScreen (depth buffer enabled, writing enabled)");
D3D::SetDebugObjectName(
s_clear_depth_states[2],
"depth state for Renderer::ClearScreen (depth buffer enabled, writing disabled)");
D3D11_BLEND_DESC blenddesc;
blenddesc.AlphaToCoverageEnable = FALSE;
blenddesc.IndependentBlendEnable = FALSE;
blenddesc.RenderTarget[0].BlendEnable = FALSE;
blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
blenddesc.RenderTarget[0].SrcBlend = D3D11_BLEND_ONE;
blenddesc.RenderTarget[0].DestBlend = D3D11_BLEND_ZERO;
blenddesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
blenddesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
blenddesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
blenddesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
hr = D3D::device->CreateBlendState(&blenddesc, &s_reset_blend_state);
CHECK(hr == S_OK, "Create blend state for Renderer::ResetAPIState");
D3D::SetDebugObjectName(s_reset_blend_state, "blend state for Renderer::ResetAPIState");
s_clear_blend_states[0] = s_reset_blend_state;
s_reset_blend_state->AddRef();
blenddesc.RenderTarget[0].RenderTargetWriteMask =
D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE;
hr = D3D::device->CreateBlendState(&blenddesc, &s_clear_blend_states[1]);
CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen");
blenddesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALPHA;
hr = D3D::device->CreateBlendState(&blenddesc, &s_clear_blend_states[2]);
CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen");
blenddesc.RenderTarget[0].RenderTargetWriteMask = 0;
hr = D3D::device->CreateBlendState(&blenddesc, &s_clear_blend_states[3]);
CHECK(hr == S_OK, "Create blend state for Renderer::ClearScreen");
ddesc.DepthEnable = FALSE;
ddesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO;
ddesc.DepthFunc = D3D11_COMPARISON_LESS;
ddesc.StencilEnable = FALSE;
ddesc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK;
ddesc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK;
hr = D3D::device->CreateDepthStencilState(&ddesc, &s_reset_depth_state);
CHECK(hr == S_OK, "Create depth state for Renderer::ResetAPIState");
D3D::SetDebugObjectName(s_reset_depth_state, "depth stencil state for Renderer::ResetAPIState");
D3D11_RASTERIZER_DESC rastdesc = CD3D11_RASTERIZER_DESC(D3D11_FILL_SOLID, D3D11_CULL_NONE, false,
0, 0.f, 0.f, false, false, false, false);
hr = D3D::device->CreateRasterizerState(&rastdesc, &s_reset_rast_state);
CHECK(hr == S_OK, "Create rasterizer state for Renderer::ResetAPIState");
D3D::SetDebugObjectName(s_reset_rast_state, "rasterizer state for Renderer::ResetAPIState");
s_screenshot_texture = nullptr;
}
// Kill off all device objects
static void TeardownDeviceObjects()
{
g_framebuffer_manager.reset();
SAFE_RELEASE(s_clear_blend_states[0]);
SAFE_RELEASE(s_clear_blend_states[1]);
SAFE_RELEASE(s_clear_blend_states[2]);
SAFE_RELEASE(s_clear_blend_states[3]);
SAFE_RELEASE(s_clear_depth_states[0]);
SAFE_RELEASE(s_clear_depth_states[1]);
SAFE_RELEASE(s_clear_depth_states[2]);
SAFE_RELEASE(s_reset_blend_state);
SAFE_RELEASE(s_reset_depth_state);
SAFE_RELEASE(s_reset_rast_state);
SAFE_RELEASE(s_screenshot_texture);
SAFE_RELEASE(s_3d_vision_texture);
s_television.Shutdown();
s_gx_state_cache.Clear();
}
static void CreateScreenshotTexture()
{
// We can't render anything outside of the backbuffer anyway, so use the backbuffer size as the
// screenshot buffer size.
// This texture is released to be recreated when the window is resized in Renderer::SwapImpl.
D3D11_TEXTURE2D_DESC scrtex_desc = CD3D11_TEXTURE2D_DESC(
DXGI_FORMAT_R8G8B8A8_UNORM, D3D::GetBackBufferWidth(), D3D::GetBackBufferHeight(), 1, 1, 0,
D3D11_USAGE_STAGING, D3D11_CPU_ACCESS_READ | D3D11_CPU_ACCESS_WRITE);
HRESULT hr = D3D::device->CreateTexture2D(&scrtex_desc, nullptr, &s_screenshot_texture);
CHECK(hr == S_OK, "Create screenshot staging texture");
D3D::SetDebugObjectName(s_screenshot_texture, "staging screenshot texture");
}
static D3D11_BOX GetScreenshotSourceBox(const TargetRectangle& targetRc)
{
// Since the screenshot buffer is copied back to the CPU via Map(), we can't access pixels that
// fall outside the backbuffer bounds. Therefore, when crop is enabled and the target rect is
// off-screen to the top/left, we clamp the origin at zero, as well as the bottom/right
// coordinates at the backbuffer dimensions. This will result in a rectangle that can be
// smaller than the backbuffer, but never larger.
return CD3D11_BOX(std::max(targetRc.left, 0), std::max(targetRc.top, 0), 0,
std::min(D3D::GetBackBufferWidth(), (unsigned int)targetRc.right),
std::min(D3D::GetBackBufferHeight(), (unsigned int)targetRc.bottom), 1);
}
static void Create3DVisionTexture(int width, int height)
{
// Create a staging texture for 3D vision with signature information in the last row.
// Nvidia 3D Vision supports full SBS, so there is no loss in resolution during this process.
NVSTEREOIMAGEHEADER header;
header.dwSignature = NVSTEREO_IMAGE_SIGNATURE;
header.dwWidth = static_cast<u32>(width * 2);
header.dwHeight = static_cast<u32>(height + 1);
header.dwBPP = 32;
header.dwFlags = 0;
const u32 pitch = static_cast<u32>(4 * width * 2);
const auto memory = std::make_unique<u8[]>((height + 1) * pitch);
u8* image_header_location = &memory[height * pitch];
std::memcpy(image_header_location, &header, sizeof(header));
D3D11_SUBRESOURCE_DATA sys_data;
sys_data.SysMemPitch = pitch;
sys_data.pSysMem = memory.get();
s_3d_vision_texture =
D3DTexture2D::Create(width * 2, height + 1, D3D11_BIND_RENDER_TARGET, D3D11_USAGE_DEFAULT,
DXGI_FORMAT_R8G8B8A8_UNORM, 1, 1, &sys_data);
}
Renderer::Renderer() : ::Renderer(D3D::GetBackBufferWidth(), D3D::GetBackBufferHeight())
{
s_last_multisamples = g_ActiveConfig.iMultisamples;
s_last_stereo_mode = g_ActiveConfig.iStereoMode > 0;
s_last_xfb_mode = g_ActiveConfig.bUseRealXFB;
s_last_fullscreen_mode = D3D::GetFullscreenState();
g_framebuffer_manager = std::make_unique<FramebufferManager>(m_target_width, m_target_height);
SetupDeviceObjects();
// Setup GX pipeline state
s_gx_state.blend.blend_enable = false;
s_gx_state.blend.write_mask = D3D11_COLOR_WRITE_ENABLE_ALL;
s_gx_state.blend.src_blend = D3D11_BLEND_ONE;
s_gx_state.blend.dst_blend = D3D11_BLEND_ZERO;
s_gx_state.blend.blend_op = D3D11_BLEND_OP_ADD;
s_gx_state.blend.use_dst_alpha = false;
for (auto& sampler : s_gx_state.samplers)
{
sampler.packed = 0;
}
s_gx_state.zmode.testenable = false;
s_gx_state.zmode.updateenable = false;
s_gx_state.zmode.func = ZMode::NEVER;
s_gx_state.raster.cull_mode = D3D11_CULL_NONE;
// Clear EFB textures
constexpr std::array<float, 4> clear_color{{0.f, 0.f, 0.f, 1.f}};
D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(),
clear_color.data());
D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(),
D3D11_CLEAR_DEPTH, 0.f, 0);
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)m_target_width, (float)m_target_height);
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(),
FramebufferManager::GetEFBDepthTexture()->GetDSV());
D3D::BeginFrame();
}
Renderer::~Renderer()
{
TeardownDeviceObjects();
D3D::EndFrame();
D3D::Present();
D3D::Close();
}
void Renderer::RenderText(const std::string& text, int left, int top, u32 color)
{
D3D::font.DrawTextScaled((float)(left + 1), (float)(top + 1), 20.f, 0.0f, color & 0xFF000000,
text);
D3D::font.DrawTextScaled((float)left, (float)top, 20.f, 0.0f, color, text);
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(rc.bottom);
return result;
}
// With D3D, we have to resize the backbuffer if the window changed
// size.
bool Renderer::CheckForResize()
{
RECT rcWindow;
GetClientRect(D3D::hWnd, &rcWindow);
int client_width = rcWindow.right - rcWindow.left;
int client_height = rcWindow.bottom - rcWindow.top;
// Sanity check
if ((client_width != GetBackbufferWidth() || client_height != GetBackbufferHeight()) &&
client_width >= 4 && client_height >= 4)
{
return true;
}
return false;
}
void Renderer::SetScissorRect(const EFBRectangle& rc)
{
TargetRectangle trc = ConvertEFBRectangle(rc);
D3D::context->RSSetScissorRects(1, trc.AsRECT());
}
void Renderer::SetColorMask()
{
// Only enable alpha channel if it's supported by the current EFB format
UINT8 color_mask = 0;
if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL)
{
if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24))
color_mask = D3D11_COLOR_WRITE_ENABLE_ALPHA;
if (bpmem.blendmode.colorupdate)
color_mask |= D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN |
D3D11_COLOR_WRITE_ENABLE_BLUE;
}
s_gx_state.blend.write_mask = color_mask;
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
// Convert EFB dimensions to the ones of our render target
EFBRectangle efbPixelRc;
efbPixelRc.left = x;
efbPixelRc.top = y;
efbPixelRc.right = x + 1;
efbPixelRc.bottom = y + 1;
TargetRectangle targetPixelRc = Renderer::ConvertEFBRectangle(efbPixelRc);
// Take the mean of the resulting dimensions; TODO: Don't use the center pixel, compute the
// average color instead
D3D11_RECT RectToLock;
if (type == EFBAccessType::PeekColor || type == EFBAccessType::PeekZ)
{
RectToLock.left = (targetPixelRc.left + targetPixelRc.right) / 2;
RectToLock.top = (targetPixelRc.top + targetPixelRc.bottom) / 2;
RectToLock.right = RectToLock.left + 1;
RectToLock.bottom = RectToLock.top + 1;
}
else
{
RectToLock.left = targetPixelRc.left;
RectToLock.right = targetPixelRc.right;
RectToLock.top = targetPixelRc.top;
RectToLock.bottom = targetPixelRc.bottom;
}
// Reset any game specific settings.
ResetAPIState();
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, 1.f, 1.f);
D3D::context->RSSetViewports(1, &vp);
D3D::SetPointCopySampler();
// Select copy and read textures depending on if we are doing a color or depth read (since they
// are different formats).
D3DTexture2D* source_tex;
D3DTexture2D* read_tex;
ID3D11Texture2D* staging_tex;
if (type == EFBAccessType::PeekColor)
{
source_tex = FramebufferManager::GetEFBColorTexture();
read_tex = FramebufferManager::GetEFBColorReadTexture();
staging_tex = FramebufferManager::GetEFBColorStagingBuffer();
}
else
{
source_tex = FramebufferManager::GetEFBDepthTexture();
read_tex = FramebufferManager::GetEFBDepthReadTexture();
staging_tex = FramebufferManager::GetEFBDepthStagingBuffer();
}
// Select pixel shader (we don't want to average depth samples, instead select the minimum).
ID3D11PixelShader* copy_pixel_shader;
if (type == EFBAccessType::PeekZ && g_ActiveConfig.iMultisamples > 1)
copy_pixel_shader = PixelShaderCache::GetDepthResolveProgram();
else
copy_pixel_shader = PixelShaderCache::GetColorCopyProgram(true);
// Draw a quad to grab the texel we want to read.
D3D::context->OMSetRenderTargets(1, &read_tex->GetRTV(), nullptr);
D3D::drawShadedTexQuad(source_tex->GetSRV(), &RectToLock, Renderer::GetTargetWidth(),
Renderer::GetTargetHeight(), copy_pixel_shader,
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout());
// Restore expected game state.
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(),
FramebufferManager::GetEFBDepthTexture()->GetDSV());
RestoreAPIState();
// Copy the pixel from the renderable to cpu-readable buffer.
D3D11_BOX box = CD3D11_BOX(0, 0, 0, 1, 1, 1);
D3D::context->CopySubresourceRegion(staging_tex, 0, 0, 0, 0, read_tex->GetTex(), 0, &box);
D3D11_MAPPED_SUBRESOURCE map;
CHECK(D3D::context->Map(staging_tex, 0, D3D11_MAP_READ, 0, &map) == S_OK,
"Map staging buffer failed");
// Convert the framebuffer data to the format the game is expecting to receive.
u32 ret;
if (type == EFBAccessType::PeekColor)
{
u32 val;
memcpy(&val, map.pData, sizeof(val));
// our buffers are RGBA, yet a BGRA value is expected
val = ((val & 0xFF00FF00) | ((val >> 16) & 0xFF) | ((val << 16) & 0xFF0000));
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode();
if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)
{
val = RGBA8ToRGBA6ToRGBA8(val);
}
else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
{
val = RGBA8ToRGB565ToRGBA8(val);
}
if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24)
{
val |= 0xFF000000;
}
if (alpha_read_mode.ReadMode == 2)
ret = val; // GX_READ_NONE
else if (alpha_read_mode.ReadMode == 1)
ret = (val | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/
ret = (val & 0x00FFFFFF); // GX_READ_00
}
else // type == EFBAccessType::PeekZ
{
float val;
memcpy(&val, map.pData, sizeof(val));
// depth buffer is inverted in the d3d backend
val = 1.0f - val;
if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
ret = MathUtil::Clamp<u32>(static_cast<u32>(val * 65536.0f), 0, 0xFFFF);
}
else
{
ret = MathUtil::Clamp<u32>(static_cast<u32>(val * 16777216.0f), 0, 0xFFFFFF);
}
}
D3D::context->Unmap(staging_tex, 0);
return ret;
}
void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
{
ResetAPIState();
if (type == EFBAccessType::PokeColor)
{
D3D11_VIEWPORT vp =
CD3D11_VIEWPORT(0.0f, 0.0f, (float)GetTargetWidth(), (float)GetTargetHeight());
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(),
nullptr);
}
else // if (type == EFBAccessType::PokeZ)
{
D3D::stateman->PushBlendState(s_clear_blend_states[3]);
D3D::stateman->PushDepthState(s_clear_depth_states[1]);
D3D11_VIEWPORT vp =
CD3D11_VIEWPORT(0.0f, 0.0f, (float)GetTargetWidth(), (float)GetTargetHeight());
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(),
FramebufferManager::GetEFBDepthTexture()->GetDSV());
}
D3D::DrawEFBPokeQuads(type, points, num_points);
if (type == EFBAccessType::PokeZ)
{
D3D::stateman->PopDepthState();
D3D::stateman->PopBlendState();
}
RestoreAPIState();
}
void Renderer::SetViewport()
{
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz - nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
// D3D crashes for zero viewports
if (xfmem.viewport.wd == 0 || xfmem.viewport.ht == 0)
return;
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
float X = Renderer::EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissorXOff);
float Y = Renderer::EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissorYOff);
float Wd = Renderer::EFBToScaledXf(2.0f * xfmem.viewport.wd);
float Ht = Renderer::EFBToScaledYf(-2.0f * xfmem.viewport.ht);
float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f;
float max_depth = xfmem.viewport.farZ / 16777216.0f;
if (Wd < 0.0f)
{
X += Wd;
Wd = -Wd;
}
if (Ht < 0.0f)
{
Y += Ht;
Ht = -Ht;
}
// If an inverted or oversized depth range is used, we need to calculate the depth range in the
// vertex shader.
if (UseVertexDepthRange())
{
// We need to ensure depth values are clamped the maximum value supported by the console GPU.
min_depth = 0.0f;
max_depth = GX_MAX_DEPTH;
}
// In D3D, the viewport rectangle must fit within the render target.
X = (X >= 0.f) ? X : 0.f;
Y = (Y >= 0.f) ? Y : 0.f;
Wd = (X + Wd <= GetTargetWidth()) ? Wd : (GetTargetWidth() - X);
Ht = (Y + Ht <= GetTargetHeight()) ? Ht : (GetTargetHeight() - Y);
// We use an inverted depth range here to apply the Reverse Z trick.
// This trick makes sure we match the precision provided by the 1:0
// clipping depth range on the hardware.
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(X, Y, Wd, Ht, 1.0f - max_depth, 1.0f - min_depth);
D3D::context->RSSetViewports(1, &vp);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable,
u32 color, u32 z)
{
ResetAPIState();
if (colorEnable && alphaEnable)
D3D::stateman->PushBlendState(s_clear_blend_states[0]);
else if (colorEnable)
D3D::stateman->PushBlendState(s_clear_blend_states[1]);
else if (alphaEnable)
D3D::stateman->PushBlendState(s_clear_blend_states[2]);
else
D3D::stateman->PushBlendState(s_clear_blend_states[3]);
// TODO: Should we enable Z testing here?
// if (!bpmem.zmode.testenable) D3D::stateman->PushDepthState(s_clear_depth_states[0]);
// else
if (zEnable)
D3D::stateman->PushDepthState(s_clear_depth_states[1]);
else /*if (!zEnable)*/
D3D::stateman->PushDepthState(s_clear_depth_states[2]);
// Update the view port for clearing the picture
TargetRectangle targetRc = Renderer::ConvertEFBRectangle(rc);
D3D11_VIEWPORT vp =
CD3D11_VIEWPORT((float)targetRc.left, (float)targetRc.top, (float)targetRc.GetWidth(),
(float)targetRc.GetHeight(), 0.f, 1.f);
D3D::context->RSSetViewports(1, &vp);
// Color is passed in bgra mode so we need to convert it to rgba
u32 rgbaColor = (color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000);
D3D::drawClearQuad(rgbaColor, 1.0f - (z & 0xFFFFFF) / 16777216.0f);
D3D::stateman->PopDepthState();
D3D::stateman->PopBlendState();
RestoreAPIState();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
// TODO: MSAA support..
D3D11_RECT source = CD3D11_RECT(0, 0, GetTargetWidth(), GetTargetHeight());
ID3D11PixelShader* pixel_shader;
if (convtype == 0)
pixel_shader = PixelShaderCache::ReinterpRGB8ToRGBA6(true);
else if (convtype == 2)
pixel_shader = PixelShaderCache::ReinterpRGBA6ToRGB8(true);
else
{
ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d",
convtype);
return;
}
// convert data and set the target texture as our new EFB
ResetAPIState();
D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, static_cast<float>(GetTargetWidth()),
static_cast<float>(GetTargetHeight()));
D3D::context->RSSetViewports(1, &vp);
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTempTexture()->GetRTV(),
nullptr);
D3D::SetPointCopySampler();
D3D::drawShadedTexQuad(
FramebufferManager::GetEFBColorTexture()->GetSRV(), &source, GetTargetWidth(),
GetTargetHeight(), pixel_shader, VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), GeometryShaderCache::GetCopyGeometryShader());
RestoreAPIState();
FramebufferManager::SwapReinterpretTexture();
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(),
FramebufferManager::GetEFBDepthTexture()->GetDSV());
}
void Renderer::SetBlendMode(bool forceUpdate)
{
// Our render target always uses an alpha channel, so we need to override the blend functions to
// assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel
// Example: D3DBLEND_DESTALPHA needs to be D3DBLEND_ONE since the result without an alpha channel
// is assumed to always be 1.
bool target_has_alpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;
const std::array<D3D11_BLEND, 8> d3d_src_factors{{
D3D11_BLEND_ZERO, D3D11_BLEND_ONE, D3D11_BLEND_DEST_COLOR, D3D11_BLEND_INV_DEST_COLOR,
D3D11_BLEND_SRC1_ALPHA, D3D11_BLEND_INV_SRC1_ALPHA,
(target_has_alpha) ? D3D11_BLEND_DEST_ALPHA : D3D11_BLEND_ONE,
(target_has_alpha) ? D3D11_BLEND_INV_DEST_ALPHA : D3D11_BLEND_ZERO,
}};
const std::array<D3D11_BLEND, 8> d3d_dest_factors{{
D3D11_BLEND_ZERO, D3D11_BLEND_ONE, D3D11_BLEND_SRC_COLOR, D3D11_BLEND_INV_SRC_COLOR,
D3D11_BLEND_SRC1_ALPHA, D3D11_BLEND_INV_SRC1_ALPHA,
(target_has_alpha) ? D3D11_BLEND_DEST_ALPHA : D3D11_BLEND_ONE,
(target_has_alpha) ? D3D11_BLEND_INV_DEST_ALPHA : D3D11_BLEND_ZERO,
}};
if (bpmem.blendmode.logicopenable && !bpmem.blendmode.blendenable && !forceUpdate)
return;
if (bpmem.blendmode.subtract)
{
s_gx_state.blend.blend_enable = true;
s_gx_state.blend.blend_op = D3D11_BLEND_OP_REV_SUBTRACT;
s_gx_state.blend.src_blend = D3D11_BLEND_ONE;
s_gx_state.blend.dst_blend = D3D11_BLEND_ONE;
}
else
{
s_gx_state.blend.blend_enable = (u32)bpmem.blendmode.blendenable;
if (bpmem.blendmode.blendenable)
{
s_gx_state.blend.blend_op = D3D11_BLEND_OP_ADD;
s_gx_state.blend.src_blend = d3d_src_factors[bpmem.blendmode.srcfactor];
s_gx_state.blend.dst_blend = d3d_dest_factors[bpmem.blendmode.dstfactor];
}
}
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::SwapImpl(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight,
const EFBRectangle& rc, u64 ticks, float Gamma)
{
if ((!m_xfb_written && !g_ActiveConfig.RealXFBEnabled()) || !fbWidth || !fbHeight)
{
Core::Callback_VideoCopiedToXFB(false);
return;
}
u32 xfbCount = 0;
const XFBSourceBase* const* xfbSourceList =
FramebufferManager::GetXFBSource(xfbAddr, fbStride, fbHeight, &xfbCount);
if ((!xfbSourceList || xfbCount == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB)
{
Core::Callback_VideoCopiedToXFB(false);
return;
}
ResetAPIState();
// Prepare to copy the XFBs to our backbuffer
UpdateDrawRectangle();
TargetRectangle targetRc = GetTargetRectangle();
D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), nullptr);
constexpr std::array<float, 4> clear_color{{0.f, 0.f, 0.f, 1.f}};
D3D::context->ClearRenderTargetView(D3D::GetBackBuffer()->GetRTV(), clear_color.data());
// activate linear filtering for the buffer copies
D3D::SetLinearCopySampler();
if (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)
{
// TODO: Television should be used to render Virtual XFB mode as well.
D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)targetRc.left, (float)targetRc.top,
(float)targetRc.GetWidth(), (float)targetRc.GetHeight());
D3D::context->RSSetViewports(1, &vp);
s_television.Submit(xfbAddr, fbStride, fbWidth, fbHeight);
s_television.Render();
}
else if (g_ActiveConfig.bUseXFB)
{
// draw each xfb source
for (u32 i = 0; i < xfbCount; ++i)
{
const auto* const xfbSource = static_cast<const XFBSource*>(xfbSourceList[i]);
// use virtual xfb with offset
int xfbHeight = xfbSource->srcHeight;
int xfbWidth = xfbSource->srcWidth;
int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbStride * 2);
TargetRectangle drawRc;
drawRc.top = targetRc.top + hOffset * targetRc.GetHeight() / (s32)fbHeight;
drawRc.bottom = targetRc.top + (hOffset + xfbHeight) * targetRc.GetHeight() / (s32)fbHeight;
drawRc.left = targetRc.left +
(targetRc.GetWidth() - xfbWidth * targetRc.GetWidth() / (s32)fbStride) / 2;
drawRc.right = targetRc.left +
(targetRc.GetWidth() + xfbWidth * targetRc.GetWidth() / (s32)fbStride) / 2;
// The following code disables auto stretch. Kept for reference.
// scale draw area for a 1 to 1 pixel mapping with the draw target
// float vScale = (float)fbHeight / (float)s_backbuffer_height;
// float hScale = (float)fbWidth / (float)s_backbuffer_width;
// drawRc.top *= vScale;
// drawRc.bottom *= vScale;
// drawRc.left *= hScale;
// drawRc.right *= hScale;
TargetRectangle sourceRc;
sourceRc.left = xfbSource->sourceRc.left;
sourceRc.top = xfbSource->sourceRc.top;
sourceRc.right = xfbSource->sourceRc.right;
sourceRc.bottom = xfbSource->sourceRc.bottom;
sourceRc.right -= Renderer::EFBToScaledX(fbStride - fbWidth);
BlitScreen(sourceRc, drawRc, xfbSource->tex, xfbSource->texWidth, xfbSource->texHeight,
Gamma);
}
}
else
{
TargetRectangle sourceRc = Renderer::ConvertEFBRectangle(rc);
// TODO: Improve sampling algorithm for the pixel shader so that we can use the multisampled EFB
// texture as source
D3DTexture2D* read_texture = FramebufferManager::GetResolvedEFBColorTexture();
BlitScreen(sourceRc, targetRc, read_texture, GetTargetWidth(), GetTargetHeight(), Gamma);
}
// Dump frames
if (IsFrameDumping())
{
if (!s_screenshot_texture)
CreateScreenshotTexture();
D3D11_BOX source_box = GetScreenshotSourceBox(targetRc);
unsigned int source_width = source_box.right - source_box.left;
unsigned int source_height = source_box.bottom - source_box.top;
D3D::context->CopySubresourceRegion(s_screenshot_texture, 0, 0, 0, 0,
D3D::GetBackBuffer()->GetTex(), 0, &source_box);
D3D11_MAPPED_SUBRESOURCE map;
D3D::context->Map(s_screenshot_texture, 0, D3D11_MAP_READ, 0, &map);
AVIDump::Frame state = AVIDump::FetchState(ticks);
DumpFrameData(reinterpret_cast<const u8*>(map.pData), source_width, source_height, map.RowPitch,
state);
FinishFrameData();
D3D::context->Unmap(s_screenshot_texture, 0);
}
// Reset viewport for drawing text
D3D11_VIEWPORT vp =
CD3D11_VIEWPORT(0.0f, 0.0f, (float)GetBackbufferWidth(), (float)GetBackbufferHeight());
D3D::context->RSSetViewports(1, &vp);
Renderer::DrawDebugText();
OSD::DrawMessages();
D3D::EndFrame();
g_texture_cache->Cleanup(frameCount);
// Enable configuration changes
UpdateActiveConfig();
g_texture_cache->OnConfigChanged(g_ActiveConfig);
SetWindowSize(fbStride, fbHeight);
const bool window_resized = CheckForResize();
const bool fullscreen = D3D::GetFullscreenState();
const bool fs_changed = s_last_fullscreen_mode != fullscreen;
bool xfbchanged = s_last_xfb_mode != g_ActiveConfig.bUseRealXFB;
if (FramebufferManagerBase::LastXfbWidth() != fbStride ||
FramebufferManagerBase::LastXfbHeight() != fbHeight)
{
xfbchanged = true;
unsigned int xfb_w = (fbStride < 1 || fbStride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbStride;
unsigned int xfb_h = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight;
FramebufferManagerBase::SetLastXfbWidth(xfb_w);
FramebufferManagerBase::SetLastXfbHeight(xfb_h);
}
// Flip/present backbuffer to frontbuffer here
D3D::Present();
// Resize the back buffers NOW to avoid flickering
if (CalculateTargetSize() || xfbchanged || window_resized || fs_changed ||
s_last_multisamples != g_ActiveConfig.iMultisamples ||
s_last_stereo_mode != (g_ActiveConfig.iStereoMode > 0))
{
s_last_xfb_mode = g_ActiveConfig.bUseRealXFB;
s_last_multisamples = g_ActiveConfig.iMultisamples;
s_last_fullscreen_mode = fullscreen;
PixelShaderCache::InvalidateMSAAShaders();
if (window_resized || fs_changed)
{
// TODO: Aren't we still holding a reference to the back buffer right now?
D3D::Reset();
SAFE_RELEASE(s_screenshot_texture);
SAFE_RELEASE(s_3d_vision_texture);
m_backbuffer_width = D3D::GetBackBufferWidth();
m_backbuffer_height = D3D::GetBackBufferHeight();
}
UpdateDrawRectangle();
s_last_stereo_mode = g_ActiveConfig.iStereoMode > 0;
D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), nullptr);
g_framebuffer_manager.reset();
g_framebuffer_manager = std::make_unique<FramebufferManager>(m_target_width, m_target_height);
D3D::context->ClearRenderTargetView(FramebufferManager::GetEFBColorTexture()->GetRTV(),
clear_color.data());
D3D::context->ClearDepthStencilView(FramebufferManager::GetEFBDepthTexture()->GetDSV(),
D3D11_CLEAR_DEPTH, 0.f, 0);
}
if (CheckForHostConfigChanges())
{
VertexShaderCache::Reload();
GeometryShaderCache::Reload();
PixelShaderCache::Reload();
}
// begin next frame
RestoreAPIState();
D3D::BeginFrame();
D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(),
FramebufferManager::GetEFBDepthTexture()->GetDSV());
SetViewport();
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
D3D::stateman->PushBlendState(s_reset_blend_state);
D3D::stateman->PushDepthState(s_reset_depth_state);
D3D::stateman->PushRasterizerState(s_reset_rast_state);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
D3D::stateman->PopBlendState();
D3D::stateman->PopDepthState();
D3D::stateman->PopRasterizerState();
SetViewport();
BPFunctions::SetScissor();
}
void Renderer::ApplyState()
{
// TODO: Refactor this logic here.
bool bUseDstAlpha = bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate &&
bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;
s_gx_state.blend.use_dst_alpha = bUseDstAlpha;
D3D::stateman->PushBlendState(s_gx_state_cache.Get(s_gx_state.blend));
D3D::stateman->PushDepthState(s_gx_state_cache.Get(s_gx_state.zmode));
D3D::stateman->PushRasterizerState(s_gx_state_cache.Get(s_gx_state.raster));
for (size_t stage = 0; stage < s_gx_state.samplers.size(); stage++)
{
// TODO: cache SamplerState directly, not d3d object
s_gx_state.samplers[stage].max_anisotropy = UINT64_C(1) << g_ActiveConfig.iMaxAnisotropy;
D3D::stateman->SetSampler(stage, s_gx_state_cache.Get(s_gx_state.samplers[stage]));
}
if (bUseDstAlpha)
{
// restore actual state
SetBlendMode(false);
SetLogicOpMode();
}
ID3D11Buffer* vertexConstants = VertexShaderCache::GetConstantBuffer();
D3D::stateman->SetPixelConstants(PixelShaderCache::GetConstantBuffer(),
g_ActiveConfig.bEnablePixelLighting ? vertexConstants : nullptr);
D3D::stateman->SetVertexConstants(vertexConstants);
D3D::stateman->SetGeometryConstants(GeometryShaderCache::GetConstantBuffer());
D3D::stateman->SetPixelShader(PixelShaderCache::GetActiveShader());
D3D::stateman->SetVertexShader(VertexShaderCache::GetActiveShader());
D3D::stateman->SetGeometryShader(GeometryShaderCache::GetActiveShader());
}
void Renderer::RestoreState()
{
D3D::stateman->PopBlendState();
D3D::stateman->PopDepthState();
D3D::stateman->PopRasterizerState();
}
void Renderer::ApplyCullDisable()
{
RasterizerState rast = s_gx_state.raster;
rast.cull_mode = D3D11_CULL_NONE;
ID3D11RasterizerState* raststate = s_gx_state_cache.Get(rast);
D3D::stateman->PushRasterizerState(raststate);
}
void Renderer::RestoreCull()
{
D3D::stateman->PopRasterizerState();
}
void Renderer::SetGenerationMode()
{
constexpr std::array<D3D11_CULL_MODE, 4> d3d_cull_modes{{
D3D11_CULL_NONE, D3D11_CULL_BACK, D3D11_CULL_FRONT, D3D11_CULL_BACK,
}};
// rastdc.FrontCounterClockwise must be false for this to work
// TODO: GX_CULL_ALL not supported, yet!
s_gx_state.raster.cull_mode = d3d_cull_modes[bpmem.genMode.cullmode];
}
void Renderer::SetDepthMode()
{
s_gx_state.zmode.hex = bpmem.zmode.hex;
}
void Renderer::SetLogicOpMode()
{
// D3D11 doesn't support logic blending, so this is a huge hack
// TODO: Make use of D3D11.1's logic blending support
// 0 0x00
// 1 Source & destination
// 2 Source & ~destination
// 3 Source
// 4 ~Source & destination
// 5 Destination
// 6 Source ^ destination = Source & ~destination | ~Source & destination
// 7 Source | destination
// 8 ~(Source | destination)
// 9 ~(Source ^ destination) = ~Source & ~destination | Source & destination
// 10 ~Destination
// 11 Source | ~destination
// 12 ~Source
// 13 ~Source | destination
// 14 ~(Source & destination)
// 15 0xff
constexpr std::array<D3D11_BLEND_OP, 16> d3d_logic_ops{{
D3D11_BLEND_OP_ADD, // 0
D3D11_BLEND_OP_ADD, // 1
D3D11_BLEND_OP_SUBTRACT, // 2
D3D11_BLEND_OP_ADD, // 3
D3D11_BLEND_OP_REV_SUBTRACT, // 4
D3D11_BLEND_OP_ADD, // 5
D3D11_BLEND_OP_MAX, // 6
D3D11_BLEND_OP_ADD, // 7
D3D11_BLEND_OP_MAX, // 8
D3D11_BLEND_OP_MAX, // 9
D3D11_BLEND_OP_ADD, // 10
D3D11_BLEND_OP_ADD, // 11
D3D11_BLEND_OP_ADD, // 12
D3D11_BLEND_OP_ADD, // 13
D3D11_BLEND_OP_ADD, // 14
D3D11_BLEND_OP_ADD // 15
}};
constexpr std::array<D3D11_BLEND, 16> d3d_logic_op_src_factors{{
D3D11_BLEND_ZERO, // 0
D3D11_BLEND_DEST_COLOR, // 1
D3D11_BLEND_ONE, // 2
D3D11_BLEND_ONE, // 3
D3D11_BLEND_DEST_COLOR, // 4
D3D11_BLEND_ZERO, // 5
D3D11_BLEND_INV_DEST_COLOR, // 6
D3D11_BLEND_INV_DEST_COLOR, // 7
D3D11_BLEND_INV_SRC_COLOR, // 8
D3D11_BLEND_INV_SRC_COLOR, // 9
D3D11_BLEND_INV_DEST_COLOR, // 10
D3D11_BLEND_ONE, // 11
D3D11_BLEND_INV_SRC_COLOR, // 12
D3D11_BLEND_INV_SRC_COLOR, // 13
D3D11_BLEND_INV_DEST_COLOR, // 14
D3D11_BLEND_ONE // 15
}};
constexpr std::array<D3D11_BLEND, 16> d3d_logic_op_dest_factors{{
D3D11_BLEND_ZERO, // 0
D3D11_BLEND_ZERO, // 1
D3D11_BLEND_INV_SRC_COLOR, // 2
D3D11_BLEND_ZERO, // 3
D3D11_BLEND_ONE, // 4
D3D11_BLEND_ONE, // 5
D3D11_BLEND_INV_SRC_COLOR, // 6
D3D11_BLEND_ONE, // 7
D3D11_BLEND_INV_DEST_COLOR, // 8
D3D11_BLEND_SRC_COLOR, // 9
D3D11_BLEND_INV_DEST_COLOR, // 10
D3D11_BLEND_INV_DEST_COLOR, // 11
D3D11_BLEND_INV_SRC_COLOR, // 12
D3D11_BLEND_ONE, // 13
D3D11_BLEND_INV_SRC_COLOR, // 14
D3D11_BLEND_ONE // 15
}};
if (bpmem.blendmode.logicopenable && !bpmem.blendmode.blendenable)
{
s_gx_state.blend.blend_enable = true;
s_gx_state.blend.blend_op = d3d_logic_ops[bpmem.blendmode.logicmode];
s_gx_state.blend.src_blend = d3d_logic_op_src_factors[bpmem.blendmode.logicmode];
s_gx_state.blend.dst_blend = d3d_logic_op_dest_factors[bpmem.blendmode.logicmode];
}
else
{
SetBlendMode(true);
}
}
void Renderer::SetSamplerState(int stage, int texindex, bool custom_tex)
{
const FourTexUnits& tex = bpmem.tex[texindex];
const TexMode0& tm0 = tex.texMode0[stage];
const TexMode1& tm1 = tex.texMode1[stage];
if (texindex)
stage += 4;
if (g_ActiveConfig.bForceFiltering)
{
// Only use mipmaps if the game says they are available.
s_gx_state.samplers[stage].min_filter = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? 6 : 4;
s_gx_state.samplers[stage].mag_filter = 1; // linear mag
}
else
{
s_gx_state.samplers[stage].min_filter = (u32)tm0.min_filter;
s_gx_state.samplers[stage].mag_filter = (u32)tm0.mag_filter;
}
s_gx_state.samplers[stage].wrap_s = (u32)tm0.wrap_s;
s_gx_state.samplers[stage].wrap_t = (u32)tm0.wrap_t;
s_gx_state.samplers[stage].max_lod = (u32)tm1.max_lod;
s_gx_state.samplers[stage].min_lod = (u32)tm1.min_lod;
s_gx_state.samplers[stage].lod_bias = (s32)tm0.lod_bias;
// custom textures may have higher resolution, so disable the max_lod
if (custom_tex)
{
s_gx_state.samplers[stage].max_lod = 255;
}
}
void Renderer::SetInterlacingMode()
{
// TODO
}
u16 Renderer::BBoxRead(int index)
{
// Here we get the min/max value of the truncated position of the upscaled framebuffer.
// So we have to correct them to the unscaled EFB sizes.
int value = BBox::Get(index);
if (index < 2)
{
// left/right
value = value * EFB_WIDTH / m_target_width;
}
else
{
// up/down
value = value * EFB_HEIGHT / m_target_height;
}
if (index & 1)
value++; // fix max values to describe the outer border
return value;
}
void Renderer::BBoxWrite(int index, u16 _value)
{
int value = _value; // u16 isn't enough to multiply by the efb width
if (index & 1)
value--;
if (index < 2)
{
value = value * m_target_width / EFB_WIDTH;
}
else
{
value = value * m_target_height / EFB_HEIGHT;
}
BBox::Set(index, value);
}
void Renderer::BlitScreen(TargetRectangle src, TargetRectangle dst, D3DTexture2D* src_texture,
u32 src_width, u32 src_height, float Gamma)
{
if (g_ActiveConfig.iStereoMode == STEREO_SBS || g_ActiveConfig.iStereoMode == STEREO_TAB)
{
TargetRectangle leftRc, rightRc;
std::tie(leftRc, rightRc) = ConvertStereoRectangle(dst);
D3D11_VIEWPORT leftVp = CD3D11_VIEWPORT((float)leftRc.left, (float)leftRc.top,
(float)leftRc.GetWidth(), (float)leftRc.GetHeight());
D3D11_VIEWPORT rightVp = CD3D11_VIEWPORT((float)rightRc.left, (float)rightRc.top,
(float)rightRc.GetWidth(), (float)rightRc.GetHeight());
D3D::context->RSSetViewports(1, &leftVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 0);
D3D::context->RSSetViewports(1, &rightVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 1);
}
else if (g_ActiveConfig.iStereoMode == STEREO_3DVISION)
{
if (!s_3d_vision_texture)
Create3DVisionTexture(m_backbuffer_width, m_backbuffer_height);
D3D11_VIEWPORT leftVp = CD3D11_VIEWPORT((float)dst.left, (float)dst.top, (float)dst.GetWidth(),
(float)dst.GetHeight());
D3D11_VIEWPORT rightVp = CD3D11_VIEWPORT((float)(dst.left + m_backbuffer_width), (float)dst.top,
(float)dst.GetWidth(), (float)dst.GetHeight());
// Render to staging texture which is double the width of the backbuffer
D3D::context->OMSetRenderTargets(1, &s_3d_vision_texture->GetRTV(), nullptr);
D3D::context->RSSetViewports(1, &leftVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 0);
D3D::context->RSSetViewports(1, &rightVp);
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height,
PixelShaderCache::GetColorCopyProgram(false),
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), nullptr, Gamma, 1);
// Copy the left eye to the backbuffer, if Nvidia 3D Vision is enabled it should
// recognize the signature and automatically include the right eye frame.
D3D11_BOX box = CD3D11_BOX(0, 0, 0, m_backbuffer_width, m_backbuffer_height, 1);
D3D::context->CopySubresourceRegion(D3D::GetBackBuffer()->GetTex(), 0, 0, 0, 0,
s_3d_vision_texture->GetTex(), 0, &box);
// Restore render target to backbuffer
D3D::context->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV(), nullptr);
}
else
{
D3D11_VIEWPORT vp = CD3D11_VIEWPORT((float)dst.left, (float)dst.top, (float)dst.GetWidth(),
(float)dst.GetHeight());
D3D::context->RSSetViewports(1, &vp);
ID3D11PixelShader* pixelShader = (g_Config.iStereoMode == STEREO_ANAGLYPH) ?
PixelShaderCache::GetAnaglyphProgram() :
PixelShaderCache::GetColorCopyProgram(false);
ID3D11GeometryShader* geomShader = (g_ActiveConfig.iStereoMode == STEREO_QUADBUFFER) ?
GeometryShaderCache::GetCopyGeometryShader() :
nullptr;
D3D::drawShadedTexQuad(src_texture->GetSRV(), src.AsRECT(), src_width, src_height, pixelShader,
VertexShaderCache::GetSimpleVertexShader(),
VertexShaderCache::GetSimpleInputLayout(), geomShader, Gamma);
}
}
void Renderer::SetFullscreen(bool enable_fullscreen)
{
D3D::SetFullscreenState(enable_fullscreen);
}
bool Renderer::IsFullscreen() const
{
return D3D::GetFullscreenState();
}
} // namespace DX11