dolphin/Source/Core/VideoCommon/VertexLoaderManager.cpp

403 lines
12 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/VertexLoaderManager.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Core/HW/Memmap.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
namespace VertexLoaderManager
{
float position_cache[3][4];
// The counter added to the address of the array is 1, 2, or 3, but never zero.
// So only index 1 - 3 are used.
u32 position_matrix_index[4];
static NativeVertexFormatMap s_native_vertex_map;
static NativeVertexFormat* s_current_vtx_fmt;
u32 g_current_components;
typedef std::unordered_map<VertexLoaderUID, std::unique_ptr<VertexLoaderBase>> VertexLoaderMap;
static std::mutex s_vertex_loader_map_lock;
static VertexLoaderMap s_vertex_loader_map;
// TODO - change into array of pointers. Keep a map of all seen so far.
u8* cached_arraybases[12];
void Init()
{
MarkAllDirty();
for (auto& map_entry : g_main_cp_state.vertex_loaders)
map_entry = nullptr;
for (auto& map_entry : g_preprocess_cp_state.vertex_loaders)
map_entry = nullptr;
SETSTAT(g_stats.num_vertex_loaders, 0);
}
void Clear()
{
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
s_vertex_loader_map.clear();
s_native_vertex_map.clear();
}
void UpdateVertexArrayPointers()
{
// Anything to update?
if (!g_main_cp_state.bases_dirty)
return;
// Some games such as Burnout 2 can put invalid addresses into
// the array base registers. (see issue 8591)
// But the vertex arrays with invalid addresses aren't actually enabled.
// Note: Only array bases 0 through 11 are used by the Vertex loaders.
// 12 through 15 are used for loading data into xfmem.
// We also only update the array base if the vertex description states we are going to use it.
if (IsIndexed(g_main_cp_state.vtx_desc.low.Position))
cached_arraybases[ARRAY_POSITION] =
Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_POSITION]);
if (IsIndexed(g_main_cp_state.vtx_desc.low.Normal))
cached_arraybases[ARRAY_NORMAL] = Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_NORMAL]);
for (size_t i = 0; i < g_main_cp_state.vtx_desc.low.Color.Size(); i++)
{
if (IsIndexed(g_main_cp_state.vtx_desc.low.Color[i]))
cached_arraybases[ARRAY_COLOR + i] =
Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_COLOR + i]);
}
for (size_t i = 0; i < g_main_cp_state.vtx_desc.high.TexCoord.Size(); i++)
{
if (IsIndexed(g_main_cp_state.vtx_desc.high.TexCoord[i]))
cached_arraybases[ARRAY_TEXCOORD0 + i] =
Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_TEXCOORD0 + i]);
}
g_main_cp_state.bases_dirty = false;
}
namespace
{
struct entry
{
std::string text;
u64 num_verts;
bool operator<(const entry& other) const { return num_verts > other.num_verts; }
};
} // namespace
std::string VertexLoadersToString()
{
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
std::vector<entry> entries;
size_t total_size = 0;
for (const auto& map_entry : s_vertex_loader_map)
{
entry e = {map_entry.second->ToString(),
static_cast<u64>(map_entry.second->m_numLoadedVertices)};
total_size += e.text.size() + 1;
entries.push_back(std::move(e));
}
sort(entries.begin(), entries.end());
std::string dest;
dest.reserve(total_size);
for (const entry& entry : entries)
{
dest += entry.text;
dest += '\n';
}
return dest;
}
void MarkAllDirty()
{
g_main_cp_state.attr_dirty = BitSet32::AllTrue(8);
g_preprocess_cp_state.attr_dirty = BitSet32::AllTrue(8);
}
NativeVertexFormat* GetOrCreateMatchingFormat(const PortableVertexDeclaration& decl)
{
auto iter = s_native_vertex_map.find(decl);
if (iter == s_native_vertex_map.end())
{
std::unique_ptr<NativeVertexFormat> fmt = g_renderer->CreateNativeVertexFormat(decl);
auto ipair = s_native_vertex_map.emplace(decl, std::move(fmt));
iter = ipair.first;
}
return iter->second.get();
}
NativeVertexFormat* GetUberVertexFormat(const PortableVertexDeclaration& decl)
{
// The padding in the structs can cause the memcmp() in the map to create duplicates.
// Avoid this by initializing the padding to zero.
PortableVertexDeclaration new_decl;
std::memset(&new_decl, 0, sizeof(new_decl));
new_decl.stride = decl.stride;
auto MakeDummyAttribute = [](AttributeFormat& attr, VarType type, int components, bool integer) {
attr.type = type;
attr.components = components;
attr.offset = 0;
attr.enable = true;
attr.integer = integer;
};
auto CopyAttribute = [](AttributeFormat& attr, const AttributeFormat& src) {
attr.type = src.type;
attr.components = src.components;
attr.offset = src.offset;
attr.enable = src.enable;
attr.integer = src.integer;
};
if (decl.position.enable)
CopyAttribute(new_decl.position, decl.position);
else
MakeDummyAttribute(new_decl.position, VAR_FLOAT, 1, false);
for (size_t i = 0; i < std::size(new_decl.normals); i++)
{
if (decl.normals[i].enable)
CopyAttribute(new_decl.normals[i], decl.normals[i]);
else
MakeDummyAttribute(new_decl.normals[i], VAR_FLOAT, 1, false);
}
for (size_t i = 0; i < std::size(new_decl.colors); i++)
{
if (decl.colors[i].enable)
CopyAttribute(new_decl.colors[i], decl.colors[i]);
else
MakeDummyAttribute(new_decl.colors[i], VAR_UNSIGNED_BYTE, 4, false);
}
for (size_t i = 0; i < std::size(new_decl.texcoords); i++)
{
if (decl.texcoords[i].enable)
CopyAttribute(new_decl.texcoords[i], decl.texcoords[i]);
else
MakeDummyAttribute(new_decl.texcoords[i], VAR_FLOAT, 1, false);
}
if (decl.posmtx.enable)
CopyAttribute(new_decl.posmtx, decl.posmtx);
else
MakeDummyAttribute(new_decl.posmtx, VAR_UNSIGNED_BYTE, 1, true);
return GetOrCreateMatchingFormat(new_decl);
}
static VertexLoaderBase* RefreshLoader(int vtx_attr_group, bool preprocess = false)
{
CPState* state = preprocess ? &g_preprocess_cp_state : &g_main_cp_state;
state->last_id = vtx_attr_group;
VertexLoaderBase* loader;
if (state->attr_dirty[vtx_attr_group])
{
// We are not allowed to create a native vertex format on preprocessing as this is on the wrong
// thread
bool check_for_native_format = !preprocess;
VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid);
if (iter != s_vertex_loader_map.end())
{
loader = iter->second.get();
check_for_native_format &= !loader->m_native_vertex_format;
}
else
{
s_vertex_loader_map[uid] =
VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
loader = s_vertex_loader_map[uid].get();
INCSTAT(g_stats.num_vertex_loaders);
}
if (check_for_native_format)
{
// search for a cached native vertex format
const PortableVertexDeclaration& format = loader->m_native_vtx_decl;
std::unique_ptr<NativeVertexFormat>& native = s_native_vertex_map[format];
if (!native)
native = g_renderer->CreateNativeVertexFormat(format);
loader->m_native_vertex_format = native.get();
}
state->vertex_loaders[vtx_attr_group] = loader;
state->attr_dirty[vtx_attr_group] = false;
}
else
{
loader = state->vertex_loaders[vtx_attr_group];
}
// Lookup pointers for any vertex arrays.
if (!preprocess)
UpdateVertexArrayPointers();
return loader;
}
int RunVertices(int vtx_attr_group, int primitive, int count, DataReader src, bool is_preprocess)
{
if (!count)
return 0;
VertexLoaderBase* loader = RefreshLoader(vtx_attr_group, is_preprocess);
int size = count * loader->m_VertexSize;
if ((int)src.size() < size)
return -1;
if (is_preprocess)
return size;
// If the native vertex format changed, force a flush.
if (loader->m_native_vertex_format != s_current_vtx_fmt ||
loader->m_native_components != g_current_components)
{
g_vertex_manager->Flush();
}
s_current_vtx_fmt = loader->m_native_vertex_format;
g_current_components = loader->m_native_components;
VertexShaderManager::SetVertexFormat(loader->m_native_components);
// if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads.
// They still need to go through vertex loading, because we need to calculate a zfreeze refrence
// slope.
bool cullall = (bpmem.genMode.cullmode == GenMode::CULL_ALL && primitive < 5);
DataReader dst = g_vertex_manager->PrepareForAdditionalData(
primitive, count, loader->m_native_vtx_decl.stride, cullall);
count = loader->RunVertices(src, dst, count);
g_vertex_manager->AddIndices(primitive, count);
g_vertex_manager->FlushData(count, loader->m_native_vtx_decl.stride);
ADDSTAT(g_stats.this_frame.num_prims, count);
INCSTAT(g_stats.this_frame.num_primitive_joins);
return size;
}
NativeVertexFormat* GetCurrentVertexFormat()
{
return s_current_vtx_fmt;
}
} // namespace VertexLoaderManager
void LoadCPReg(u32 sub_cmd, u32 value, bool is_preprocess)
{
bool update_global_state = !is_preprocess;
CPState* state = is_preprocess ? &g_preprocess_cp_state : &g_main_cp_state;
switch (sub_cmd & CP_COMMAND_MASK)
{
case MATINDEX_A:
if (update_global_state)
VertexShaderManager::SetTexMatrixChangedA(value);
break;
case MATINDEX_B:
if (update_global_state)
VertexShaderManager::SetTexMatrixChangedB(value);
break;
case VCD_LO:
state->vtx_desc.low.Hex = value;
state->attr_dirty = BitSet32::AllTrue(CP_NUM_VAT_REG);
state->bases_dirty = true;
break;
case VCD_HI:
state->vtx_desc.high.Hex = value;
state->attr_dirty = BitSet32::AllTrue(CP_NUM_VAT_REG);
state->bases_dirty = true;
break;
case CP_VAT_REG_A:
if ((sub_cmd - CP_VAT_REG_A) >= CP_NUM_VAT_REG)
WARN_LOG_FMT(VIDEO, "CP_VAT_REG_A: Invalid VAT {}", sub_cmd - CP_VAT_REG_A);
state->vtx_attr[sub_cmd & CP_VAT_MASK].g0.Hex = value;
state->attr_dirty[sub_cmd & CP_VAT_MASK] = true;
break;
case CP_VAT_REG_B:
if ((sub_cmd - CP_VAT_REG_B) >= CP_NUM_VAT_REG)
WARN_LOG_FMT(VIDEO, "CP_VAT_REG_B: Invalid VAT {}", sub_cmd - CP_VAT_REG_B);
state->vtx_attr[sub_cmd & CP_VAT_MASK].g1.Hex = value;
state->attr_dirty[sub_cmd & CP_VAT_MASK] = true;
break;
case CP_VAT_REG_C:
if ((sub_cmd - CP_VAT_REG_C) >= CP_NUM_VAT_REG)
WARN_LOG_FMT(VIDEO, "CP_VAT_REG_C: Invalid VAT {}", sub_cmd - CP_VAT_REG_C);
state->vtx_attr[sub_cmd & CP_VAT_MASK].g2.Hex = value;
state->attr_dirty[sub_cmd & CP_VAT_MASK] = true;
break;
// Pointers to vertex arrays in GC RAM
case ARRAY_BASE:
state->array_bases[sub_cmd & CP_ARRAY_MASK] =
value & CommandProcessor::GetPhysicalAddressMask();
state->bases_dirty = true;
break;
case ARRAY_STRIDE:
state->array_strides[sub_cmd & CP_ARRAY_MASK] = value & 0xFF;
break;
default:
WARN_LOG_FMT(VIDEO, "Unknown CP register {:02x} set to {:08x}", sub_cmd, value);
}
}
void FillCPMemoryArray(u32* memory)
{
memory[MATINDEX_A] = g_main_cp_state.matrix_index_a.Hex;
memory[MATINDEX_B] = g_main_cp_state.matrix_index_b.Hex;
memory[VCD_LO] = g_main_cp_state.vtx_desc.low.Hex;
memory[VCD_HI] = g_main_cp_state.vtx_desc.high.Hex;
for (int i = 0; i < CP_NUM_VAT_REG; ++i)
{
memory[CP_VAT_REG_A + i] = g_main_cp_state.vtx_attr[i].g0.Hex;
memory[CP_VAT_REG_B + i] = g_main_cp_state.vtx_attr[i].g1.Hex;
memory[CP_VAT_REG_C + i] = g_main_cp_state.vtx_attr[i].g2.Hex;
}
for (int i = 0; i < CP_NUM_ARRAYS; ++i)
{
memory[ARRAY_BASE + i] = g_main_cp_state.array_bases[i];
memory[ARRAY_STRIDE + i] = g_main_cp_state.array_strides[i];
}
}