dolphin/Externals/rangeset/include/rangeset/rangesizeset.h

543 lines
15 KiB
C++

#pragma once
#include <cassert>
#include <cstddef>
#include <map>
#include <type_traits>
namespace HyoutaUtilities {
// Like RangeSet, but additionally stores a map of the ranges sorted by their size, for quickly finding the largest or
// smallest range.
template <typename T> class RangeSizeSet {
private:
// Key type used in the by-size multimap. Should be a type big enough to hold all possible distances between
// possible 'from' and 'to'.
// I'd actually love to just do
// using SizeT = typename std::conditional<std::is_pointer_v<T>,
// std::size_t, typename std::make_unsigned<T>::type>::type;
// but that's apparently not possible due to the std::make_unsigned<T>::type not existing for pointer types
// so we'll work around this...
template <typename U, bool IsPointer> struct GetSizeType { using S = typename std::make_unsigned<U>::type; };
template <typename U> struct GetSizeType<U, true> { using S = std::size_t; };
public:
using SizeT = typename GetSizeType<T, std::is_pointer_v<T>>::S;
private:
// Value type stored in the regular range map.
struct Value {
// End point of the range.
T To;
// Pointer to the same range in the by-size multimap.
typename std::multimap<SizeT, typename std::map<T, Value>::iterator, std::greater<SizeT>>::iterator SizeIt;
Value(T to) : To(to) {}
bool operator==(const Value& other) const {
return this->To == other.To;
}
bool operator!=(const Value& other) const {
return !operator==(other);
}
};
using MapT = std::map<T, Value>;
using SizeMapT = std::multimap<SizeT, typename MapT::iterator, std::greater<SizeT>>;
public:
struct by_size_const_iterator;
struct const_iterator {
public:
const T& from() const {
return It->first;
}
const T& to() const {
return It->second.To;
}
const_iterator& operator++() {
++It;
return *this;
}
const_iterator operator++(int) {
const_iterator old = *this;
++It;
return old;
}
const_iterator& operator--() {
--It;
return *this;
}
const_iterator operator--(int) {
const_iterator old = *this;
--It;
return old;
}
bool operator==(const const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const const_iterator& rhs) const {
return !operator==(rhs);
}
by_size_const_iterator to_size_iterator() {
return by_size_const_iterator(It->second.SizeIt);
}
private:
typename MapT::const_iterator It;
const_iterator(typename MapT::const_iterator it) : It(it) {}
friend class RangeSizeSet;
};
struct by_size_const_iterator {
public:
const T& from() const {
return It->second->first;
}
const T& to() const {
return It->second->second.To;
}
by_size_const_iterator& operator++() {
++It;
return *this;
}
by_size_const_iterator operator++(int) {
by_size_const_iterator old = *this;
++It;
return old;
}
by_size_const_iterator& operator--() {
--It;
return *this;
}
by_size_const_iterator operator--(int) {
by_size_const_iterator old = *this;
--It;
return old;
}
bool operator==(const by_size_const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const by_size_const_iterator& rhs) const {
return !operator==(rhs);
}
const_iterator to_range_iterator() {
return const_iterator(It->second);
}
private:
typename SizeMapT::const_iterator It;
by_size_const_iterator(typename SizeMapT::const_iterator it) : It(it) {}
friend class RangeSizeSet;
};
// We store iterators internally, so disallow copying.
RangeSizeSet() = default;
RangeSizeSet(const RangeSizeSet<T>&) = delete;
RangeSizeSet(RangeSizeSet<T>&&) = default;
RangeSizeSet<T>& operator=(const RangeSizeSet<T>&) = delete;
RangeSizeSet<T>& operator=(RangeSizeSet<T>&&) = default;
void insert(T from, T to) {
if (from >= to)
return;
// Start by finding the closest range.
// upper_bound() returns the closest range whose starting position
// is greater than 'from'.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
// This means we have three options:
// - 1. No range exists yet, this is the first range.
if (Map.empty()) {
insert_range(from, to);
return;
}
// - 2. The given range does not overlap the last range.
--bound;
if (from > get_to(bound)) {
insert_range(from, to);
return;
}
// - 3. The given range does overlap the last range.
maybe_expand_to(bound, to);
return;
}
if (bound == Map.begin()) {
// The given range starts before any of the existing ones.
// We must insert this as a new range even if we potentially overlap
// an existing one as we can't modify a key in a std::map.
auto inserted = insert_range(from, to);
merge_from_iterator_to_value(inserted, bound, to);
return;
}
auto abound = bound--;
// 'bound' now points at the first range in the map that
// could possibly be affected.
// If 'bound' overlaps with given range, update bounds object.
if (get_to(bound) >= from) {
maybe_expand_to(bound, to);
auto inserted = bound;
++bound;
merge_from_iterator_to_value(inserted, bound, to);
return;
}
// 'bound' *doesn't* overlap with given range, check next range.
// If this range overlaps with given range,
if (get_from(abound) <= to) {
// insert new range
auto inserted = insert_range(from, to >= get_to(abound) ? to : get_to(abound));
// and delete overlaps
abound = erase_range(abound);
merge_from_iterator_to_value(inserted, abound, to);
return;
}
// Otherwise, if we come here, then this new range overlaps nothing
// and must be inserted as a new range.
insert_range(from, to);
}
void erase(T from, T to) {
if (from >= to)
return;
// Like insert(), we use upper_bound to find the closest range.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
if (Map.empty()) {
// nothing to do
return;
}
--bound;
// 'bound' now points at the last range.
if (from >= get_to(bound)) {
// Given range is larger than any range that exists, nothing to do.
return;
}
if (to >= get_to(bound)) {
if (from == get_from(bound)) {
// Given range fully overlaps last range, erase it.
erase_range(bound);
return;
} else {
// Given range overlaps end of last range, reduce it.
reduce_to(bound, from);
return;
}
}
if (from == get_from(bound)) {
// Given range overlaps begin of last range, reduce it.
reduce_from(bound, to);
return;
} else {
// Given range overlaps middle of last range, bisect it.
bisect_range(bound, from, to);
return;
}
}
if (bound == Map.begin()) {
// If we found the first range that means 'from' is before any stored range.
// This means we can just erase from start until 'to' and be done with it.
erase_from_iterator_to_value(bound, to);
return;
}
// check previous range
auto abound = bound--;
if (from == get_from(bound)) {
// Similarly, if the previous range starts with the given one, just erase until 'to'.
erase_from_iterator_to_value(bound, to);
return;
}
// If we come here, the given range may or may not overlap part of the current 'bound'
// (but never the full range), which means we may need to update the end position of it,
// or possibly even split it into two.
if (from < get_to(bound)) {
if (to < get_to(bound)) {
// need to split in two
bisect_range(bound, from, to);
return;
} else {
// just update end
reduce_to(bound, from);
}
}
// and then just erase until 'to'
erase_from_iterator_to_value(abound, to);
return;
}
const_iterator erase(const_iterator it) {
return const_iterator(erase_range(it.It));
}
by_size_const_iterator erase(by_size_const_iterator it) {
return by_size_const_iterator(erase_range_by_size(it.It));
}
void clear() {
Map.clear();
Sizes.clear();
}
bool contains(T value) const {
auto it = Map.upper_bound(value);
if (it == Map.begin())
return false;
--it;
return get_from(it) <= value && value < get_to(it);
}
std::size_t size() const {
return Map.size();
}
bool empty() const {
return Map.empty();
}
std::size_t by_size_count(const SizeT& key) const {
return Sizes.count(key);
}
by_size_const_iterator by_size_find(const SizeT& key) const {
return Sizes.find(key);
}
std::pair<by_size_const_iterator, by_size_const_iterator> by_size_equal_range(const SizeT& key) const {
auto p = Sizes.equal_range(key);
return std::pair<by_size_const_iterator, by_size_const_iterator>(by_size_const_iterator(p.first),
by_size_const_iterator(p.second));
}
by_size_const_iterator by_size_lower_bound(const SizeT& key) const {
return Sizes.lower_bound(key);
}
by_size_const_iterator by_size_upper_bound(const SizeT& key) const {
return Sizes.upper_bound(key);
}
void swap(RangeSizeSet<T>& other) {
Map.swap(other.Map);
Sizes.swap(other.Sizes);
}
const_iterator begin() const {
return const_iterator(Map.begin());
}
const_iterator end() const {
return const_iterator(Map.end());
}
const_iterator cbegin() const {
return const_iterator(Map.cbegin());
}
const_iterator cend() const {
return const_iterator(Map.cend());
}
by_size_const_iterator by_size_begin() const {
return by_size_const_iterator(Sizes.begin());
}
by_size_const_iterator by_size_end() const {
return by_size_const_iterator(Sizes.end());
}
by_size_const_iterator by_size_cbegin() const {
return by_size_const_iterator(Sizes.cbegin());
}
by_size_const_iterator by_size_cend() const {
return by_size_const_iterator(Sizes.cend());
}
bool operator==(const RangeSizeSet<T>& other) const {
return this->Map == other.Map;
}
bool operator!=(const RangeSizeSet<T>& other) const {
return !(*this == other);
}
private:
static SizeT calc_size(T from, T to) {
if constexpr (std::is_pointer_v<T>) {
// For pointers we don't want pointer arithmetic here, else void* breaks.
static_assert(sizeof(T) <= sizeof(SizeT));
return reinterpret_cast<SizeT>(to) - reinterpret_cast<SizeT>(from);
} else {
return static_cast<SizeT>(to - from);
}
}
// Assumptions that can be made about the data:
// - Range are stored in the form [from, to[
// That is, the starting value is inclusive, and the end value is exclusive.
// - 'from' is the map key, 'to' is the map value
// - 'from' is always smaller than 'to'
// - Stored ranges never touch.
// - Stored ranges never overlap.
MapT Map;
// The by-size multimap.
// Key is the size of the range.
// Value is a pointer to the range in the regular range map.
// We use std::greater so that Sizes.begin() gives us the largest range.
SizeMapT Sizes;
T get_from(typename MapT::iterator it) const {
return it->first;
}
T get_to(typename MapT::iterator it) const {
return it->second.To;
}
T get_from(typename MapT::const_iterator it) const {
return it->first;
}
T get_to(typename MapT::const_iterator it) const {
return it->second.To;
}
typename MapT::iterator insert_range(T from, T to) {
auto m = Map.emplace(from, to).first;
m->second.SizeIt = Sizes.emplace(calc_size(from, to), m);
return m;
}
typename MapT::iterator erase_range(typename MapT::iterator it) {
Sizes.erase(it->second.SizeIt);
return Map.erase(it);
}
typename MapT::const_iterator erase_range(typename MapT::const_iterator it) {
Sizes.erase(it->second.SizeIt);
return Map.erase(it);
}
typename SizeMapT::const_iterator erase_range_by_size(typename SizeMapT::const_iterator it) {
Map.erase(it->second);
return Sizes.erase(it);
}
void bisect_range(typename MapT::iterator it, T from, T to) {
assert(get_from(it) < from);
assert(get_from(it) < to);
assert(get_to(it) > from);
assert(get_to(it) > to);
assert(from < to);
T itto = get_to(it);
reduce_to(it, from);
insert_range(to, itto);
}
typename MapT::iterator reduce_from(typename MapT::iterator it, T from) {
assert(get_from(it) < from);
T itto = get_to(it);
erase_range(it);
return insert_range(from, itto);
}
void maybe_expand_to(typename MapT::iterator it, T to) {
if (to <= get_to(it))
return;
expand_to(it, to);
}
void expand_to(typename MapT::iterator it, T to) {
assert(get_to(it) < to);
it->second.To = to;
Sizes.erase(it->second.SizeIt);
it->second.SizeIt = Sizes.emplace(calc_size(get_from(it), to), it);
}
void reduce_to(typename MapT::iterator it, T to) {
assert(get_to(it) > to);
it->second.To = to;
Sizes.erase(it->second.SizeIt);
it->second.SizeIt = Sizes.emplace(calc_size(get_from(it), to), it);
}
void merge_from_iterator_to_value(typename MapT::iterator inserted, typename MapT::iterator bound, T to) {
// Erase all ranges that overlap the inserted while updating the upper end.
while (bound != Map.end() && get_from(bound) <= to) {
maybe_expand_to(inserted, get_to(bound));
bound = erase_range(bound);
}
}
void erase_from_iterator_to_value(typename MapT::iterator bound, T to) {
// Assumption: Given bound starts at or after the 'from' value of the range to erase.
while (true) {
// Given range starts before stored range.
if (to <= get_from(bound)) {
// Range ends before this range too, nothing to do.
return;
}
if (to < get_to(bound)) {
// Range ends in the middle of current range, reduce current.
reduce_from(bound, to);
return;
}
if (to == get_to(bound)) {
// Range ends exactly with current range, erase current.
erase_range(bound);
return;
}
// Range ends later than current range.
// First erase current, then loop to check the range(s) after this one too.
bound = erase_range(bound);
if (bound == Map.end()) {
// Unless that was the last range, in which case there's nothing else to do.
return;
}
}
}
};
} // namespace HyoutaUtilities