dolphin/Source/Core/VideoCommon/TextureConversionShader.cpp

707 lines
21 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cmath>
#include <cstdio>
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#include "Common/MsgHandler.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/TextureConversionShader.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VideoCommon.h"
#define WRITE p += sprintf
static char text[16384];
static bool IntensityConstantAdded = false;
namespace TextureConversionShader
{
u16 GetEncodedSampleCount(u32 format)
{
switch (format)
{
case GX_TF_I4:
return 8;
case GX_TF_I8:
return 4;
case GX_TF_IA4:
return 4;
case GX_TF_IA8:
return 2;
case GX_TF_RGB565:
return 2;
case GX_TF_RGB5A3:
return 2;
case GX_TF_RGBA8:
return 1;
case GX_CTF_R4:
return 8;
case GX_CTF_RA4:
return 4;
case GX_CTF_RA8:
return 2;
case GX_CTF_A8:
return 4;
case GX_CTF_R8:
return 4;
case GX_CTF_G8:
return 4;
case GX_CTF_B8:
return 4;
case GX_CTF_RG8:
return 2;
case GX_CTF_GB8:
return 2;
case GX_TF_Z8:
return 4;
case GX_TF_Z16:
return 2;
case GX_TF_Z24X8:
return 1;
case GX_CTF_Z4:
return 8;
case GX_CTF_Z8M:
return 4;
case GX_CTF_Z8L:
return 4;
case GX_CTF_Z16L:
return 2;
default:
return 1;
}
}
// block dimensions : widthStride, heightStride
// texture dims : width, height, x offset, y offset
static void WriteSwizzler(char*& p, u32 format, APIType ApiType)
{
// left, top, of source rectangle within source texture
// width of the destination rectangle, scale_factor (1 or 2)
WRITE(p, "uniform int4 position;\n");
int blkW = TexDecoder_GetBlockWidthInTexels(format);
int blkH = TexDecoder_GetBlockHeightInTexels(format);
int samples = GetEncodedSampleCount(format);
if (ApiType == APIType::OpenGL)
{
WRITE(p, "#define samp0 samp9\n");
WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");
WRITE(p, " out vec4 ocol0;\n");
WRITE(p, "void main()\n");
WRITE(p, "{\n"
" int2 sampleUv;\n"
" int2 uv1 = int2(gl_FragCoord.xy);\n");
}
else // D3D
{
WRITE(p, "sampler samp0 : register(s0);\n");
WRITE(p, "Texture2DArray Tex0 : register(t0);\n");
WRITE(p, "void main(\n");
WRITE(p, " out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n");
WRITE(p, "{\n"
" int2 sampleUv;\n"
" int2 uv1 = int2(rawpos.xy);\n");
}
WRITE(p, " int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples),
IntLog2(blkW));
WRITE(p, " int y_block_position = uv1.y << %d;\n", IntLog2(blkH));
if (samples == 1)
{
// With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
WRITE(p, " bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2);
samples = 2;
}
WRITE(p, " int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1);
WRITE(p, " int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples));
WRITE(p, " int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1,
IntLog2(samples));
WRITE(p, " sampleUv.x = x_block_position + x_offset_in_block;\n");
WRITE(p, " sampleUv.y = y_block_position + y_offset_in_block;\n");
WRITE(p,
" float2 uv0 = float2(sampleUv);\n"); // sampleUv is the sample position in (int)gx_coords
WRITE(p, " uv0 += float2(0.5, 0.5);\n"); // move to center of pixel
WRITE(p, " uv0 *= float(position.w);\n"); // scale by two if needed (also move to pixel borders
// so that linear filtering will average adjacent
// pixel)
WRITE(p, " uv0 += float2(position.xy);\n"); // move to copied rect
WRITE(p, " uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT); // normalize to [0:1]
if (ApiType == APIType::OpenGL) // ogl has to flip up and down
{
WRITE(p, " uv0.y = 1.0-uv0.y;\n");
}
WRITE(p, " float sample_offset = float(position.w) / float(%d);\n", EFB_WIDTH);
}
static void WriteSampleColor(char*& p, const char* colorComp, const char* dest, int xoffset,
APIType ApiType, bool depth = false)
{
if (ApiType == APIType::OpenGL)
{
WRITE(p, " %s = texture(samp0, float3(uv0 + float2(%d, 0) * sample_offset, 0.0)).%s;\n", dest,
xoffset, colorComp);
}
else
{
WRITE(p, " %s = Tex0.Sample(samp0, float3(uv0 + float2(%d, 0) * sample_offset, 0.0)).%s;\n",
dest, xoffset, colorComp);
// Handle D3D depth inversion.
if (depth)
WRITE(p, " %s = 1.0f - %s;\n", dest, dest);
}
}
static void WriteColorToIntensity(char*& p, const char* src, const char* dest)
{
if (!IntensityConstantAdded)
{
WRITE(p, " float4 IntensityConst = float4(0.257f,0.504f,0.098f,0.0625f);\n");
IntensityConstantAdded = true;
}
WRITE(p, " %s = dot(IntensityConst.rgb, %s.rgb);\n", dest, src);
// don't add IntensityConst.a yet, because doing it later is faster and uses less instructions,
// due to vectorization
}
static void WriteToBitDepth(char*& p, u8 depth, const char* src, const char* dest)
{
WRITE(p, " %s = floor(%s * 255.0 / exp2(8.0 - %d.0));\n", dest, src, depth);
}
static void WriteEncoderEnd(char*& p)
{
WRITE(p, "}\n");
IntensityConstantAdded = false;
}
static void WriteI8Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_I8, ApiType);
WRITE(p, " float3 texSample;\n");
WriteSampleColor(p, "rgb", "texSample", 0, ApiType);
WriteColorToIntensity(p, "texSample", "ocol0.b");
WriteSampleColor(p, "rgb", "texSample", 1, ApiType);
WriteColorToIntensity(p, "texSample", "ocol0.g");
WriteSampleColor(p, "rgb", "texSample", 2, ApiType);
WriteColorToIntensity(p, "texSample", "ocol0.r");
WriteSampleColor(p, "rgb", "texSample", 3, ApiType);
WriteColorToIntensity(p, "texSample", "ocol0.a");
WRITE(p, " ocol0.rgba += IntensityConst.aaaa;\n"); // see WriteColorToIntensity
WriteEncoderEnd(p);
}
static void WriteI4Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_I4, ApiType);
WRITE(p, " float3 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, "rgb", "texSample", 0, ApiType);
WriteColorToIntensity(p, "texSample", "color0.b");
WriteSampleColor(p, "rgb", "texSample", 1, ApiType);
WriteColorToIntensity(p, "texSample", "color1.b");
WriteSampleColor(p, "rgb", "texSample", 2, ApiType);
WriteColorToIntensity(p, "texSample", "color0.g");
WriteSampleColor(p, "rgb", "texSample", 3, ApiType);
WriteColorToIntensity(p, "texSample", "color1.g");
WriteSampleColor(p, "rgb", "texSample", 4, ApiType);
WriteColorToIntensity(p, "texSample", "color0.r");
WriteSampleColor(p, "rgb", "texSample", 5, ApiType);
WriteColorToIntensity(p, "texSample", "color1.r");
WriteSampleColor(p, "rgb", "texSample", 6, ApiType);
WriteColorToIntensity(p, "texSample", "color0.a");
WriteSampleColor(p, "rgb", "texSample", 7, ApiType);
WriteColorToIntensity(p, "texSample", "color1.a");
WRITE(p, " color0.rgba += IntensityConst.aaaa;\n");
WRITE(p, " color1.rgba += IntensityConst.aaaa;\n");
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteIA8Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_IA8, ApiType);
WRITE(p, " float4 texSample;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType);
WRITE(p, " ocol0.b = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "ocol0.g");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType);
WRITE(p, " ocol0.r = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "ocol0.a");
WRITE(p, " ocol0.ga += IntensityConst.aa;\n");
WriteEncoderEnd(p);
}
static void WriteIA4Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_IA4, ApiType);
WRITE(p, " float4 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType);
WRITE(p, " color0.b = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.b");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType);
WRITE(p, " color0.g = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.g");
WriteSampleColor(p, "rgba", "texSample", 2, ApiType);
WRITE(p, " color0.r = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.r");
WriteSampleColor(p, "rgba", "texSample", 3, ApiType);
WRITE(p, " color0.a = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.a");
WRITE(p, " color1.rgba += IntensityConst.aaaa;\n");
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteRGB565Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_RGB565, ApiType);
WriteSampleColor(p, "rgb", "float3 texSample0", 0, ApiType);
WriteSampleColor(p, "rgb", "float3 texSample1", 1, ApiType);
WRITE(p, " float2 texRs = float2(texSample0.r, texSample1.r);\n");
WRITE(p, " float2 texGs = float2(texSample0.g, texSample1.g);\n");
WRITE(p, " float2 texBs = float2(texSample0.b, texSample1.b);\n");
WriteToBitDepth(p, 6, "texGs", "float2 gInt");
WRITE(p, " float2 gUpper = floor(gInt / 8.0);\n");
WRITE(p, " float2 gLower = gInt - gUpper * 8.0;\n");
WriteToBitDepth(p, 5, "texRs", "ocol0.br");
WRITE(p, " ocol0.br = ocol0.br * 8.0 + gUpper;\n");
WriteToBitDepth(p, 5, "texBs", "ocol0.ga");
WRITE(p, " ocol0.ga = ocol0.ga + gLower * 32.0;\n");
WRITE(p, " ocol0 = ocol0 / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteRGB5A3Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_RGB5A3, ApiType);
WRITE(p, " float4 texSample;\n");
WRITE(p, " float color0;\n");
WRITE(p, " float gUpper;\n");
WRITE(p, " float gLower;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType);
// 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits
WRITE(p, "if(texSample.a > 0.878f) {\n");
WriteToBitDepth(p, 5, "texSample.g", "color0");
WRITE(p, " gUpper = floor(color0 / 8.0);\n");
WRITE(p, " gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(p, 5, "texSample.r", "ocol0.b");
WRITE(p, " ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(p, 5, "texSample.b", "ocol0.g");
WRITE(p, " ocol0.g = ocol0.g + gLower * 32.0;\n");
WRITE(p, "} else {\n");
WriteToBitDepth(p, 4, "texSample.r", "ocol0.b");
WriteToBitDepth(p, 4, "texSample.b", "ocol0.g");
WriteToBitDepth(p, 3, "texSample.a", "color0");
WRITE(p, "ocol0.b = ocol0.b + color0 * 16.0;\n");
WriteToBitDepth(p, 4, "texSample.g", "color0");
WRITE(p, "ocol0.g = ocol0.g + color0 * 16.0;\n");
WRITE(p, "}\n");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType);
WRITE(p, "if(texSample.a > 0.878f) {\n");
WriteToBitDepth(p, 5, "texSample.g", "color0");
WRITE(p, " gUpper = floor(color0 / 8.0);\n");
WRITE(p, " gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(p, 5, "texSample.r", "ocol0.r");
WRITE(p, " ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(p, 5, "texSample.b", "ocol0.a");
WRITE(p, " ocol0.a = ocol0.a + gLower * 32.0;\n");
WRITE(p, "} else {\n");
WriteToBitDepth(p, 4, "texSample.r", "ocol0.r");
WriteToBitDepth(p, 4, "texSample.b", "ocol0.a");
WriteToBitDepth(p, 3, "texSample.a", "color0");
WRITE(p, "ocol0.r = ocol0.r + color0 * 16.0;\n");
WriteToBitDepth(p, 4, "texSample.g", "color0");
WRITE(p, "ocol0.a = ocol0.a + color0 * 16.0;\n");
WRITE(p, "}\n");
WRITE(p, " ocol0 = ocol0 / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteRGBA8Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_RGBA8, ApiType);
WRITE(p, " float4 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType);
WRITE(p, " color0.b = texSample.a;\n");
WRITE(p, " color0.g = texSample.r;\n");
WRITE(p, " color1.b = texSample.g;\n");
WRITE(p, " color1.g = texSample.b;\n");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType);
WRITE(p, " color0.r = texSample.a;\n");
WRITE(p, " color0.a = texSample.r;\n");
WRITE(p, " color1.r = texSample.g;\n");
WRITE(p, " color1.a = texSample.b;\n");
WRITE(p, " ocol0 = first ? color0 : color1;\n");
WriteEncoderEnd(p);
}
static void WriteC4Encoder(char*& p, const char* comp, APIType ApiType, bool depth = false)
{
WriteSwizzler(p, GX_CTF_R4, ApiType);
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, comp, "color0.b", 0, ApiType, depth);
WriteSampleColor(p, comp, "color1.b", 1, ApiType, depth);
WriteSampleColor(p, comp, "color0.g", 2, ApiType, depth);
WriteSampleColor(p, comp, "color1.g", 3, ApiType, depth);
WriteSampleColor(p, comp, "color0.r", 4, ApiType, depth);
WriteSampleColor(p, comp, "color1.r", 5, ApiType, depth);
WriteSampleColor(p, comp, "color0.a", 6, ApiType, depth);
WriteSampleColor(p, comp, "color1.a", 7, ApiType, depth);
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteC8Encoder(char*& p, const char* comp, APIType ApiType, bool depth = false)
{
WriteSwizzler(p, GX_CTF_R8, ApiType);
WriteSampleColor(p, comp, "ocol0.b", 0, ApiType, depth);
WriteSampleColor(p, comp, "ocol0.g", 1, ApiType, depth);
WriteSampleColor(p, comp, "ocol0.r", 2, ApiType, depth);
WriteSampleColor(p, comp, "ocol0.a", 3, ApiType, depth);
WriteEncoderEnd(p);
}
static void WriteCC4Encoder(char*& p, const char* comp, APIType ApiType)
{
WriteSwizzler(p, GX_CTF_RA4, ApiType);
WRITE(p, " float2 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, comp, "texSample", 0, ApiType);
WRITE(p, " color0.b = texSample.x;\n");
WRITE(p, " color1.b = texSample.y;\n");
WriteSampleColor(p, comp, "texSample", 1, ApiType);
WRITE(p, " color0.g = texSample.x;\n");
WRITE(p, " color1.g = texSample.y;\n");
WriteSampleColor(p, comp, "texSample", 2, ApiType);
WRITE(p, " color0.r = texSample.x;\n");
WRITE(p, " color1.r = texSample.y;\n");
WriteSampleColor(p, comp, "texSample", 3, ApiType);
WRITE(p, " color0.a = texSample.x;\n");
WRITE(p, " color1.a = texSample.y;\n");
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteCC8Encoder(char*& p, const char* comp, APIType ApiType)
{
WriteSwizzler(p, GX_CTF_RA8, ApiType);
WriteSampleColor(p, comp, "ocol0.bg", 0, ApiType);
WriteSampleColor(p, comp, "ocol0.ra", 1, ApiType);
WriteEncoderEnd(p);
}
static void WriteZ8Encoder(char*& p, const char* multiplier, APIType ApiType)
{
WriteSwizzler(p, GX_CTF_Z8M, ApiType);
WRITE(p, " float depth;\n");
WriteSampleColor(p, "r", "depth", 0, ApiType, true);
WRITE(p, "ocol0.b = frac(depth * %s);\n", multiplier);
WriteSampleColor(p, "r", "depth", 1, ApiType, true);
WRITE(p, "ocol0.g = frac(depth * %s);\n", multiplier);
WriteSampleColor(p, "r", "depth", 2, ApiType, true);
WRITE(p, "ocol0.r = frac(depth * %s);\n", multiplier);
WriteSampleColor(p, "r", "depth", 3, ApiType, true);
WRITE(p, "ocol0.a = frac(depth * %s);\n", multiplier);
WriteEncoderEnd(p);
}
static void WriteZ16Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_Z16, ApiType);
WRITE(p, " float depth;\n");
WRITE(p, " float3 expanded;\n");
// byte order is reversed
WriteSampleColor(p, "r", "depth", 0, ApiType, true);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " ocol0.b = expanded.g / 255.0;\n");
WRITE(p, " ocol0.g = expanded.r / 255.0;\n");
WriteSampleColor(p, "r", "depth", 1, ApiType, true);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " ocol0.r = expanded.g / 255.0;\n");
WRITE(p, " ocol0.a = expanded.r / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteZ16LEncoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_CTF_Z16L, ApiType);
WRITE(p, " float depth;\n");
WRITE(p, " float3 expanded;\n");
// byte order is reversed
WriteSampleColor(p, "r", "depth", 0, ApiType, true);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " depth -= expanded.g * 256.0;\n");
WRITE(p, " expanded.b = depth;\n");
WRITE(p, " ocol0.b = expanded.b / 255.0;\n");
WRITE(p, " ocol0.g = expanded.g / 255.0;\n");
WriteSampleColor(p, "r", "depth", 1, ApiType, true);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " depth -= expanded.g * 256.0;\n");
WRITE(p, " expanded.b = depth;\n");
WRITE(p, " ocol0.r = expanded.b / 255.0;\n");
WRITE(p, " ocol0.a = expanded.g / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteZ24Encoder(char*& p, APIType ApiType)
{
WriteSwizzler(p, GX_TF_Z24X8, ApiType);
WRITE(p, " float depth0;\n");
WRITE(p, " float depth1;\n");
WRITE(p, " float3 expanded0;\n");
WRITE(p, " float3 expanded1;\n");
WriteSampleColor(p, "r", "depth0", 0, ApiType, true);
WriteSampleColor(p, "r", "depth1", 1, ApiType, true);
for (int i = 0; i < 2; i++)
{
WRITE(p, " depth%i *= 16777216.0;\n", i);
WRITE(p, " expanded%i.r = floor(depth%i / (256.0 * 256.0));\n", i, i);
WRITE(p, " depth%i -= expanded%i.r * 256.0 * 256.0;\n", i, i);
WRITE(p, " expanded%i.g = floor(depth%i / 256.0);\n", i, i);
WRITE(p, " depth%i -= expanded%i.g * 256.0;\n", i, i);
WRITE(p, " expanded%i.b = depth%i;\n", i, i);
}
WRITE(p, " if (!first) {\n");
// upper 16
WRITE(p, " ocol0.b = expanded0.g / 255.0;\n");
WRITE(p, " ocol0.g = expanded0.b / 255.0;\n");
WRITE(p, " ocol0.r = expanded1.g / 255.0;\n");
WRITE(p, " ocol0.a = expanded1.b / 255.0;\n");
WRITE(p, " } else {\n");
// lower 8
WRITE(p, " ocol0.b = 1.0;\n");
WRITE(p, " ocol0.g = expanded0.r / 255.0;\n");
WRITE(p, " ocol0.r = 1.0;\n");
WRITE(p, " ocol0.a = expanded1.r / 255.0;\n");
WRITE(p, " }\n");
WriteEncoderEnd(p);
}
const char* GenerateEncodingShader(u32 format, APIType ApiType)
{
text[sizeof(text) - 1] = 0x7C; // canary
char* p = text;
switch (format)
{
case GX_TF_I4:
WriteI4Encoder(p, ApiType);
break;
case GX_TF_I8:
WriteI8Encoder(p, ApiType);
break;
case GX_TF_IA4:
WriteIA4Encoder(p, ApiType);
break;
case GX_TF_IA8:
WriteIA8Encoder(p, ApiType);
break;
case GX_TF_RGB565:
WriteRGB565Encoder(p, ApiType);
break;
case GX_TF_RGB5A3:
WriteRGB5A3Encoder(p, ApiType);
break;
case GX_TF_RGBA8:
WriteRGBA8Encoder(p, ApiType);
break;
case GX_CTF_R4:
WriteC4Encoder(p, "r", ApiType);
break;
case GX_CTF_RA4:
WriteCC4Encoder(p, "ar", ApiType);
break;
case GX_CTF_RA8:
WriteCC8Encoder(p, "ar", ApiType);
break;
case GX_CTF_A8:
WriteC8Encoder(p, "a", ApiType);
break;
case GX_CTF_R8:
WriteC8Encoder(p, "r", ApiType);
break;
case GX_CTF_G8:
WriteC8Encoder(p, "g", ApiType);
break;
case GX_CTF_B8:
WriteC8Encoder(p, "b", ApiType);
break;
case GX_CTF_RG8:
WriteCC8Encoder(p, "rg", ApiType);
break;
case GX_CTF_GB8:
WriteCC8Encoder(p, "gb", ApiType);
break;
case GX_CTF_Z8H:
case GX_TF_Z8:
WriteC8Encoder(p, "r", ApiType, true);
break;
case GX_CTF_Z16R:
case GX_TF_Z16:
WriteZ16Encoder(p, ApiType);
break;
case GX_TF_Z24X8:
WriteZ24Encoder(p, ApiType);
break;
case GX_CTF_Z4:
WriteC4Encoder(p, "r", ApiType, true);
break;
case GX_CTF_Z8M:
WriteZ8Encoder(p, "256.0", ApiType);
break;
case GX_CTF_Z8L:
WriteZ8Encoder(p, "65536.0", ApiType);
break;
case GX_CTF_Z16L:
WriteZ16LEncoder(p, ApiType);
break;
default:
PanicAlert("Unknown texture copy format: 0x%x\n", format);
break;
}
if (text[sizeof(text) - 1] != 0x7C)
PanicAlert("TextureConversionShader generator - buffer too small, canary has been eaten!");
return text;
}
} // namespace