534 lines
10 KiB
C++
534 lines
10 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "Common/Hash.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include "Common/BitUtils.h"
|
|
#include "Common/CPUDetect.h"
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/Intrinsics.h"
|
|
|
|
#ifdef _M_ARM_64
|
|
#ifdef _MSC_VER
|
|
#include <intrin.h>
|
|
#else
|
|
#include <arm_acle.h>
|
|
#endif
|
|
#endif
|
|
|
|
namespace Common
|
|
{
|
|
static u64 (*ptrHashFunction)(const u8* src, u32 len, u32 samples) = nullptr;
|
|
|
|
// uint32_t
|
|
// WARNING - may read one more byte!
|
|
// Implementation from Wikipedia.
|
|
u32 HashFletcher(const u8* data_u8, size_t length)
|
|
{
|
|
const u16* data = (const u16*)data_u8; /* Pointer to the data to be summed */
|
|
size_t len = (length + 1) / 2; /* Length in 16-bit words */
|
|
u32 sum1 = 0xffff, sum2 = 0xffff;
|
|
|
|
while (len)
|
|
{
|
|
size_t tlen = len > 360 ? 360 : len;
|
|
len -= tlen;
|
|
|
|
do
|
|
{
|
|
sum1 += *data++;
|
|
sum2 += sum1;
|
|
} while (--tlen);
|
|
|
|
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
|
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
|
}
|
|
|
|
// Second reduction step to reduce sums to 16 bits
|
|
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
|
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
|
return (sum2 << 16 | sum1);
|
|
}
|
|
|
|
// Implementation from Wikipedia
|
|
// Slightly slower than Fletcher above, but slightly more reliable.
|
|
// data: Pointer to the data to be summed; len is in bytes
|
|
u32 HashAdler32(const u8* data, size_t len)
|
|
{
|
|
static const u32 MOD_ADLER = 65521;
|
|
u32 a = 1, b = 0;
|
|
|
|
while (len)
|
|
{
|
|
size_t tlen = len > 5550 ? 5550 : len;
|
|
len -= tlen;
|
|
|
|
do
|
|
{
|
|
a += *data++;
|
|
b += a;
|
|
} while (--tlen);
|
|
|
|
a = (a & 0xffff) + (a >> 16) * (65536 - MOD_ADLER);
|
|
b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER);
|
|
}
|
|
|
|
// It can be shown that a <= 0x1013a here, so a single subtract will do.
|
|
if (a >= MOD_ADLER)
|
|
{
|
|
a -= MOD_ADLER;
|
|
}
|
|
|
|
// It can be shown that b can reach 0xfff87 here.
|
|
b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER);
|
|
|
|
if (b >= MOD_ADLER)
|
|
{
|
|
b -= MOD_ADLER;
|
|
}
|
|
|
|
return ((b << 16) | a);
|
|
}
|
|
|
|
// Stupid hash - but can't go back now :)
|
|
// Don't use for new things. At least it's reasonably fast.
|
|
u32 HashEctor(const u8* ptr, size_t length)
|
|
{
|
|
u32 crc = 0;
|
|
|
|
for (size_t i = 0; i < length; i++)
|
|
{
|
|
crc ^= ptr[i];
|
|
crc = (crc << 3) | (crc >> 29);
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
|
|
#if _ARCH_64
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Block read - if your platform needs to do endian-swapping or can only
|
|
// handle aligned reads, do the conversion here
|
|
|
|
static u64 getblock(const u64* p, int i)
|
|
{
|
|
return p[i];
|
|
}
|
|
|
|
//----------
|
|
// Block mix - combine the key bits with the hash bits and scramble everything
|
|
|
|
static void bmix64(u64& h1, u64& h2, u64& k1, u64& k2, u64& c1, u64& c2)
|
|
{
|
|
k1 *= c1;
|
|
k1 = Common::RotateLeft(k1, 23);
|
|
k1 *= c2;
|
|
h1 ^= k1;
|
|
h1 += h2;
|
|
|
|
h2 = Common::RotateLeft(h2, 41);
|
|
|
|
k2 *= c2;
|
|
k2 = Common::RotateLeft(k2, 23);
|
|
k2 *= c1;
|
|
h2 ^= k2;
|
|
h2 += h1;
|
|
|
|
h1 = h1 * 3 + 0x52dce729;
|
|
h2 = h2 * 3 + 0x38495ab5;
|
|
|
|
c1 = c1 * 5 + 0x7b7d159c;
|
|
c2 = c2 * 5 + 0x6bce6396;
|
|
}
|
|
|
|
//----------
|
|
// Finalization mix - avalanches all bits to within 0.05% bias
|
|
|
|
static u64 fmix64(u64 k)
|
|
{
|
|
k ^= k >> 33;
|
|
k *= 0xff51afd7ed558ccd;
|
|
k ^= k >> 33;
|
|
k *= 0xc4ceb9fe1a85ec53;
|
|
k ^= k >> 33;
|
|
|
|
return k;
|
|
}
|
|
|
|
static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
|
{
|
|
const u8* data = (const u8*)src;
|
|
const int nblocks = len / 16;
|
|
u32 Step = (len / 8);
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
u64 h1 = 0x9368e53c2f6af274;
|
|
u64 h2 = 0x586dcd208f7cd3fd;
|
|
|
|
u64 c1 = 0x87c37b91114253d5;
|
|
u64 c2 = 0x4cf5ad432745937f;
|
|
|
|
//----------
|
|
// body
|
|
|
|
const u64* blocks = (const u64*)(data);
|
|
|
|
for (int i = 0; i < nblocks; i += Step)
|
|
{
|
|
u64 k1 = getblock(blocks, i * 2 + 0);
|
|
u64 k2 = getblock(blocks, i * 2 + 1);
|
|
|
|
bmix64(h1, h2, k1, k2, c1, c2);
|
|
}
|
|
|
|
//----------
|
|
// tail
|
|
|
|
const u8* tail = (const u8*)(data + nblocks * 16);
|
|
|
|
u64 k1 = 0;
|
|
u64 k2 = 0;
|
|
|
|
switch (len & 15)
|
|
{
|
|
case 15:
|
|
k2 ^= u64(tail[14]) << 48;
|
|
case 14:
|
|
k2 ^= u64(tail[13]) << 40;
|
|
case 13:
|
|
k2 ^= u64(tail[12]) << 32;
|
|
case 12:
|
|
k2 ^= u64(tail[11]) << 24;
|
|
case 11:
|
|
k2 ^= u64(tail[10]) << 16;
|
|
case 10:
|
|
k2 ^= u64(tail[9]) << 8;
|
|
case 9:
|
|
k2 ^= u64(tail[8]) << 0;
|
|
|
|
case 8:
|
|
k1 ^= u64(tail[7]) << 56;
|
|
case 7:
|
|
k1 ^= u64(tail[6]) << 48;
|
|
case 6:
|
|
k1 ^= u64(tail[5]) << 40;
|
|
case 5:
|
|
k1 ^= u64(tail[4]) << 32;
|
|
case 4:
|
|
k1 ^= u64(tail[3]) << 24;
|
|
case 3:
|
|
k1 ^= u64(tail[2]) << 16;
|
|
case 2:
|
|
k1 ^= u64(tail[1]) << 8;
|
|
case 1:
|
|
k1 ^= u64(tail[0]) << 0;
|
|
bmix64(h1, h2, k1, k2, c1, c2);
|
|
};
|
|
|
|
//----------
|
|
// finalization
|
|
|
|
h2 ^= len;
|
|
|
|
h1 += h2;
|
|
h2 += h1;
|
|
|
|
h1 = fmix64(h1);
|
|
h2 = fmix64(h2);
|
|
|
|
h1 += h2;
|
|
|
|
return h1;
|
|
}
|
|
|
|
// CRC32 hash using the SSE4.2 instruction
|
|
#if defined(_M_X86_64)
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
u32 Step = (len / 8);
|
|
const u64* data = (const u64*)src;
|
|
const u64* end = data + Step;
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
while (data < end - Step * 3)
|
|
{
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
h[3] = _mm_crc32_u64(h[3], data[Step * 3]);
|
|
data += Step * 4;
|
|
}
|
|
if (data < end - Step * 0)
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
if (data < end - Step * 1)
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
if (data < end - Step * 2)
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
|
|
if (len & 7)
|
|
{
|
|
u64 temp = 0;
|
|
memcpy(&temp, end, len & 7);
|
|
h[0] = _mm_crc32_u64(h[0], temp);
|
|
}
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
}
|
|
|
|
#elif defined(_M_ARM_64)
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
u32 Step = (len / 8);
|
|
const u64* data = (const u64*)src;
|
|
const u64* end = data + Step;
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
while (data < end - Step * 3)
|
|
{
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
h[3] = __crc32d(h[3], data[Step * 3]);
|
|
data += Step * 4;
|
|
}
|
|
if (data < end - Step * 0)
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
if (data < end - Step * 1)
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
if (data < end - Step * 2)
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
|
|
if (len & 7)
|
|
{
|
|
u64 temp = 0;
|
|
memcpy(&temp, end, len & 7);
|
|
h[0] = __crc32d(h[0], temp);
|
|
}
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
}
|
|
|
|
#else
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
// CRC32 hash using the SSE4.2 instruction
|
|
#if defined(_M_X86)
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
u32 h = len;
|
|
u32 Step = (len / 4);
|
|
const u32* data = (const u32*)src;
|
|
const u32* end = data + Step;
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
while (data < end)
|
|
{
|
|
h = _mm_crc32_u32(h, data[0]);
|
|
data += Step;
|
|
}
|
|
|
|
const u8* data2 = (const u8*)end;
|
|
return (u64)_mm_crc32_u32(h, u32(data2[0]));
|
|
}
|
|
|
|
#else
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Block read - if your platform needs to do endian-swapping or can only
|
|
// handle aligned reads, do the conversion here
|
|
|
|
static u32 getblock(const u32* p, int i)
|
|
{
|
|
return p[i];
|
|
}
|
|
|
|
//----------
|
|
// Finalization mix - force all bits of a hash block to avalanche
|
|
|
|
// avalanches all bits to within 0.25% bias
|
|
|
|
static u32 fmix32(u32 h)
|
|
{
|
|
h ^= h >> 16;
|
|
h *= 0x85ebca6b;
|
|
h ^= h >> 13;
|
|
h *= 0xc2b2ae35;
|
|
h ^= h >> 16;
|
|
|
|
return h;
|
|
}
|
|
|
|
static void bmix32(u32& h1, u32& h2, u32& k1, u32& k2, u32& c1, u32& c2)
|
|
{
|
|
k1 *= c1;
|
|
k1 = Common::RotateLeft(k1, 11);
|
|
k1 *= c2;
|
|
h1 ^= k1;
|
|
h1 += h2;
|
|
|
|
h2 = Common::RotateLeft(h2, 17);
|
|
|
|
k2 *= c2;
|
|
k2 = Common::RotateLeft(k2, 11);
|
|
k2 *= c1;
|
|
h2 ^= k2;
|
|
h2 += h1;
|
|
|
|
h1 = h1 * 3 + 0x52dce729;
|
|
h2 = h2 * 3 + 0x38495ab5;
|
|
|
|
c1 = c1 * 5 + 0x7b7d159c;
|
|
c2 = c2 * 5 + 0x6bce6396;
|
|
}
|
|
|
|
//----------
|
|
|
|
static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
|
{
|
|
const u8* data = (const u8*)src;
|
|
u32 out[2];
|
|
const int nblocks = len / 8;
|
|
u32 Step = (len / 4);
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
u32 h1 = 0x8de1c3ac;
|
|
u32 h2 = 0xbab98226;
|
|
|
|
u32 c1 = 0x95543787;
|
|
u32 c2 = 0x2ad7eb25;
|
|
|
|
//----------
|
|
// body
|
|
|
|
const u32* blocks = (const u32*)(data + nblocks * 8);
|
|
|
|
for (int i = -nblocks; i < 0; i += Step)
|
|
{
|
|
u32 k1 = getblock(blocks, i * 2 + 0);
|
|
u32 k2 = getblock(blocks, i * 2 + 1);
|
|
|
|
bmix32(h1, h2, k1, k2, c1, c2);
|
|
}
|
|
|
|
//----------
|
|
// tail
|
|
|
|
const u8* tail = (const u8*)(data + nblocks * 8);
|
|
|
|
u32 k1 = 0;
|
|
u32 k2 = 0;
|
|
|
|
switch (len & 7)
|
|
{
|
|
case 7:
|
|
k2 ^= tail[6] << 16;
|
|
case 6:
|
|
k2 ^= tail[5] << 8;
|
|
case 5:
|
|
k2 ^= tail[4] << 0;
|
|
case 4:
|
|
k1 ^= tail[3] << 24;
|
|
case 3:
|
|
k1 ^= tail[2] << 16;
|
|
case 2:
|
|
k1 ^= tail[1] << 8;
|
|
case 1:
|
|
k1 ^= tail[0] << 0;
|
|
bmix32(h1, h2, k1, k2, c1, c2);
|
|
};
|
|
|
|
//----------
|
|
// finalization
|
|
|
|
h2 ^= len;
|
|
|
|
h1 += h2;
|
|
h2 += h1;
|
|
|
|
h1 = fmix32(h1);
|
|
h2 = fmix32(h2);
|
|
|
|
h1 += h2;
|
|
h2 += h1;
|
|
|
|
out[0] = h1;
|
|
out[1] = h2;
|
|
|
|
return *((u64*)&out);
|
|
}
|
|
#endif
|
|
|
|
u64 GetHash64(const u8* src, u32 len, u32 samples)
|
|
{
|
|
return ptrHashFunction(src, len, samples);
|
|
}
|
|
|
|
// sets the hash function used for the texture cache
|
|
void SetHash64Function()
|
|
{
|
|
#if defined(_M_X86_64) || defined(_M_X86)
|
|
if (cpu_info.bSSE4_2) // sse crc32 version
|
|
{
|
|
ptrHashFunction = &GetCRC32;
|
|
}
|
|
else
|
|
#elif defined(_M_ARM_64)
|
|
if (cpu_info.bCRC32)
|
|
{
|
|
ptrHashFunction = &GetCRC32;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
ptrHashFunction = &GetMurmurHash3;
|
|
}
|
|
}
|
|
} // namespace Common
|