dolphin/Source/Core/Core/CoreTiming.cpp

446 lines
13 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Core/CoreTiming.h"
#include <algorithm>
#include <cinttypes>
#include <mutex>
#include <string>
#include <unordered_map>
#include <vector>
#include "Common/Assert.h"
#include "Common/ChunkFile.h"
#include "Common/Logging/Log.h"
#include "Common/SPSCQueue.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/PowerPC/PowerPC.h"
#include "VideoCommon/Fifo.h"
#include "VideoCommon/VideoBackendBase.h"
namespace CoreTiming
{
struct EventType
{
TimedCallback callback;
const std::string* name;
};
struct Event
{
s64 time;
u64 fifo_order;
u64 userdata;
EventType* type;
};
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
static bool operator>(const Event& left, const Event& right)
{
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
}
static bool operator<(const Event& left, const Event& right)
{
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
// unordered_map stores each element separately as a linked list node so pointers to elements
// remain stable regardless of rehashes/resizing.
static std::unordered_map<std::string, EventType> s_event_types;
// STATE_TO_SAVE
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
// by the standard adaptor class.
static std::vector<Event> s_event_queue;
static u64 s_event_fifo_id;
static std::mutex s_ts_write_lock;
static Common::SPSCQueue<Event, false> s_ts_queue;
static float s_last_OC_factor;
static constexpr int MAX_SLICE_LENGTH = 20000;
static s64 s_idled_cycles;
static u32 s_fake_dec_start_value;
static u64 s_fake_dec_start_ticks;
// Are we in a function that has been called from Advance()
static bool s_is_global_timer_sane;
Globals g;
static EventType* s_ev_lost = nullptr;
static void EmptyTimedCallback(u64 userdata, s64 cyclesLate)
{
}
// Changing the CPU speed in Dolphin isn't actually done by changing the physical clock rate,
// but by changing the amount of work done in a particular amount of time. This tends to be more
// compatible because it stops the games from actually knowing directly that the clock rate has
// changed, and ensures that anything based on waiting a specific number of cycles still works.
//
// Technically it might be more accurate to call this changing the IPC instead of the CPU speed,
// but the effect is largely the same.
static int DowncountToCycles(int downcount)
{
return static_cast<int>(downcount * g.last_OC_factor_inverted);
}
static int CyclesToDowncount(int cycles)
{
return static_cast<int>(cycles * s_last_OC_factor);
}
EventType* RegisterEvent(const std::string& name, TimedCallback callback)
{
// check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization.
ASSERT_MSG(POWERPC, s_event_types.find(name) == s_event_types.end(),
"CoreTiming Event \"%s\" is already registered. Events should only be registered "
"during Init to avoid breaking save states.",
name.c_str());
auto info = s_event_types.emplace(name, EventType{callback, nullptr});
EventType* event_type = &info.first->second;
event_type->name = &info.first->first;
return event_type;
}
void UnregisterAllEvents()
{
ASSERT_MSG(POWERPC, s_event_queue.empty(), "Cannot unregister events with events pending");
s_event_types.clear();
}
void Init()
{
s_last_OC_factor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f;
g.last_OC_factor_inverted = 1.0f / s_last_OC_factor;
PowerPC::ppcState.downcount = CyclesToDowncount(MAX_SLICE_LENGTH);
g.slice_length = MAX_SLICE_LENGTH;
g.global_timer = 0;
s_idled_cycles = 0;
// The time between CoreTiming being intialized and the first call to Advance() is considered
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
// executing the first PPC cycle of each slice to prepare the slice length and downcount for
// that slice.
s_is_global_timer_sane = true;
s_event_fifo_id = 0;
s_ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
}
void Shutdown()
{
std::lock_guard<std::mutex> lk(s_ts_write_lock);
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
}
void DoState(PointerWrap& p)
{
std::lock_guard<std::mutex> lk(s_ts_write_lock);
p.Do(g.slice_length);
p.Do(g.global_timer);
p.Do(s_idled_cycles);
p.Do(s_fake_dec_start_value);
p.Do(s_fake_dec_start_ticks);
p.Do(g.fake_TB_start_value);
p.Do(g.fake_TB_start_ticks);
p.Do(s_last_OC_factor);
g.last_OC_factor_inverted = 1.0f / s_last_OC_factor;
p.Do(s_event_fifo_id);
p.DoMarker("CoreTimingData");
MoveEvents();
p.DoEachElement(s_event_queue, [](PointerWrap& pw, Event& ev) {
pw.Do(ev.time);
pw.Do(ev.fifo_order);
// this is why we can't have (nice things) pointers as userdata
pw.Do(ev.userdata);
// we can't savestate ev.type directly because events might not get registered in the same
// order (or at all) every time.
// so, we savestate the event's type's name, and derive ev.type from that when loading.
std::string name;
if (pw.GetMode() != PointerWrap::MODE_READ)
name = *ev.type->name;
pw.Do(name);
if (pw.GetMode() == PointerWrap::MODE_READ)
{
auto itr = s_event_types.find(name);
if (itr != s_event_types.end())
{
ev.type = &itr->second;
}
else
{
WARN_LOG(POWERPC,
"Lost event from savestate because its type, \"%s\", has not been registered.",
name.c_str());
ev.type = s_ev_lost;
}
}
});
p.DoMarker("CoreTimingEvents");
// When loading from a save state, we must assume the Event order is random and meaningless.
// The exact layout of the heap in memory is implementation defined, therefore it is platform
// and library version specific.
if (p.GetMode() == PointerWrap::MODE_READ)
std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
}
// This should only be called from the CPU thread. If you are calling
// it from any other thread, you are doing something evil
u64 GetTicks()
{
u64 ticks = static_cast<u64>(g.global_timer);
if (!s_is_global_timer_sane)
{
int downcount = DowncountToCycles(PowerPC::ppcState.downcount);
ticks += g.slice_length - downcount;
}
return ticks;
}
u64 GetIdleTicks()
{
return static_cast<u64>(s_idled_cycles);
}
void ClearPendingEvents()
{
s_event_queue.clear();
}
void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata, FromThread from)
{
ASSERT_MSG(POWERPC, event_type, "Event type is nullptr, will crash now.");
bool from_cpu_thread;
if (from == FromThread::ANY)
{
from_cpu_thread = Core::IsCPUThread();
}
else
{
from_cpu_thread = from == FromThread::CPU;
ASSERT_MSG(POWERPC, from_cpu_thread == Core::IsCPUThread(),
"A \"%s\" event was scheduled from the wrong thread (%s)", event_type->name->c_str(),
from_cpu_thread ? "CPU" : "non-CPU");
}
if (from_cpu_thread)
{
s64 timeout = GetTicks() + cycles_into_future;
// If this event needs to be scheduled before the next advance(), force one early
if (!s_is_global_timer_sane)
ForceExceptionCheck(cycles_into_future);
s_event_queue.emplace_back(Event{timeout, s_event_fifo_id++, userdata, event_type});
std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
}
else
{
if (Core::WantsDeterminism())
{
ERROR_LOG(POWERPC,
"Someone scheduled an off-thread \"%s\" event while netplay or "
"movie play/record was active. This is likely to cause a desync.",
event_type->name->c_str());
}
std::lock_guard<std::mutex> lk(s_ts_write_lock);
s_ts_queue.Push(Event{g.global_timer + cycles_into_future, 0, userdata, event_type});
}
}
void RemoveEvent(EventType* event_type)
{
auto itr = std::remove_if(s_event_queue.begin(), s_event_queue.end(),
[&](const Event& e) { return e.type == event_type; });
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != s_event_queue.end())
{
s_event_queue.erase(itr, s_event_queue.end());
std::make_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
}
}
void RemoveAllEvents(EventType* event_type)
{
MoveEvents();
RemoveEvent(event_type);
}
void ForceExceptionCheck(s64 cycles)
{
cycles = std::max<s64>(0, cycles);
if (DowncountToCycles(PowerPC::ppcState.downcount) > cycles)
{
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here.
// Account for cycles already executed by adjusting the g.slice_length
g.slice_length -= DowncountToCycles(PowerPC::ppcState.downcount) - static_cast<int>(cycles);
PowerPC::ppcState.downcount = CyclesToDowncount(static_cast<int>(cycles));
}
}
void MoveEvents()
{
for (Event ev; s_ts_queue.Pop(ev);)
{
ev.fifo_order = s_event_fifo_id++;
s_event_queue.emplace_back(std::move(ev));
std::push_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
}
}
void Advance()
{
MoveEvents();
int cyclesExecuted = g.slice_length - DowncountToCycles(PowerPC::ppcState.downcount);
g.global_timer += cyclesExecuted;
s_last_OC_factor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f;
g.last_OC_factor_inverted = 1.0f / s_last_OC_factor;
g.slice_length = MAX_SLICE_LENGTH;
s_is_global_timer_sane = true;
while (!s_event_queue.empty() && s_event_queue.front().time <= g.global_timer)
{
Event evt = std::move(s_event_queue.front());
std::pop_heap(s_event_queue.begin(), s_event_queue.end(), std::greater<Event>());
s_event_queue.pop_back();
// NOTICE_LOG(POWERPC, "[Scheduler] %-20s (%lld, %lld)", evt.type->name->c_str(),
// g.global_timer, evt.time);
evt.type->callback(evt.userdata, g.global_timer - evt.time);
}
s_is_global_timer_sane = false;
// Still events left (scheduled in the future)
if (!s_event_queue.empty())
{
g.slice_length = static_cast<int>(
std::min<s64>(s_event_queue.front().time - g.global_timer, MAX_SLICE_LENGTH));
}
PowerPC::ppcState.downcount = CyclesToDowncount(g.slice_length);
// Check for any external exceptions.
// It's important to do this after processing events otherwise any exceptions will be delayed
// until the next slice:
// Pokemon Box refuses to boot if the first exception from the audio DMA is received late
PowerPC::CheckExternalExceptions();
}
void LogPendingEvents()
{
auto clone = s_event_queue;
std::sort(clone.begin(), clone.end());
for (const Event& ev : clone)
{
INFO_LOG(POWERPC, "PENDING: Now: %" PRId64 " Pending: %" PRId64 " Type: %s", g.global_timer,
ev.time, ev.type->name->c_str());
}
}
// Should only be called from the CPU thread after the PPC clock has changed
void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock)
{
for (Event& ev : s_event_queue)
{
const s64 ticks = (ev.time - g.global_timer) * new_ppc_clock / old_ppc_clock;
ev.time = g.global_timer + ticks;
}
}
void Idle()
{
if (SConfig::GetInstance().bSyncGPUOnSkipIdleHack)
{
// When the FIFO is processing data we must not advance because in this way
// the VI will be desynchronized. So, We are waiting until the FIFO finish and
// while we process only the events required by the FIFO.
Fifo::FlushGpu();
}
s_idled_cycles += DowncountToCycles(PowerPC::ppcState.downcount);
PowerPC::ppcState.downcount = 0;
}
std::string GetScheduledEventsSummary()
{
std::string text = "Scheduled events\n";
text.reserve(1000);
auto clone = s_event_queue;
std::sort(clone.begin(), clone.end());
for (const Event& ev : clone)
{
text += StringFromFormat("%s : %" PRIi64 " %016" PRIx64 "\n", ev.type->name->c_str(), ev.time,
ev.userdata);
}
return text;
}
u32 GetFakeDecStartValue()
{
return s_fake_dec_start_value;
}
void SetFakeDecStartValue(u32 val)
{
s_fake_dec_start_value = val;
}
u64 GetFakeDecStartTicks()
{
return s_fake_dec_start_ticks;
}
void SetFakeDecStartTicks(u64 val)
{
s_fake_dec_start_ticks = val;
}
u64 GetFakeTBStartValue()
{
return g.fake_TB_start_value;
}
void SetFakeTBStartValue(u64 val)
{
g.fake_TB_start_value = val;
}
u64 GetFakeTBStartTicks()
{
return g.fake_TB_start_ticks;
}
void SetFakeTBStartTicks(u64 val)
{
g.fake_TB_start_ticks = val;
}
} // namespace