dolphin/Source/Core/VideoBackends/Software/SWVertexLoader.cpp

244 lines
8.4 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Software/SWVertexLoader.h"
#include <cstddef>
#include <limits>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Core/System.h"
#include "VideoBackends/Software/NativeVertexFormat.h"
#include "VideoBackends/Software/Rasterizer.h"
#include "VideoBackends/Software/SWRenderer.h"
#include "VideoBackends/Software/Tev.h"
#include "VideoBackends/Software/TransformUnit.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
SWVertexLoader::SWVertexLoader() = default;
SWVertexLoader::~SWVertexLoader() = default;
DataReader SWVertexLoader::PrepareForAdditionalData(OpcodeDecoder::Primitive primitive, u32 count,
u32 stride, bool cullall)
{
// The software renderer needs cullall to be false for zfreeze to work
return VertexManagerBase::PrepareForAdditionalData(primitive, count, stride, false);
}
void SWVertexLoader::DrawCurrentBatch(u32 base_index, u32 num_indices, u32 base_vertex)
{
using OpcodeDecoder::Primitive;
Primitive primitive_type = Primitive::GX_DRAW_QUADS;
switch (m_current_primitive_type)
{
case PrimitiveType::Points:
primitive_type = Primitive::GX_DRAW_POINTS;
break;
case PrimitiveType::Lines:
primitive_type = Primitive::GX_DRAW_LINES;
break;
case PrimitiveType::Triangles:
primitive_type = Primitive::GX_DRAW_TRIANGLES;
break;
case PrimitiveType::TriangleStrip:
primitive_type = Primitive::GX_DRAW_TRIANGLE_STRIP;
break;
}
// Flush bounding box here because software overrides the base function
if (g_bounding_box->IsEnabled())
g_bounding_box->Flush();
m_setup_unit.Init(primitive_type);
Rasterizer::SetTevKonstColors();
for (u32 i = 0; i < m_index_generator.GetIndexLen(); i++)
{
const u16 index = m_cpu_index_buffer[i];
memset(static_cast<void*>(&m_vertex), 0, sizeof(m_vertex));
// parse the videocommon format to our own struct format (m_vertex)
SetFormat();
ParseVertex(VertexLoaderManager::GetCurrentVertexFormat()->GetVertexDeclaration(), index);
// transform this vertex so that it can be used for rasterization (outVertex)
OutputVertexData* outVertex = m_setup_unit.GetVertex();
TransformUnit::TransformPosition(&m_vertex, outVertex);
outVertex->normal = {};
if (VertexLoaderManager::g_current_components & VB_HAS_NORMAL)
TransformUnit::TransformNormal(&m_vertex, outVertex);
TransformUnit::TransformColor(&m_vertex, outVertex);
TransformUnit::TransformTexCoord(&m_vertex, outVertex);
// assemble and rasterize the primitive
m_setup_unit.SetupVertex();
INCSTAT(g_stats.this_frame.num_vertices_loaded);
}
INCSTAT(g_stats.this_frame.num_drawn_objects);
}
void SWVertexLoader::SetFormat()
{
m_vertex.posMtx = xfmem.MatrixIndexA.PosNormalMtxIdx;
m_vertex.texMtx[0] = xfmem.MatrixIndexA.Tex0MtxIdx;
m_vertex.texMtx[1] = xfmem.MatrixIndexA.Tex1MtxIdx;
m_vertex.texMtx[2] = xfmem.MatrixIndexA.Tex2MtxIdx;
m_vertex.texMtx[3] = xfmem.MatrixIndexA.Tex3MtxIdx;
m_vertex.texMtx[4] = xfmem.MatrixIndexB.Tex4MtxIdx;
m_vertex.texMtx[5] = xfmem.MatrixIndexB.Tex5MtxIdx;
m_vertex.texMtx[6] = xfmem.MatrixIndexB.Tex6MtxIdx;
m_vertex.texMtx[7] = xfmem.MatrixIndexB.Tex7MtxIdx;
}
template <typename T, typename I>
static T ReadNormalized(I value)
{
T casted = (T)value;
if (!std::numeric_limits<T>::is_integer && std::numeric_limits<I>::is_integer)
{
// normalize if non-float is converted to a float
casted *= (T)(1.0 / std::numeric_limits<I>::max());
}
return casted;
}
template <typename T, bool swap = false>
static void ReadVertexAttribute(T* dst, DataReader src, const AttributeFormat& format,
int base_component, int components, bool reverse)
{
if (format.enable)
{
src.Skip(format.offset);
src.Skip(base_component * GetElementSize(format.type));
int i;
for (i = 0; i < std::min(format.components - base_component, components); i++)
{
int i_dst = reverse ? components - i - 1 : i;
switch (format.type)
{
case ComponentFormat::UByte:
dst[i_dst] = ReadNormalized<T, u8>(src.Read<u8, swap>());
break;
case ComponentFormat::Byte:
dst[i_dst] = ReadNormalized<T, s8>(src.Read<s8, swap>());
break;
case ComponentFormat::UShort:
dst[i_dst] = ReadNormalized<T, u16>(src.Read<u16, swap>());
break;
case ComponentFormat::Short:
dst[i_dst] = ReadNormalized<T, s16>(src.Read<s16, swap>());
break;
case ComponentFormat::Float:
case ComponentFormat::InvalidFloat5:
case ComponentFormat::InvalidFloat6:
case ComponentFormat::InvalidFloat7:
dst[i_dst] = ReadNormalized<T, float>(src.Read<float, swap>());
break;
}
ASSERT_MSG(VIDEO, !format.integer || (format.type < ComponentFormat::Float),
"only non-float values are allowed to be streamed as integer");
}
for (; i < components; i++)
{
int i_dst = reverse ? components - i - 1 : i;
dst[i_dst] = i == 3;
}
}
}
static void ParseColorAttributes(InputVertexData* dst, DataReader& src,
const PortableVertexDeclaration& vdec)
{
const auto set_default_color = [](std::array<u8, 4>& color) {
color[Tev::ALP_C] = g_ActiveConfig.iMissingColorValue & 0xFF;
color[Tev::BLU_C] = (g_ActiveConfig.iMissingColorValue >> 8) & 0xFF;
color[Tev::GRN_C] = (g_ActiveConfig.iMissingColorValue >> 16) & 0xFF;
color[Tev::RED_C] = (g_ActiveConfig.iMissingColorValue >> 24) & 0xFF;
};
if (vdec.colors[0].enable)
{
// Use color0 for channel 0, and color1 for channel 1 if both colors 0 and 1 are present.
ReadVertexAttribute<u8>(dst->color[0].data(), src, vdec.colors[0], 0, 4, true);
if (vdec.colors[1].enable)
ReadVertexAttribute<u8>(dst->color[1].data(), src, vdec.colors[1], 0, 4, true);
else
set_default_color(dst->color[1]);
}
else
{
// If only one of the color attributes is enabled, it is directed to color 0.
if (vdec.colors[1].enable)
ReadVertexAttribute<u8>(dst->color[0].data(), src, vdec.colors[1], 0, 4, true);
else
set_default_color(dst->color[0]);
set_default_color(dst->color[1]);
}
}
void SWVertexLoader::ParseVertex(const PortableVertexDeclaration& vdec, int index)
{
DataReader src(m_cpu_vertex_buffer.data(),
m_cpu_vertex_buffer.data() + m_cpu_vertex_buffer.size());
src.Skip(index * vdec.stride);
ReadVertexAttribute<float>(&m_vertex.position[0], src, vdec.position, 0, 3, false);
for (std::size_t i = 0; i < m_vertex.normal.size(); i++)
{
ReadVertexAttribute<float>(&m_vertex.normal[i][0], src, vdec.normals[i], 0, 3, false);
}
if (!vdec.normals[1].enable)
{
auto& system = Core::System::GetInstance();
auto& vertex_shader_manager = system.GetVertexShaderManager();
m_vertex.normal[1][0] = vertex_shader_manager.constants.cached_tangent[0];
m_vertex.normal[1][1] = vertex_shader_manager.constants.cached_tangent[1];
m_vertex.normal[1][2] = vertex_shader_manager.constants.cached_tangent[2];
}
if (!vdec.normals[2].enable)
{
auto& system = Core::System::GetInstance();
auto& vertex_shader_manager = system.GetVertexShaderManager();
m_vertex.normal[2][0] = vertex_shader_manager.constants.cached_binormal[0];
m_vertex.normal[2][1] = vertex_shader_manager.constants.cached_binormal[1];
m_vertex.normal[2][2] = vertex_shader_manager.constants.cached_binormal[2];
}
ParseColorAttributes(&m_vertex, src, vdec);
for (std::size_t i = 0; i < m_vertex.texCoords.size(); i++)
{
ReadVertexAttribute<float>(m_vertex.texCoords[i].data(), src, vdec.texcoords[i], 0, 2, false);
// the texmtr is stored as third component of the texCoord
if (vdec.texcoords[i].components >= 3)
{
ReadVertexAttribute<u8>(&m_vertex.texMtx[i], src, vdec.texcoords[i], 2, 1, false);
}
}
ReadVertexAttribute<u8>(&m_vertex.posMtx, src, vdec.posmtx, 0, 1, false);
}