dolphin/Source/Core/VideoBackends/OGL/Render.cpp

1718 lines
60 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/OGL/Render.h"
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <memory>
#include <string>
#include <tuple>
#include <vector>
#include "Common/Assert.h"
#include "Common/Atomic.h"
#include "Common/CommonTypes.h"
#include "Common/GL/GLInterfaceBase.h"
#include "Common/GL/GLUtil.h"
#include "Common/Logging/LogManager.h"
#include "Common/MathUtil.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "Core/Config/GraphicsSettings.h"
#include "Core/Core.h"
#include "VideoBackends/OGL/BoundingBox.h"
#include "VideoBackends/OGL/FramebufferManager.h"
#include "VideoBackends/OGL/OGLPipeline.h"
#include "VideoBackends/OGL/OGLShader.h"
#include "VideoBackends/OGL/OGLTexture.h"
#include "VideoBackends/OGL/PostProcessing.h"
#include "VideoBackends/OGL/ProgramShaderCache.h"
#include "VideoBackends/OGL/RasterFont.h"
#include "VideoBackends/OGL/SamplerCache.h"
#include "VideoBackends/OGL/StreamBuffer.h"
#include "VideoBackends/OGL/TextureCache.h"
#include "VideoBackends/OGL/VertexManager.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
namespace OGL
{
VideoConfig g_ogl_config;
// Declarations and definitions
// ----------------------------
static std::unique_ptr<RasterFont> s_raster_font;
// 1 for no MSAA. Use s_MSAASamples > 1 to check for MSAA.
static int s_MSAASamples = 1;
static u32 s_last_multisamples = 1;
static bool s_last_stereo_mode = false;
static bool s_vsync;
// EFB cache related
static const u32 EFB_CACHE_RECT_SIZE = 64; // Cache 64x64 blocks.
static const u32 EFB_CACHE_WIDTH =
(EFB_WIDTH + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE; // round up
static const u32 EFB_CACHE_HEIGHT = (EFB_HEIGHT + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE;
static bool s_efbCacheValid[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT];
static bool s_efbCacheIsCleared = false;
static std::vector<u32>
s_efbCache[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT]; // 2 for PeekZ and PeekColor
static void APIENTRY ErrorCallback(GLenum source, GLenum type, GLuint id, GLenum severity,
GLsizei length, const char* message, const void* userParam)
{
const char* s_source;
const char* s_type;
// Performance - DualCore driver performance warning:
// DualCore application thread syncing with server thread
if (id == 0x200b0)
return;
switch (source)
{
case GL_DEBUG_SOURCE_API_ARB:
s_source = "API";
break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB:
s_source = "Window System";
break;
case GL_DEBUG_SOURCE_SHADER_COMPILER_ARB:
s_source = "Shader Compiler";
break;
case GL_DEBUG_SOURCE_THIRD_PARTY_ARB:
s_source = "Third Party";
break;
case GL_DEBUG_SOURCE_APPLICATION_ARB:
s_source = "Application";
break;
case GL_DEBUG_SOURCE_OTHER_ARB:
s_source = "Other";
break;
default:
s_source = "Unknown";
break;
}
switch (type)
{
case GL_DEBUG_TYPE_ERROR_ARB:
s_type = "Error";
break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB:
s_type = "Deprecated";
break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB:
s_type = "Undefined";
break;
case GL_DEBUG_TYPE_PORTABILITY_ARB:
s_type = "Portability";
break;
case GL_DEBUG_TYPE_PERFORMANCE_ARB:
s_type = "Performance";
break;
case GL_DEBUG_TYPE_OTHER_ARB:
s_type = "Other";
break;
default:
s_type = "Unknown";
break;
}
switch (severity)
{
case GL_DEBUG_SEVERITY_HIGH_ARB:
ERROR_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message);
break;
case GL_DEBUG_SEVERITY_MEDIUM_ARB:
WARN_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message);
break;
case GL_DEBUG_SEVERITY_LOW_ARB:
DEBUG_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message);
break;
case GL_DEBUG_SEVERITY_NOTIFICATION:
DEBUG_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message);
break;
default:
ERROR_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message);
break;
}
}
// Two small Fallbacks to avoid GL_ARB_ES2_compatibility
static void APIENTRY DepthRangef(GLfloat neardepth, GLfloat fardepth)
{
glDepthRange(neardepth, fardepth);
}
static void APIENTRY ClearDepthf(GLfloat depthval)
{
glClearDepth(depthval);
}
static void InitDriverInfo()
{
std::string svendor = std::string(g_ogl_config.gl_vendor);
std::string srenderer = std::string(g_ogl_config.gl_renderer);
std::string sversion = std::string(g_ogl_config.gl_version);
DriverDetails::Vendor vendor = DriverDetails::VENDOR_UNKNOWN;
DriverDetails::Driver driver = DriverDetails::DRIVER_UNKNOWN;
DriverDetails::Family family = DriverDetails::Family::UNKNOWN;
double version = 0.0;
// Get the vendor first
if (svendor == "NVIDIA Corporation" && srenderer != "NVIDIA Tegra")
{
vendor = DriverDetails::VENDOR_NVIDIA;
}
else if (svendor == "ATI Technologies Inc." || svendor == "Advanced Micro Devices, Inc.")
{
vendor = DriverDetails::VENDOR_ATI;
}
else if (std::string::npos != sversion.find("Mesa"))
{
vendor = DriverDetails::VENDOR_MESA;
}
else if (std::string::npos != svendor.find("Intel"))
{
vendor = DriverDetails::VENDOR_INTEL;
}
else if (svendor == "ARM")
{
vendor = DriverDetails::VENDOR_ARM;
}
else if (svendor == "http://limadriver.org/")
{
vendor = DriverDetails::VENDOR_ARM;
driver = DriverDetails::DRIVER_LIMA;
}
else if (svendor == "Qualcomm")
{
vendor = DriverDetails::VENDOR_QUALCOMM;
}
else if (svendor == "Imagination Technologies")
{
vendor = DriverDetails::VENDOR_IMGTEC;
}
else if (svendor == "NVIDIA Corporation" && srenderer == "NVIDIA Tegra")
{
vendor = DriverDetails::VENDOR_TEGRA;
}
else if (svendor == "Vivante Corporation")
{
vendor = DriverDetails::VENDOR_VIVANTE;
}
// Get device family and driver version...if we care about it
switch (vendor)
{
case DriverDetails::VENDOR_QUALCOMM:
{
driver = DriverDetails::DRIVER_QUALCOMM;
double glVersion;
sscanf(g_ogl_config.gl_version, "OpenGL ES %lg V@%lg", &glVersion, &version);
}
break;
case DriverDetails::VENDOR_ARM:
// Currently the Mali-T line has two families in it.
// Mali-T6xx and Mali-T7xx
// These two families are similar enough that they share bugs in their drivers.
//
// Mali drivers provide no way to explicitly find out what video driver is running.
// This is similar to how we can't find the Nvidia driver version in Windows.
// Good thing is that ARM introduces a new video driver about once every two years so we can
// find the driver version by the features it exposes.
// r2p0 - No OpenGL ES 3.0 support (We don't support this)
// r3p0 - OpenGL ES 3.0 support
// r4p0 - Supports 'GL_EXT_shader_pixel_local_storage' extension.
driver = DriverDetails::DRIVER_ARM;
if (GLExtensions::Supports("GL_EXT_shader_pixel_local_storage"))
version = 400;
else
version = 300;
break;
case DriverDetails::VENDOR_MESA:
{
if (svendor == "nouveau")
{
driver = DriverDetails::DRIVER_NOUVEAU;
}
else if (svendor == "Intel Open Source Technology Center")
{
driver = DriverDetails::DRIVER_I965;
if (srenderer.find("Sandybridge") != std::string::npos)
family = DriverDetails::Family::INTEL_SANDY;
else if (srenderer.find("Ivybridge") != std::string::npos)
family = DriverDetails::Family::INTEL_IVY;
}
else if (std::string::npos != srenderer.find("AMD") ||
std::string::npos != srenderer.find("ATI"))
{
driver = DriverDetails::DRIVER_R600;
}
int major = 0;
int minor = 0;
int release = 0;
sscanf(g_ogl_config.gl_version, "%*s (Core Profile) Mesa %d.%d.%d", &major, &minor, &release);
version = 100 * major + 10 * minor + release;
}
break;
case DriverDetails::VENDOR_INTEL: // Happens in OS X/Windows
{
u32 market_name;
sscanf(g_ogl_config.gl_renderer, "Intel HD Graphics %d", &market_name);
switch (market_name)
{
case 2000:
case 3000:
family = DriverDetails::Family::INTEL_SANDY;
break;
case 2500:
case 4000:
family = DriverDetails::Family::INTEL_IVY;
break;
default:
family = DriverDetails::Family::UNKNOWN;
break;
};
#ifdef _WIN32
int glmajor = 0;
int glminor = 0;
int major = 0;
int minor = 0;
int release = 0;
int revision = 0;
// Example version string: '4.3.0 - Build 10.18.10.3907'
sscanf(g_ogl_config.gl_version, "%d.%d.0 - Build %d.%d.%d.%d", &glmajor, &glminor, &major,
&minor, &release, &revision);
version = 100000000 * major + 1000000 * minor + 10000 * release + revision;
version /= 10000;
#endif
}
break;
case DriverDetails::VENDOR_NVIDIA:
{
int glmajor = 0;
int glminor = 0;
int glrelease = 0;
int major = 0;
int minor = 0;
// TODO: this is known to be broken on Windows
// Nvidia seems to have removed their driver version from this string, so we can't get it.
// hopefully we'll never have to workaround Nvidia bugs
sscanf(g_ogl_config.gl_version, "%d.%d.%d NVIDIA %d.%d", &glmajor, &glminor, &glrelease, &major,
&minor);
version = 100 * major + minor;
}
break;
case DriverDetails::VENDOR_IMGTEC:
{
// Example version string:
// "OpenGL ES 3.2 build 1.9@4850625"
// Ends up as "109.4850625" - "1.9" being the branch, "4850625" being the build's change ID
// The change ID only makes sense to compare within a branch
driver = DriverDetails::DRIVER_IMGTEC;
double gl_version;
int major, minor, change;
constexpr double change_scale = 10000000;
sscanf(g_ogl_config.gl_version, "OpenGL ES %lg build %d.%d@%d", &gl_version, &major, &minor,
&change);
version = 100 * major + minor;
if (change >= change_scale)
{
ERROR_LOG(VIDEO, "Version changeID overflow - change:%d scale:%f", change, change_scale);
}
else
{
version += static_cast<double>(change) / change_scale;
}
}
break;
// We don't care about these
default:
break;
}
DriverDetails::Init(DriverDetails::API_OPENGL, vendor, driver, version, family);
}
// Init functions
Renderer::Renderer()
: ::Renderer(static_cast<int>(std::max(GLInterface->GetBackBufferWidth(), 1u)),
static_cast<int>(std::max(GLInterface->GetBackBufferHeight(), 1u)))
{
bool bSuccess = true;
g_ogl_config.gl_vendor = (const char*)glGetString(GL_VENDOR);
g_ogl_config.gl_renderer = (const char*)glGetString(GL_RENDERER);
g_ogl_config.gl_version = (const char*)glGetString(GL_VERSION);
InitDriverInfo();
if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGL)
{
if (!GLExtensions::Supports("GL_ARB_framebuffer_object"))
{
// We want the ogl3 framebuffer instead of the ogl2 one for better blitting support.
// It's also compatible with the gles3 one.
PanicAlert("GPU: ERROR: Need GL_ARB_framebuffer_object for multiple render targets.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLExtensions::Supports("GL_ARB_vertex_array_object"))
{
// This extension is used to replace lots of pointer setting function.
// Also gles3 requires to use it.
PanicAlert("GPU: OGL ERROR: Need GL_ARB_vertex_array_object.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLExtensions::Supports("GL_ARB_map_buffer_range"))
{
// ogl3 buffer mapping for better streaming support.
// The ogl2 one also isn't in gles3.
PanicAlert("GPU: OGL ERROR: Need GL_ARB_map_buffer_range.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLExtensions::Supports("GL_ARB_uniform_buffer_object"))
{
// ubo allow us to keep the current constants on shader switches
// we also can stream them much nicer and pack into it whatever we want to
PanicAlert("GPU: OGL ERROR: Need GL_ARB_uniform_buffer_object.\n"
"GPU: Does your video card support OpenGL 3.1?");
bSuccess = false;
}
else if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_UBO))
{
PanicAlert(
"Buggy GPU driver detected.\n"
"Please either install the closed-source GPU driver or update your Mesa 3D version.");
bSuccess = false;
}
if (!GLExtensions::Supports("GL_ARB_sampler_objects"))
{
// Our sampler cache uses this extension. It could easyly be workaround and it's by far the
// highest requirement, but it seems that no driver lacks support for it.
PanicAlert("GPU: OGL ERROR: Need GL_ARB_sampler_objects.\n"
"GPU: Does your video card support OpenGL 3.3?");
bSuccess = false;
}
// OpenGL 3 doesn't provide GLES like float functions for depth.
// They are in core in OpenGL 4.1, so almost every driver should support them.
// But for the oldest ones, we provide fallbacks to the old double functions.
if (!GLExtensions::Supports("GL_ARB_ES2_compatibility"))
{
glDepthRangef = DepthRangef;
glClearDepthf = ClearDepthf;
}
}
// Copy the GPU name to g_Config, so Analytics can see it.
g_Config.backend_info.AdapterName = g_ogl_config.gl_renderer;
g_Config.backend_info.bSupportsDualSourceBlend =
(GLExtensions::Supports("GL_ARB_blend_func_extended") ||
GLExtensions::Supports("GL_EXT_blend_func_extended"));
g_Config.backend_info.bSupportsPrimitiveRestart =
!DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART) &&
((GLExtensions::Version() >= 310) || GLExtensions::Supports("GL_NV_primitive_restart"));
g_Config.backend_info.bSupportsBBox = true;
g_Config.backend_info.bSupportsFragmentStoresAndAtomics =
GLExtensions::Supports("GL_ARB_shader_storage_buffer_object");
g_Config.backend_info.bSupportsGSInstancing = GLExtensions::Supports("GL_ARB_gpu_shader5");
g_Config.backend_info.bSupportsSSAA = GLExtensions::Supports("GL_ARB_gpu_shader5") &&
GLExtensions::Supports("GL_ARB_sample_shading");
g_Config.backend_info.bSupportsGeometryShaders =
GLExtensions::Version() >= 320 &&
!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_GEOMETRY_SHADERS);
g_Config.backend_info.bSupportsPaletteConversion =
GLExtensions::Supports("GL_ARB_texture_buffer_object") ||
GLExtensions::Supports("GL_OES_texture_buffer") ||
GLExtensions::Supports("GL_EXT_texture_buffer");
g_Config.backend_info.bSupportsClipControl = GLExtensions::Supports("GL_ARB_clip_control");
g_ogl_config.bSupportsCopySubImage =
(GLExtensions::Supports("GL_ARB_copy_image") || GLExtensions::Supports("GL_NV_copy_image") ||
GLExtensions::Supports("GL_EXT_copy_image") ||
GLExtensions::Supports("GL_OES_copy_image")) &&
!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_COPYIMAGE);
g_ogl_config.bSupportsTextureSubImage = GLExtensions::Supports("ARB_get_texture_sub_image");
// Desktop OpenGL supports the binding layout if it supports 420pack
// OpenGL ES 3.1 supports it implicitly without an extension
g_Config.backend_info.bSupportsBindingLayout =
GLExtensions::Supports("GL_ARB_shading_language_420pack");
// Clip distance support is useless without a method to clamp the depth range
g_Config.backend_info.bSupportsDepthClamp = GLExtensions::Supports("GL_ARB_depth_clamp");
// Desktop OpenGL supports bitfield manulipation and dynamic sampler indexing if it supports
// shader5. OpenGL ES 3.1 supports it implicitly without an extension
g_Config.backend_info.bSupportsBitfield = GLExtensions::Supports("GL_ARB_gpu_shader5");
g_Config.backend_info.bSupportsDynamicSamplerIndexing =
GLExtensions::Supports("GL_ARB_gpu_shader5");
g_ogl_config.bSupportsGLSLCache = GLExtensions::Supports("GL_ARB_get_program_binary");
g_ogl_config.bSupportsGLPinnedMemory = GLExtensions::Supports("GL_AMD_pinned_memory");
g_ogl_config.bSupportsGLSync = GLExtensions::Supports("GL_ARB_sync");
g_ogl_config.bSupportsGLBaseVertex = GLExtensions::Supports("GL_ARB_draw_elements_base_vertex") ||
GLExtensions::Supports("GL_EXT_draw_elements_base_vertex") ||
GLExtensions::Supports("GL_OES_draw_elements_base_vertex");
g_ogl_config.bSupportsGLBufferStorage = GLExtensions::Supports("GL_ARB_buffer_storage") ||
GLExtensions::Supports("GL_EXT_buffer_storage");
g_ogl_config.bSupportsMSAA = GLExtensions::Supports("GL_ARB_texture_multisample");
g_ogl_config.bSupportViewportFloat = GLExtensions::Supports("GL_ARB_viewport_array");
g_ogl_config.bSupportsDebug =
GLExtensions::Supports("GL_KHR_debug") || GLExtensions::Supports("GL_ARB_debug_output");
g_ogl_config.bSupportsTextureStorage = GLExtensions::Supports("GL_ARB_texture_storage");
g_ogl_config.bSupports3DTextureStorageMultisample =
GLExtensions::Supports("GL_ARB_texture_storage_multisample") ||
GLExtensions::Supports("GL_OES_texture_storage_multisample_2d_array");
g_ogl_config.bSupports2DTextureStorageMultisample =
GLExtensions::Supports("GL_ARB_texture_storage_multisample");
g_ogl_config.bSupportsImageLoadStore = GLExtensions::Supports("GL_ARB_shader_image_load_store");
g_ogl_config.bSupportsConservativeDepth = GLExtensions::Supports("GL_ARB_conservative_depth");
g_ogl_config.bSupportsAniso = GLExtensions::Supports("GL_EXT_texture_filter_anisotropic");
g_Config.backend_info.bSupportsComputeShaders = GLExtensions::Supports("GL_ARB_compute_shader");
g_Config.backend_info.bSupportsST3CTextures =
GLExtensions::Supports("GL_EXT_texture_compression_s3tc");
g_Config.backend_info.bSupportsBPTCTextures =
GLExtensions::Supports("GL_ARB_texture_compression_bptc");
if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGLES3)
{
g_ogl_config.SupportedESPointSize =
GLExtensions::Supports("GL_OES_geometry_point_size") ?
1 :
GLExtensions::Supports("GL_EXT_geometry_point_size") ? 2 : 0;
g_ogl_config.SupportedESTextureBuffer = GLExtensions::Supports("VERSION_GLES_3_2") ?
EsTexbufType::TexbufCore :
GLExtensions::Supports("GL_OES_texture_buffer") ?
EsTexbufType::TexbufOes :
GLExtensions::Supports("GL_EXT_texture_buffer") ?
EsTexbufType::TexbufExt :
EsTexbufType::TexbufNone;
g_ogl_config.bSupportsGLSLCache = true;
g_ogl_config.bSupportsGLSync = true;
// TODO: Implement support for GL_EXT_clip_cull_distance when there is an extension for
// depth clamping.
g_Config.backend_info.bSupportsDepthClamp = false;
if (GLExtensions::Supports("GL_EXT_shader_framebuffer_fetch"))
{
g_ogl_config.SupportedFramebufferFetch = EsFbFetchType::FbFetchExt;
}
else if (GLExtensions::Supports("GL_ARM_shader_framebuffer_fetch"))
{
g_ogl_config.SupportedFramebufferFetch = EsFbFetchType::FbFetchArm;
}
else
{
g_ogl_config.SupportedFramebufferFetch = EsFbFetchType::FbFetchNone;
}
g_Config.backend_info.bSupportsFramebufferFetch =
g_ogl_config.SupportedFramebufferFetch != EsFbFetchType::FbFetchNone;
if (GLExtensions::Version() == 300)
{
g_ogl_config.eSupportedGLSLVersion = GlslEs300;
g_ogl_config.bSupportsAEP = false;
g_ogl_config.bSupportsTextureStorage = true;
g_Config.backend_info.bSupportsGeometryShaders = false;
}
else if (GLExtensions::Version() == 310)
{
g_ogl_config.eSupportedGLSLVersion = GlslEs310;
g_ogl_config.bSupportsAEP = GLExtensions::Supports("GL_ANDROID_extension_pack_es31a");
g_Config.backend_info.bSupportsBindingLayout = true;
g_ogl_config.bSupportsImageLoadStore = true;
g_Config.backend_info.bSupportsGeometryShaders = g_ogl_config.bSupportsAEP;
g_Config.backend_info.bSupportsComputeShaders = true;
g_Config.backend_info.bSupportsGSInstancing =
g_Config.backend_info.bSupportsGeometryShaders && g_ogl_config.SupportedESPointSize > 0;
g_Config.backend_info.bSupportsSSAA = g_ogl_config.bSupportsAEP;
g_Config.backend_info.bSupportsFragmentStoresAndAtomics = true;
g_ogl_config.bSupportsMSAA = true;
g_ogl_config.bSupportsTextureStorage = true;
g_ogl_config.bSupports2DTextureStorageMultisample = true;
g_Config.backend_info.bSupportsBitfield = true;
g_Config.backend_info.bSupportsDynamicSamplerIndexing = g_ogl_config.bSupportsAEP;
if (g_ActiveConfig.stereo_mode != StereoMode::Off && g_ActiveConfig.iMultisamples > 1 &&
!g_ogl_config.bSupports3DTextureStorageMultisample)
{
// GLES 3.1 can't support stereo rendering and MSAA
OSD::AddMessage("MSAA Stereo rendering isn't supported by your GPU.", 10000);
Config::SetCurrent(Config::GFX_MSAA, UINT32_C(1));
}
}
else
{
g_ogl_config.eSupportedGLSLVersion = GlslEs320;
g_ogl_config.bSupportsAEP = GLExtensions::Supports("GL_ANDROID_extension_pack_es31a");
g_Config.backend_info.bSupportsBindingLayout = true;
g_ogl_config.bSupportsImageLoadStore = true;
g_Config.backend_info.bSupportsGeometryShaders = true;
g_Config.backend_info.bSupportsComputeShaders = true;
g_Config.backend_info.bSupportsGSInstancing = g_ogl_config.SupportedESPointSize > 0;
g_Config.backend_info.bSupportsPaletteConversion = true;
g_Config.backend_info.bSupportsSSAA = true;
g_Config.backend_info.bSupportsFragmentStoresAndAtomics = true;
g_ogl_config.bSupportsCopySubImage = true;
g_ogl_config.bSupportsGLBaseVertex = true;
g_ogl_config.bSupportsDebug = true;
g_ogl_config.bSupportsMSAA = true;
g_ogl_config.bSupportsTextureStorage = true;
g_ogl_config.bSupports2DTextureStorageMultisample = true;
g_ogl_config.bSupports3DTextureStorageMultisample = true;
g_Config.backend_info.bSupportsBitfield = true;
g_Config.backend_info.bSupportsDynamicSamplerIndexing = true;
}
}
else
{
if (GLExtensions::Version() < 300)
{
PanicAlert("GPU: OGL ERROR: Need at least GLSL 1.30\n"
"GPU: Does your video card support OpenGL 3.0?\n"
"GPU: Your driver supports GLSL %s",
(const char*)glGetString(GL_SHADING_LANGUAGE_VERSION));
bSuccess = false;
}
else if (GLExtensions::Version() == 300)
{
g_ogl_config.eSupportedGLSLVersion = Glsl130;
g_ogl_config.bSupportsImageLoadStore = false; // layout keyword is only supported on glsl150+
g_ogl_config.bSupportsConservativeDepth =
false; // layout keyword is only supported on glsl150+
g_Config.backend_info.bSupportsGeometryShaders =
false; // geometry shaders are only supported on glsl150+
}
else if (GLExtensions::Version() == 310)
{
g_ogl_config.eSupportedGLSLVersion = Glsl140;
g_ogl_config.bSupportsImageLoadStore = false; // layout keyword is only supported on glsl150+
g_ogl_config.bSupportsConservativeDepth =
false; // layout keyword is only supported on glsl150+
g_Config.backend_info.bSupportsGeometryShaders =
false; // geometry shaders are only supported on glsl150+
}
else if (GLExtensions::Version() == 320)
{
g_ogl_config.eSupportedGLSLVersion = Glsl150;
}
else if (GLExtensions::Version() == 330)
{
g_ogl_config.eSupportedGLSLVersion = Glsl330;
}
else if (GLExtensions::Version() >= 430)
{
// TODO: We should really parse the GL_SHADING_LANGUAGE_VERSION token.
g_ogl_config.eSupportedGLSLVersion = Glsl430;
g_ogl_config.bSupportsTextureStorage = true;
g_ogl_config.bSupportsImageLoadStore = true;
g_Config.backend_info.bSupportsSSAA = true;
// Compute shaders are core in GL4.3.
g_Config.backend_info.bSupportsComputeShaders = true;
if (GLExtensions::Version() >= 450)
g_ogl_config.bSupportsTextureSubImage = true;
}
else
{
g_ogl_config.eSupportedGLSLVersion = Glsl400;
g_Config.backend_info.bSupportsSSAA = true;
if (GLExtensions::Version() == 420)
{
// Texture storage and shader image load/store are core in GL4.2.
g_ogl_config.bSupportsTextureStorage = true;
g_ogl_config.bSupportsImageLoadStore = true;
}
}
// Desktop OpenGL can't have the Android Extension Pack
g_ogl_config.bSupportsAEP = false;
}
// Either method can do early-z tests. See PixelShaderGen for details.
g_Config.backend_info.bSupportsEarlyZ =
g_ogl_config.bSupportsImageLoadStore || g_ogl_config.bSupportsConservativeDepth;
glGetIntegerv(GL_MAX_SAMPLES, &g_ogl_config.max_samples);
if (g_ogl_config.max_samples < 1 || !g_ogl_config.bSupportsMSAA)
g_ogl_config.max_samples = 1;
// We require texel buffers, image load store, and compute shaders to enable GPU texture decoding.
// If the driver doesn't expose the extensions, but supports GL4.3/GLES3.1, it will still be
// enabled in the version check below.
g_Config.backend_info.bSupportsGPUTextureDecoding =
g_Config.backend_info.bSupportsPaletteConversion &&
g_Config.backend_info.bSupportsComputeShaders && g_ogl_config.bSupportsImageLoadStore;
// Background compiling is supported only when shared contexts aren't broken.
g_Config.backend_info.bSupportsBackgroundCompiling =
!DriverDetails::HasBug(DriverDetails::BUG_SHARED_CONTEXT_SHADER_COMPILATION);
if (g_ogl_config.bSupportsDebug)
{
if (GLExtensions::Supports("GL_KHR_debug"))
{
glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, true);
glDebugMessageCallback(ErrorCallback, nullptr);
}
else
{
glDebugMessageControlARB(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, true);
glDebugMessageCallbackARB(ErrorCallback, nullptr);
}
if (LogManager::GetInstance()->IsEnabled(LogTypes::HOST_GPU, LogTypes::LERROR))
glEnable(GL_DEBUG_OUTPUT);
else
glDisable(GL_DEBUG_OUTPUT);
}
int samples;
glGetIntegerv(GL_SAMPLES, &samples);
if (samples > 1)
{
// MSAA on default framebuffer isn't working because of glBlitFramebuffer.
// It also isn't useful as we don't render anything to the default framebuffer.
// We also try to get a non-msaa fb, so this only happens when forced by the driver.
PanicAlert("MSAA on default framebuffer isn't supported.\n"
"Please avoid forcing Dolphin to use MSAA by the driver.\n"
"%d samples on default framebuffer found.",
samples);
bSuccess = false;
}
if (!bSuccess)
{
// Not all needed extensions are supported, so we have to stop here.
// Else some of the next calls might crash.
return;
}
g_Config.VerifyValidity();
UpdateActiveConfig();
// Since we modify the config here, we need to update the last host bits, it may have changed.
m_last_host_config_bits = ShaderHostConfig::GetCurrent().bits;
OSD::AddMessage(StringFromFormat("Video Info: %s, %s, %s", g_ogl_config.gl_vendor,
g_ogl_config.gl_renderer, g_ogl_config.gl_version),
5000);
if (!g_ogl_config.bSupportsGLBufferStorage && !g_ogl_config.bSupportsGLPinnedMemory)
{
OSD::AddMessage(
StringFromFormat("Your OpenGL driver does not support %s_buffer_storage.",
GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGLES3 ? "EXT" : "ARB"),
60000);
OSD::AddMessage("This device's performance will be terrible.", 60000);
OSD::AddMessage("Please ask your device vendor for an updated OpenGL driver.", 60000);
}
WARN_LOG(VIDEO, "Missing OGL Extensions: %s%s%s%s%s%s%s%s%s%s%s%s%s%s",
g_ActiveConfig.backend_info.bSupportsDualSourceBlend ? "" : "DualSourceBlend ",
g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ? "" : "PrimitiveRestart ",
g_ActiveConfig.backend_info.bSupportsEarlyZ ? "" : "EarlyZ ",
g_ogl_config.bSupportsGLPinnedMemory ? "" : "PinnedMemory ",
g_ogl_config.bSupportsGLSLCache ? "" : "ShaderCache ",
g_ogl_config.bSupportsGLBaseVertex ? "" : "BaseVertex ",
g_ogl_config.bSupportsGLBufferStorage ? "" : "BufferStorage ",
g_ogl_config.bSupportsGLSync ? "" : "Sync ", g_ogl_config.bSupportsMSAA ? "" : "MSAA ",
g_ActiveConfig.backend_info.bSupportsSSAA ? "" : "SSAA ",
g_ActiveConfig.backend_info.bSupportsGSInstancing ? "" : "GSInstancing ",
g_ActiveConfig.backend_info.bSupportsClipControl ? "" : "ClipControl ",
g_ogl_config.bSupportsCopySubImage ? "" : "CopyImageSubData ",
g_ActiveConfig.backend_info.bSupportsDepthClamp ? "" : "DepthClamp ");
s_last_multisamples = g_ActiveConfig.iMultisamples;
s_MSAASamples = s_last_multisamples;
s_last_stereo_mode = g_ActiveConfig.stereo_mode != StereoMode::Off;
// Handle VSync on/off
s_vsync = g_ActiveConfig.IsVSync();
if (!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VSYNC))
GLInterface->SwapInterval(s_vsync);
// Because of the fixed framebuffer size we need to disable the resolution
// options while running
// The stencil is used for bounding box emulation when SSBOs are not available
glDisable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 1, 0xFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
// Reset The Current Viewport
glViewport(0, 0, GetTargetWidth(), GetTargetHeight());
if (g_ActiveConfig.backend_info.bSupportsClipControl)
glClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepthf(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
if (g_ActiveConfig.backend_info.bSupportsDepthClamp)
{
glEnable(GL_CLIP_DISTANCE0);
glEnable(GL_CLIP_DISTANCE1);
glEnable(GL_DEPTH_CLAMP);
}
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment
glEnable(GL_SCISSOR_TEST);
glScissor(0, 0, GetTargetWidth(), GetTargetHeight());
glBlendFunc(GL_ONE, GL_ONE);
glBlendColor(0, 0, 0, 0.5f);
glClearDepthf(1.0f);
if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart)
GLUtil::EnablePrimitiveRestart();
IndexGenerator::Init();
UpdateActiveConfig();
ClearEFBCache();
}
Renderer::~Renderer() = default;
void Renderer::Shutdown()
{
::Renderer::Shutdown();
g_framebuffer_manager.reset();
UpdateActiveConfig();
s_raster_font.reset();
m_post_processor.reset();
}
void Renderer::Init()
{
// Initialize the FramebufferManager
g_framebuffer_manager = std::make_unique<FramebufferManager>(
m_target_width, m_target_height, s_MSAASamples, BoundingBox::NeedsStencilBuffer());
m_current_framebuffer_width = m_target_width;
m_current_framebuffer_height = m_target_height;
m_post_processor = std::make_unique<OpenGLPostProcessing>();
s_raster_font = std::make_unique<RasterFont>();
}
std::unique_ptr<AbstractTexture> Renderer::CreateTexture(const TextureConfig& config)
{
return std::make_unique<OGLTexture>(config);
}
std::unique_ptr<AbstractStagingTexture> Renderer::CreateStagingTexture(StagingTextureType type,
const TextureConfig& config)
{
return OGLStagingTexture::Create(type, config);
}
std::unique_ptr<AbstractFramebuffer>
Renderer::CreateFramebuffer(const AbstractTexture* color_attachment,
const AbstractTexture* depth_attachment)
{
return OGLFramebuffer::Create(static_cast<const OGLTexture*>(color_attachment),
static_cast<const OGLTexture*>(depth_attachment));
}
void Renderer::RenderText(const std::string& text, int left, int top, u32 color)
{
int screen_width = m_backbuffer_width;
int screen_height = m_backbuffer_height;
if (screen_width >= 2000)
{
screen_width /= 2;
screen_height /= 2;
}
s_raster_font->printMultilineText(text, left * 2.0f / static_cast<float>(screen_width) - 1.0f,
1.0f - top * 2.0f / static_cast<float>(screen_height), 0,
screen_width, screen_height, color);
}
std::unique_ptr<AbstractShader> Renderer::CreateShaderFromSource(ShaderStage stage,
const char* source, size_t length)
{
return OGLShader::CreateFromSource(stage, source, length);
}
std::unique_ptr<AbstractShader> Renderer::CreateShaderFromBinary(ShaderStage stage,
const void* data, size_t length)
{
return nullptr;
}
std::unique_ptr<AbstractPipeline> Renderer::CreatePipeline(const AbstractPipelineConfig& config)
{
return OGLPipeline::Create(config);
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(EFB_HEIGHT - rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(EFB_HEIGHT - rc.bottom);
return result;
}
void Renderer::SetScissorRect(const MathUtil::Rectangle<int>& rc)
{
glScissor(rc.left, rc.bottom, rc.GetWidth(), rc.GetHeight());
}
void ClearEFBCache()
{
if (!s_efbCacheIsCleared)
{
s_efbCacheIsCleared = true;
memset(s_efbCacheValid, 0, sizeof(s_efbCacheValid));
}
}
void Renderer::UpdateEFBCache(EFBAccessType type, u32 cacheRectIdx, const EFBRectangle& efbPixelRc,
const TargetRectangle& targetPixelRc, const void* data)
{
const u32 cacheType = (type == EFBAccessType::PeekZ ? 0 : 1);
if (!s_efbCache[cacheType][cacheRectIdx].size())
s_efbCache[cacheType][cacheRectIdx].resize(EFB_CACHE_RECT_SIZE * EFB_CACHE_RECT_SIZE);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 efbPixelRcHeight = efbPixelRc.bottom - efbPixelRc.top;
u32 efbPixelRcWidth = efbPixelRc.right - efbPixelRc.left;
for (u32 yCache = 0; yCache < efbPixelRcHeight; ++yCache)
{
u32 yEFB = efbPixelRc.top + yCache;
u32 yPixel = (EFBToScaledY(EFB_HEIGHT - yEFB) + EFBToScaledY(EFB_HEIGHT - yEFB - 1)) / 2;
u32 yData = yPixel - targetPixelRc.bottom;
for (u32 xCache = 0; xCache < efbPixelRcWidth; ++xCache)
{
u32 xEFB = efbPixelRc.left + xCache;
u32 xPixel = (EFBToScaledX(xEFB) + EFBToScaledX(xEFB + 1)) / 2;
u32 xData = xPixel - targetPixelRc.left;
u32 value;
if (type == EFBAccessType::PeekZ)
{
float* ptr = (float*)data;
value = MathUtil::Clamp<u32>((u32)(ptr[yData * targetPixelRcWidth + xData] * 16777216.0f),
0, 0xFFFFFF);
}
else
{
u32* ptr = (u32*)data;
value = ptr[yData * targetPixelRcWidth + xData];
}
s_efbCache[cacheType][cacheRectIdx][yCache * EFB_CACHE_RECT_SIZE + xCache] = value;
}
}
s_efbCacheValid[cacheType][cacheRectIdx] = true;
s_efbCacheIsCleared = false;
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
u32 cacheRectIdx = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_WIDTH + (x / EFB_CACHE_RECT_SIZE);
EFBRectangle efbPixelRc;
if (type == EFBAccessType::PeekColor || type == EFBAccessType::PeekZ)
{
// Get the rectangular target region containing the EFB pixel
efbPixelRc.left = (x / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.top = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.right = std::min(efbPixelRc.left + EFB_CACHE_RECT_SIZE, (u32)EFB_WIDTH);
efbPixelRc.bottom = std::min(efbPixelRc.top + EFB_CACHE_RECT_SIZE, (u32)EFB_HEIGHT);
}
else
{
efbPixelRc.left = x;
efbPixelRc.top = y;
efbPixelRc.right = x + 1;
efbPixelRc.bottom = y + 1;
}
TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 targetPixelRcHeight = targetPixelRc.top - targetPixelRc.bottom;
// TODO (FIX) : currently, AA path is broken/offset and doesn't return the correct pixel
switch (type)
{
case EFBAccessType::PeekZ:
{
if (!s_efbCacheValid[0][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
ResetAPIState();
// Resolve our rectangle.
FramebufferManager::GetEFBDepthTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
}
std::unique_ptr<float[]> depthMap(new float[targetPixelRcWidth * targetPixelRcHeight]);
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth,
targetPixelRcHeight, GL_DEPTH_COMPONENT, GL_FLOAT, depthMap.get());
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, depthMap.get());
if (s_MSAASamples > 1)
RestoreAPIState();
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
u32 z = s_efbCache[0][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// if Z is in 16 bit format you must return a 16 bit integer
if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
z = z >> 8;
return z;
}
case EFBAccessType::PeekColor: // GXPeekARGB
{
// Although it may sound strange, this really is A8R8G8B8 and not RGBA or 24-bit...
// Tested in Killer 7, the first 8bits represent the alpha value which is used to
// determine if we're aiming at an enemy (0x80 / 0x88) or not (0x70)
// Wind Waker is also using it for the pictograph to determine the color of each pixel
if (!s_efbCacheValid[1][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
ResetAPIState();
// Resolve our rectangle.
FramebufferManager::GetEFBColorTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
}
std::unique_ptr<u32[]> colorMap(new u32[targetPixelRcWidth * targetPixelRcHeight]);
if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGLES3)
// XXX: Swap colours
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth,
targetPixelRcHeight, GL_RGBA, GL_UNSIGNED_BYTE, colorMap.get());
else
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth,
targetPixelRcHeight, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, colorMap.get());
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, colorMap.get());
if (s_MSAASamples > 1)
RestoreAPIState();
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
u32 color = s_efbCache[1][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode();
if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24)
{
color |= 0xFF000000;
}
if (alpha_read_mode.ReadMode == 2)
{
// GX_READ_NONE
return color;
}
else if (alpha_read_mode.ReadMode == 1)
{
// GX_READ_FF
return (color | 0xFF000000);
}
else /*if(alpha_read_mode.ReadMode == 0)*/
{
// GX_READ_00
return (color & 0x00FFFFFF);
}
}
default:
break;
}
return 0;
}
void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
{
FramebufferManager::PokeEFB(type, points, num_points);
}
u16 Renderer::BBoxRead(int index)
{
int swapped_index = index;
if (index >= 2)
swapped_index ^= 1; // swap 2 and 3 for top/bottom
// Here we get the min/max value of the truncated position of the upscaled and swapped
// framebuffer.
// So we have to correct them to the unscaled EFB sizes.
int value = BoundingBox::Get(swapped_index);
if (index < 2)
{
// left/right
value = value * EFB_WIDTH / m_target_width;
}
else
{
// up/down -- we have to swap up and down
value = value * EFB_HEIGHT / m_target_height;
value = EFB_HEIGHT - value - 1;
}
if (index & 1)
value++; // fix max values to describe the outer border
return value;
}
void Renderer::BBoxWrite(int index, u16 _value)
{
int value = _value; // u16 isn't enough to multiply by the efb width
if (index & 1)
value--;
if (index < 2)
{
value = value * m_target_width / EFB_WIDTH;
}
else
{
index ^= 1; // swap 2 and 3 for top/bottom
value = EFB_HEIGHT - value - 1;
value = value * m_target_height / EFB_HEIGHT;
}
BoundingBox::Set(index, value);
}
void Renderer::SetViewport(float x, float y, float width, float height, float near_depth,
float far_depth)
{
// The x/y parameters here assume a upper-left origin. glViewport takes an offset from the
// lower-left of the framebuffer, so we must set y to the distance from the lower-left.
y = static_cast<float>(m_current_framebuffer_height) - y - height;
if (g_ogl_config.bSupportViewportFloat)
{
glViewportIndexedf(0, x, y, width, height);
}
else
{
auto iceilf = [](float f) { return static_cast<GLint>(std::ceil(f)); };
glViewport(iceilf(x), iceilf(y), iceilf(width), iceilf(height));
}
glDepthRangef(near_depth, far_depth);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable,
u32 color, u32 z)
{
ResetAPIState();
// color
GLboolean const color_mask = colorEnable ? GL_TRUE : GL_FALSE,
alpha_mask = alphaEnable ? GL_TRUE : GL_FALSE;
glColorMask(color_mask, color_mask, color_mask, alpha_mask);
glClearColor(float((color >> 16) & 0xFF) / 255.0f, float((color >> 8) & 0xFF) / 255.0f,
float((color >> 0) & 0xFF) / 255.0f, float((color >> 24) & 0xFF) / 255.0f);
// depth
glDepthMask(zEnable ? GL_TRUE : GL_FALSE);
glClearDepthf(float(z & 0xFFFFFF) / 16777216.0f);
// Update rect for clearing the picture
glEnable(GL_SCISSOR_TEST);
TargetRectangle const targetRc = ConvertEFBRectangle(rc);
glScissor(targetRc.left, targetRc.bottom, targetRc.GetWidth(), targetRc.GetHeight());
// glColorMask/glDepthMask/glScissor affect glClear (glViewport does not)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RestoreAPIState();
ClearEFBCache();
}
void Renderer::BlitScreen(TargetRectangle src, TargetRectangle dst, GLuint src_texture,
int src_width, int src_height)
{
OpenGLPostProcessing* post_processor = static_cast<OpenGLPostProcessing*>(m_post_processor.get());
if (g_ActiveConfig.stereo_mode == StereoMode::SBS ||
g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
TargetRectangle leftRc, rightRc;
// Top-and-Bottom mode needs to compensate for inverted vertical screen coordinates.
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
std::tie(rightRc, leftRc) = ConvertStereoRectangle(dst);
else
std::tie(leftRc, rightRc) = ConvertStereoRectangle(dst);
post_processor->BlitFromTexture(src, leftRc, src_texture, src_width, src_height, 0);
post_processor->BlitFromTexture(src, rightRc, src_texture, src_width, src_height, 1);
}
else if (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer)
{
glDrawBuffer(GL_BACK_LEFT);
post_processor->BlitFromTexture(src, dst, src_texture, src_width, src_height, 0);
glDrawBuffer(GL_BACK_RIGHT);
post_processor->BlitFromTexture(src, dst, src_texture, src_width, src_height, 1);
glDrawBuffer(GL_BACK);
}
else
{
post_processor->BlitFromTexture(src, dst, src_texture, src_width, src_height, 0);
}
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
if (convtype == 0 || convtype == 2)
{
FramebufferManager::ReinterpretPixelData(convtype);
}
else
{
ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d",
convtype);
}
}
void Renderer::SetFramebuffer(const AbstractFramebuffer* framebuffer)
{
glBindFramebuffer(GL_FRAMEBUFFER, static_cast<const OGLFramebuffer*>(framebuffer)->GetFBO());
m_current_framebuffer = framebuffer;
m_current_framebuffer_width = framebuffer->GetWidth();
m_current_framebuffer_height = framebuffer->GetHeight();
}
void Renderer::SetAndDiscardFramebuffer(const AbstractFramebuffer* framebuffer)
{
// EXT_discard_framebuffer could be used here to save bandwidth on tilers.
SetFramebuffer(framebuffer);
}
void Renderer::SetAndClearFramebuffer(const AbstractFramebuffer* framebuffer,
const ClearColor& color_value, float depth_value)
{
SetFramebuffer(framebuffer);
// NOTE: This disturbs the current scissor/mask setting.
// This won't be an issue when we implement proper state tracking.
glDisable(GL_SCISSOR_TEST);
GLbitfield clear_mask = 0;
if (framebuffer->HasColorBuffer())
{
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClearColor(color_value[0], color_value[1], color_value[2], color_value[3]);
clear_mask |= GL_COLOR_BUFFER_BIT;
}
if (framebuffer->HasDepthBuffer())
{
glDepthMask(GL_TRUE);
glClearDepth(depth_value);
clear_mask |= GL_DEPTH_BUFFER_BIT;
}
glClear(clear_mask);
}
void Renderer::ApplyBlendingState(const BlendingState state, bool force)
{
if (!force && m_current_blend_state == state)
return;
bool useDualSource =
state.usedualsrc && g_ActiveConfig.backend_info.bSupportsDualSourceBlend &&
(!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_DUAL_SOURCE_BLENDING) || state.dstalpha);
// Only use shader blend if we need to and we don't support dual-source blending directly
bool useShaderBlend = !useDualSource && state.usedualsrc && state.dstalpha &&
g_ActiveConfig.backend_info.bSupportsFramebufferFetch;
if (useShaderBlend)
{
glDisable(GL_BLEND);
}
else
{
const GLenum src_factors[8] = {GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
useDualSource ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
useDualSource ? GL_ONE_MINUS_SRC1_ALPHA :
(GLenum)GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA};
const GLenum dst_factors[8] = {GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
useDualSource ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA,
useDualSource ? GL_ONE_MINUS_SRC1_ALPHA :
(GLenum)GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA};
if (state.blendenable)
{
glEnable(GL_BLEND);
}
else
{
glDisable(GL_BLEND);
}
// Always call glBlendEquationSeparate and glBlendFuncSeparate, even when
// GL_BLEND is disabled, as a workaround for some bugs (possibly graphics
// driver issues?). See https://bugs.dolphin-emu.org/issues/10120 : "Sonic
// Adventure 2 Battle: graphics crash when loading first Dark level"
GLenum equation = state.subtract ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
GLenum equationAlpha = state.subtractAlpha ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
glBlendEquationSeparate(equation, equationAlpha);
glBlendFuncSeparate(src_factors[state.srcfactor], dst_factors[state.dstfactor],
src_factors[state.srcfactoralpha], dst_factors[state.dstfactoralpha]);
}
const GLenum logic_op_codes[16] = {
GL_CLEAR, GL_AND, GL_AND_REVERSE, GL_COPY, GL_AND_INVERTED, GL_NOOP,
GL_XOR, GL_OR, GL_NOR, GL_EQUIV, GL_INVERT, GL_OR_REVERSE,
GL_COPY_INVERTED, GL_OR_INVERTED, GL_NAND, GL_SET};
if (GLInterface->GetMode() != GLInterfaceMode::MODE_OPENGL)
{
// Logic ops aren't available in GLES3
}
else if (state.logicopenable)
{
glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(logic_op_codes[state.logicmode]);
}
else
{
glDisable(GL_COLOR_LOGIC_OP);
}
glColorMask(state.colorupdate, state.colorupdate, state.colorupdate, state.alphaupdate);
m_current_blend_state = state;
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::SwapImpl(AbstractTexture* texture, const EFBRectangle& xfb_region, u64 ticks)
{
if (g_ogl_config.bSupportsDebug)
{
if (LogManager::GetInstance()->IsEnabled(LogTypes::HOST_GPU, LogTypes::LERROR))
glEnable(GL_DEBUG_OUTPUT);
else
glDisable(GL_DEBUG_OUTPUT);
}
auto* xfb_texture = static_cast<OGLTexture*>(texture);
TargetRectangle sourceRc = xfb_region;
sourceRc.top = xfb_region.GetHeight();
sourceRc.bottom = 0;
ResetAPIState();
// Do our OSD callbacks
OSD::DoCallbacks(OSD::CallbackType::OnFrame);
// Check if we need to render to a new surface.
CheckForSurfaceChange();
CheckForSurfaceResize();
UpdateDrawRectangle();
TargetRectangle flipped_trc = GetTargetRectangle();
std::swap(flipped_trc.top, flipped_trc.bottom);
// Skip screen rendering when running in headless mode.
if (!IsHeadless())
{
// Clear the framebuffer before drawing anything.
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
m_current_framebuffer = nullptr;
m_current_framebuffer_width = m_backbuffer_width;
m_current_framebuffer_height = m_backbuffer_height;
// Copy the framebuffer to screen.
BlitScreen(sourceRc, flipped_trc, xfb_texture->GetRawTexIdentifier(),
xfb_texture->GetConfig().width, xfb_texture->GetConfig().height);
// Render OSD messages.
glViewport(0, 0, m_backbuffer_width, m_backbuffer_height);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
DrawDebugText();
OSD::DrawMessages();
// Swap the back and front buffers, presenting the image.
GLInterface->Swap();
}
else
{
// Since we're not swapping in headless mode, ensure all commands are sent to the GPU.
// Otherwise the driver could batch several frames togehter.
glFlush();
}
// Was the size changed since the last frame?
bool target_size_changed = CalculateTargetSize();
bool stencil_buffer_enabled =
static_cast<FramebufferManager*>(g_framebuffer_manager.get())->HasStencilBuffer();
bool fb_needs_update = target_size_changed ||
s_last_multisamples != g_ActiveConfig.iMultisamples ||
stencil_buffer_enabled != BoundingBox::NeedsStencilBuffer() ||
s_last_stereo_mode != (g_ActiveConfig.stereo_mode != StereoMode::Off);
if (fb_needs_update)
{
s_last_stereo_mode = g_ActiveConfig.stereo_mode != StereoMode::Off;
s_last_multisamples = g_ActiveConfig.iMultisamples;
s_MSAASamples = s_last_multisamples;
if (s_MSAASamples > 1 && s_MSAASamples > g_ogl_config.max_samples)
{
s_MSAASamples = g_ogl_config.max_samples;
OSD::AddMessage(
StringFromFormat("%d Anti Aliasing samples selected, but only %d supported by your GPU.",
s_last_multisamples, g_ogl_config.max_samples),
10000);
}
g_framebuffer_manager.reset();
g_framebuffer_manager = std::make_unique<FramebufferManager>(
m_target_width, m_target_height, s_MSAASamples, BoundingBox::NeedsStencilBuffer());
BoundingBox::SetTargetSizeChanged(m_target_width, m_target_height);
UpdateDrawRectangle();
}
if (s_vsync != g_ActiveConfig.IsVSync())
{
s_vsync = g_ActiveConfig.IsVSync();
if (!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VSYNC))
GLInterface->SwapInterval(s_vsync);
}
// Clean out old stuff from caches. It's not worth it to clean out the shader caches.
g_texture_cache->Cleanup(frameCount);
RestoreAPIState();
g_Config.iSaveTargetId = 0;
int old_anisotropy = g_ActiveConfig.iMaxAnisotropy;
UpdateActiveConfig();
g_texture_cache->OnConfigChanged(g_ActiveConfig);
if (old_anisotropy != g_ActiveConfig.iMaxAnisotropy)
g_sampler_cache->Clear();
// Invalidate shader cache when the host config changes.
CheckForHostConfigChanges();
// For testing zbuffer targets.
// Renderer::SetZBufferRender();
// SaveTexture("tex.png", GL_TEXTURE_2D, s_FakeZTarget,
// GetTargetWidth(), GetTargetHeight());
// Invalidate EFB cache
ClearEFBCache();
}
void Renderer::CheckForSurfaceChange()
{
if (!m_surface_changed.TestAndClear())
return;
m_surface_handle = m_new_surface_handle;
m_new_surface_handle = nullptr;
GLInterface->UpdateHandle(m_surface_handle);
GLInterface->UpdateSurface();
// With a surface change, the window likely has new dimensions.
m_backbuffer_width = GLInterface->GetBackBufferWidth();
m_backbuffer_height = GLInterface->GetBackBufferHeight();
}
void Renderer::CheckForSurfaceResize()
{
if (!m_surface_resized.TestAndClear())
return;
GLInterface->Update();
m_backbuffer_width = m_new_backbuffer_width;
m_backbuffer_height = m_new_backbuffer_height;
}
void Renderer::DrawEFB(GLuint framebuffer, const TargetRectangle& target_rc,
const TargetRectangle& source_rc)
{
// for msaa mode, we must resolve the efb content to non-msaa
GLuint tex = FramebufferManager::ResolveAndGetRenderTarget(source_rc);
glBindFramebuffer(GL_FRAMEBUFFER, framebuffer);
BlitScreen(source_rc, target_rc, tex, m_target_width, m_target_height);
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
// Gets us to a reasonably sane state where it's possible to do things like
// image copies with textured quads, etc.
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGL)
glDisable(GL_COLOR_LOGIC_OP);
if (g_ActiveConfig.backend_info.bSupportsDepthClamp)
{
glDisable(GL_CLIP_DISTANCE0);
glDisable(GL_CLIP_DISTANCE1);
}
glDepthMask(GL_FALSE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
void Renderer::RestoreAPIState()
{
m_current_framebuffer = nullptr;
m_current_framebuffer_width = m_target_width;
m_current_framebuffer_height = m_target_height;
FramebufferManager::SetFramebuffer(0);
// Gets us back into a more game-like state.
glEnable(GL_SCISSOR_TEST);
if (g_ActiveConfig.backend_info.bSupportsDepthClamp)
{
glEnable(GL_CLIP_DISTANCE0);
glEnable(GL_CLIP_DISTANCE1);
}
BPFunctions::SetScissor();
BPFunctions::SetViewport();
ApplyRasterizationState(m_current_rasterization_state, true);
ApplyDepthState(m_current_depth_state, true);
ApplyBlendingState(m_current_blend_state, true);
}
void Renderer::ApplyRasterizationState(const RasterizationState state, bool force)
{
if (!force && m_current_rasterization_state == state)
return;
// none, ccw, cw, ccw
if (state.cullmode != GenMode::CULL_NONE)
{
// TODO: GX_CULL_ALL not supported, yet!
glEnable(GL_CULL_FACE);
glFrontFace(state.cullmode == GenMode::CULL_FRONT ? GL_CCW : GL_CW);
}
else
{
glDisable(GL_CULL_FACE);
}
m_current_rasterization_state = state;
}
void Renderer::ApplyDepthState(const DepthState state, bool force)
{
if (!force && m_current_depth_state == state)
return;
const GLenum glCmpFuncs[8] = {GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL,
GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, GL_ALWAYS};
if (state.testenable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(state.updateenable ? GL_TRUE : GL_FALSE);
glDepthFunc(glCmpFuncs[state.func]);
}
else
{
// if the test is disabled write is disabled too
// TODO: When PE performance metrics are being emulated via occlusion queries, we should
// (probably?) enable depth test with depth function ALWAYS here
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
}
m_current_depth_state = state;
}
void Renderer::SetPipeline(const AbstractPipeline* pipeline)
{
// Not all shader changes currently go through SetPipeline, so we can't
// test if the pipeline hasn't changed and skip these applications. Yet.
m_graphics_pipeline = static_cast<const OGLPipeline*>(pipeline);
if (!m_graphics_pipeline)
return;
ApplyRasterizationState(m_graphics_pipeline->GetRasterizationState());
ApplyDepthState(m_graphics_pipeline->GetDepthState());
ApplyBlendingState(m_graphics_pipeline->GetBlendingState());
ProgramShaderCache::BindVertexFormat(m_graphics_pipeline->GetVertexFormat());
m_graphics_pipeline->GetProgram()->shader.Bind();
}
void Renderer::SetTexture(u32 index, const AbstractTexture* texture)
{
if (m_bound_textures[index] == texture)
return;
glActiveTexture(GL_TEXTURE0 + index);
glBindTexture(GL_TEXTURE_2D_ARRAY,
texture ? static_cast<const OGLTexture*>(texture)->GetRawTexIdentifier() : 0);
m_bound_textures[index] = texture;
}
void Renderer::SetSamplerState(u32 index, const SamplerState& state)
{
g_sampler_cache->SetSamplerState(index, state);
}
void Renderer::UnbindTexture(const AbstractTexture* texture)
{
for (size_t i = 0; i < m_bound_textures.size(); i++)
{
if (m_bound_textures[i] != texture)
continue;
glActiveTexture(static_cast<GLenum>(GL_TEXTURE0 + i));
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
}
}
void Renderer::SetInterlacingMode()
{
// TODO
}
void Renderer::DrawUtilityPipeline(const void* uniforms, u32 uniforms_size, const void* vertices,
u32 vertex_stride, u32 num_vertices)
{
// Copy in uniforms.
if (uniforms_size > 0)
UploadUtilityUniforms(uniforms, uniforms_size);
// Draw from base index if there is vertex data.
if (vertices)
{
StreamBuffer* vbuf = static_cast<VertexManager*>(g_vertex_manager.get())->GetVertexBuffer();
auto buf = vbuf->Map(vertex_stride * num_vertices, vertex_stride);
std::memcpy(buf.first, vertices, vertex_stride * num_vertices);
vbuf->Unmap(vertex_stride * num_vertices);
glDrawArrays(m_graphics_pipeline->GetGLPrimitive(), buf.second / vertex_stride, num_vertices);
}
else
{
glDrawArrays(m_graphics_pipeline->GetGLPrimitive(), 0, num_vertices);
}
}
void Renderer::UploadUtilityUniforms(const void* uniforms, u32 uniforms_size)
{
DEBUG_ASSERT(uniforms_size > 0);
auto buf = ProgramShaderCache::GetUniformBuffer()->Map(
uniforms_size, ProgramShaderCache::GetUniformBufferAlignment());
std::memcpy(buf.first, uniforms, uniforms_size);
ProgramShaderCache::GetUniformBuffer()->Unmap(uniforms_size);
glBindBufferRange(GL_UNIFORM_BUFFER, 1, ProgramShaderCache::GetUniformBuffer()->m_buffer,
buf.second, uniforms_size);
// This is rather horrible, but because of how the UBOs are bound, this forces it to rebind.
ProgramShaderCache::InvalidateConstants();
}
void Renderer::DispatchComputeShader(const AbstractShader* shader, const void* uniforms,
u32 uniforms_size, u32 groups_x, u32 groups_y, u32 groups_z)
{
glUseProgram(static_cast<const OGLShader*>(shader)->GetGLComputeProgramID());
if (uniforms_size > 0)
UploadUtilityUniforms(uniforms, uniforms_size);
glDispatchCompute(groups_x, groups_y, groups_z);
ProgramShaderCache::InvalidateLastProgram();
}
std::unique_ptr<VideoCommon::AsyncShaderCompiler> Renderer::CreateAsyncShaderCompiler()
{
return std::make_unique<SharedContextAsyncShaderCompiler>();
}
}