dolphin/Source/Core/VideoBackends/Vulkan/Renderer.cpp

1094 lines
39 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cstddef>
#include <cstdio>
#include <limits>
#include <string>
#include <tuple>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Core/Core.h"
#include "VideoBackends/Vulkan/BoundingBox.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/FramebufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/PostProcessing.h"
#include "VideoBackends/Vulkan/RasterFont.h"
#include "VideoBackends/Vulkan/Renderer.h"
#include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/StreamBuffer.h"
#include "VideoBackends/Vulkan/SwapChain.h"
#include "VideoBackends/Vulkan/TextureCache.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VKPipeline.h"
#include "VideoBackends/Vulkan/VKShader.h"
#include "VideoBackends/Vulkan/VKTexture.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
namespace Vulkan
{
Renderer::Renderer(std::unique_ptr<SwapChain> swap_chain)
: ::Renderer(swap_chain ? static_cast<int>(swap_chain->GetWidth()) : 1,
swap_chain ? static_cast<int>(swap_chain->GetHeight()) : 0,
swap_chain ? swap_chain->GetTextureFormat() : AbstractTextureFormat::Undefined),
m_swap_chain(std::move(swap_chain))
{
UpdateActiveConfig();
for (size_t i = 0; i < m_sampler_states.size(); i++)
m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex;
}
Renderer::~Renderer() = default;
Renderer* Renderer::GetInstance()
{
return static_cast<Renderer*>(g_renderer.get());
}
bool Renderer::IsHeadless() const
{
return m_swap_chain == nullptr;
}
bool Renderer::Initialize()
{
if (!::Renderer::Initialize())
return false;
BindEFBToStateTracker();
if (!CreateSemaphores())
{
PanicAlert("Failed to create semaphores.");
return false;
}
if (!CompileShaders())
{
PanicAlert("Failed to compile shaders.");
return false;
}
m_raster_font = std::make_unique<RasterFont>();
if (!m_raster_font->Initialize())
{
PanicAlert("Failed to initialize raster font.");
return false;
}
// Swap chain render pass.
if (m_swap_chain)
{
m_swap_chain_render_pass =
g_object_cache->GetRenderPass(m_swap_chain->GetSurfaceFormat().format, VK_FORMAT_UNDEFINED,
1, VK_ATTACHMENT_LOAD_OP_LOAD);
m_swap_chain_clear_render_pass =
g_object_cache->GetRenderPass(m_swap_chain->GetSurfaceFormat().format, VK_FORMAT_UNDEFINED,
1, VK_ATTACHMENT_LOAD_OP_CLEAR);
if (m_swap_chain_render_pass == VK_NULL_HANDLE ||
m_swap_chain_clear_render_pass == VK_NULL_HANDLE)
{
PanicAlert("Failed to create swap chain render passes.");
return false;
}
}
m_bounding_box = std::make_unique<BoundingBox>();
if (!m_bounding_box->Initialize())
{
PanicAlert("Failed to initialize bounding box.");
return false;
}
if (g_vulkan_context->SupportsBoundingBox())
{
// Bind bounding box to state tracker
StateTracker::GetInstance()->SetBBoxBuffer(m_bounding_box->GetGPUBuffer(),
m_bounding_box->GetGPUBufferOffset(),
m_bounding_box->GetGPUBufferSize());
}
// Initialize post processing.
m_post_processor = std::make_unique<VulkanPostProcessing>();
if (!static_cast<VulkanPostProcessing*>(m_post_processor.get())
->Initialize(m_raster_font->GetTexture()))
{
PanicAlert("failed to initialize post processor.");
return false;
}
// Various initialization routines will have executed commands on the command buffer.
// Execute what we have done before beginning the first frame.
g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
g_command_buffer_mgr->SubmitCommandBuffer(false);
BeginFrame();
return true;
}
void Renderer::Shutdown()
{
::Renderer::Shutdown();
// Submit the current command buffer, in case there's a partial frame.
StateTracker::GetInstance()->EndRenderPass();
g_command_buffer_mgr->ExecuteCommandBuffer(false, true);
DestroyShaders();
DestroySemaphores();
}
bool Renderer::CreateSemaphores()
{
// Create two semaphores, one that is triggered when the swapchain buffer is ready, another after
// submit and before present
VkSemaphoreCreateInfo semaphore_info = {
VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
0 // VkSemaphoreCreateFlags flags
};
VkResult res;
if ((res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr,
&m_image_available_semaphore)) != VK_SUCCESS ||
(res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr,
&m_rendering_finished_semaphore)) != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: ");
return false;
}
return true;
}
void Renderer::DestroySemaphores()
{
if (m_image_available_semaphore)
{
vkDestroySemaphore(g_vulkan_context->GetDevice(), m_image_available_semaphore, nullptr);
m_image_available_semaphore = VK_NULL_HANDLE;
}
if (m_rendering_finished_semaphore)
{
vkDestroySemaphore(g_vulkan_context->GetDevice(), m_rendering_finished_semaphore, nullptr);
m_rendering_finished_semaphore = VK_NULL_HANDLE;
}
}
std::unique_ptr<AbstractTexture> Renderer::CreateTexture(const TextureConfig& config)
{
return VKTexture::Create(config);
}
std::unique_ptr<AbstractStagingTexture> Renderer::CreateStagingTexture(StagingTextureType type,
const TextureConfig& config)
{
return VKStagingTexture::Create(type, config);
}
std::unique_ptr<AbstractShader> Renderer::CreateShaderFromSource(ShaderStage stage,
const char* source, size_t length)
{
return VKShader::CreateFromSource(stage, source, length);
}
std::unique_ptr<AbstractShader> Renderer::CreateShaderFromBinary(ShaderStage stage,
const void* data, size_t length)
{
return VKShader::CreateFromBinary(stage, data, length);
}
std::unique_ptr<AbstractPipeline> Renderer::CreatePipeline(const AbstractPipelineConfig& config)
{
return VKPipeline::Create(config);
}
std::unique_ptr<AbstractFramebuffer>
Renderer::CreateFramebuffer(const AbstractTexture* color_attachment,
const AbstractTexture* depth_attachment)
{
return VKFramebuffer::Create(static_cast<const VKTexture*>(color_attachment),
static_cast<const VKTexture*>(depth_attachment));
}
std::tuple<VkBuffer, u32> Renderer::UpdateUtilityUniformBuffer(const void* uniforms,
u32 uniforms_size)
{
StreamBuffer* ubo_buf = g_object_cache->GetUtilityShaderUniformBuffer();
if (!ubo_buf->ReserveMemory(uniforms_size, g_vulkan_context->GetUniformBufferAlignment()))
{
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
if (!ubo_buf->ReserveMemory(uniforms_size, g_vulkan_context->GetUniformBufferAlignment()))
{
PanicAlert("Failed to reserve uniform buffer space for utility draw.");
return {};
}
}
VkBuffer ubo = ubo_buf->GetBuffer();
u32 ubo_offset = static_cast<u32>(ubo_buf->GetCurrentOffset());
std::memcpy(ubo_buf->GetCurrentHostPointer(), uniforms, uniforms_size);
ubo_buf->CommitMemory(uniforms_size);
return std::tie(ubo, ubo_offset);
}
void Renderer::SetPipeline(const AbstractPipeline* pipeline)
{
StateTracker::GetInstance()->SetPipeline(static_cast<const VKPipeline*>(pipeline));
}
void Renderer::RenderText(const std::string& text, int left, int top, u32 color)
{
u32 backbuffer_width = m_swap_chain->GetWidth();
u32 backbuffer_height = m_swap_chain->GetHeight();
m_raster_font->PrintMultiLineText(m_swap_chain_render_pass, text,
left * 2.0f / static_cast<float>(backbuffer_width) - 1,
1 - top * 2.0f / static_cast<float>(backbuffer_height),
backbuffer_width, backbuffer_height, color);
}
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
if (type == EFBAccessType::PeekColor)
{
u32 color = FramebufferManager::GetInstance()->PeekEFBColor(x, y);
// a little-endian value is expected to be returned
color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000));
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode();
if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24)
{
color |= 0xFF000000;
}
if (alpha_read_mode.ReadMode == 2)
{
return color; // GX_READ_NONE
}
else if (alpha_read_mode.ReadMode == 1)
{
return color | 0xFF000000; // GX_READ_FF
}
else /*if(alpha_read_mode.ReadMode == 0)*/
{
return color & 0x00FFFFFF; // GX_READ_00
}
}
else // if (type == EFBAccessType::PeekZ)
{
// Depth buffer is inverted for improved precision near far plane
float depth = 1.0f - FramebufferManager::GetInstance()->PeekEFBDepth(x, y);
u32 ret = 0;
if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
ret = MathUtil::Clamp<u32>(static_cast<u32>(depth * 65536.0f), 0, 0xFFFF);
}
else
{
ret = MathUtil::Clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
}
return ret;
}
}
void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
{
if (type == EFBAccessType::PokeColor)
{
for (size_t i = 0; i < num_points; i++)
{
// Convert to expected format (BGRA->RGBA)
// TODO: Check alpha, depending on mode?
const EfbPokeData& point = points[i];
u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) |
((point.data << 16) & 0xFF0000));
FramebufferManager::GetInstance()->PokeEFBColor(point.x, point.y, color);
}
}
else // if (type == EFBAccessType::PokeZ)
{
for (size_t i = 0; i < num_points; i++)
{
// Convert to floating-point depth.
const EfbPokeData& point = points[i];
float depth = (1.0f - float(point.data & 0xFFFFFF) / 16777216.0f);
FramebufferManager::GetInstance()->PokeEFBDepth(point.x, point.y, depth);
}
}
}
u16 Renderer::BBoxRead(int index)
{
s32 value = m_bounding_box->Get(static_cast<size_t>(index));
// Here we get the min/max value of the truncated position of the upscaled framebuffer.
// So we have to correct them to the unscaled EFB sizes.
if (index < 2)
{
// left/right
value = value * EFB_WIDTH / m_target_width;
}
else
{
// up/down
value = value * EFB_HEIGHT / m_target_height;
}
// fix max values to describe the outer border
if (index & 1)
value++;
return static_cast<u16>(value);
}
void Renderer::BBoxWrite(int index, u16 value)
{
s32 scaled_value = static_cast<s32>(value);
// fix max values to describe the outer border
if (index & 1)
scaled_value--;
// scale to internal resolution
if (index < 2)
{
// left/right
scaled_value = scaled_value * m_target_width / EFB_WIDTH;
}
else
{
// up/down
scaled_value = scaled_value * m_target_height / EFB_HEIGHT;
}
m_bounding_box->Set(static_cast<size_t>(index), scaled_value);
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(rc.bottom);
return result;
}
void Renderer::BeginFrame()
{
// Activate a new command list, and restore state ready for the next draw
g_command_buffer_mgr->ActivateCommandBuffer();
// Ensure that the state tracker rebinds everything, and allocates a new set
// of descriptors out of the next pool.
StateTracker::GetInstance()->InvalidateDescriptorSets();
StateTracker::GetInstance()->InvalidateConstants();
StateTracker::GetInstance()->SetPendingRebind();
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable,
bool z_enable, u32 color, u32 z)
{
// Native -> EFB coordinates
TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc);
// Size we pass this size to vkBeginRenderPass, it has to be clamped to the framebuffer
// dimensions. The other backends just silently ignore this case.
target_rc.ClampUL(0, 0, m_target_width, m_target_height);
VkRect2D target_vk_rc = {
{target_rc.left, target_rc.top},
{static_cast<uint32_t>(target_rc.GetWidth()), static_cast<uint32_t>(target_rc.GetHeight())}};
// Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha
// channel to 0xFF. This hopefully allows us to use the fast path in most cases.
if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16 ||
bpmem.zcontrol.pixel_format == PEControl::RGB8_Z24 ||
bpmem.zcontrol.pixel_format == PEControl::Z24)
{
// Force alpha writes, and clear the alpha channel. This is different to the other backends,
// where the existing values of the alpha channel are preserved.
alpha_enable = true;
color &= 0x00FFFFFF;
}
// Convert RGBA8 -> floating-point values.
VkClearValue clear_color_value = {};
VkClearValue clear_depth_value = {};
clear_color_value.color.float32[0] = static_cast<float>((color >> 16) & 0xFF) / 255.0f;
clear_color_value.color.float32[1] = static_cast<float>((color >> 8) & 0xFF) / 255.0f;
clear_color_value.color.float32[2] = static_cast<float>((color >> 0) & 0xFF) / 255.0f;
clear_color_value.color.float32[3] = static_cast<float>((color >> 24) & 0xFF) / 255.0f;
clear_depth_value.depthStencil.depth = (1.0f - (static_cast<float>(z & 0xFFFFFF) / 16777216.0f));
// If we're not in a render pass (start of the frame), we can use a clear render pass
// to discard the data, rather than loading and then clearing.
bool use_clear_attachments = (color_enable && alpha_enable) || z_enable;
bool use_clear_render_pass =
!StateTracker::GetInstance()->InRenderPass() && color_enable && alpha_enable && z_enable;
// The NVIDIA Vulkan driver causes the GPU to lock up, or throw exceptions if MSAA is enabled,
// a non-full clear rect is specified, and a clear loadop or vkCmdClearAttachments is used.
if (g_ActiveConfig.iMultisamples > 1 &&
DriverDetails::HasBug(DriverDetails::BUG_BROKEN_MSAA_CLEAR))
{
use_clear_render_pass = false;
use_clear_attachments = false;
}
// This path cannot be used if the driver implementation doesn't guarantee pixels with no drawn
// geometry in "this" renderpass won't be cleared
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_CLEAR_LOADOP_RENDERPASS))
use_clear_render_pass = false;
// Fastest path: Use a render pass to clear the buffers.
if (use_clear_render_pass)
{
const std::array<VkClearValue, 2> clear_values = {{clear_color_value, clear_depth_value}};
StateTracker::GetInstance()->BeginClearRenderPass(target_vk_rc, clear_values.data(),
static_cast<u32>(clear_values.size()));
return;
}
// Fast path: Use vkCmdClearAttachments to clear the buffers within a render path
// We can't use this when preserving alpha but clearing color.
if (use_clear_attachments)
{
VkClearAttachment clear_attachments[2];
uint32_t num_clear_attachments = 0;
if (color_enable && alpha_enable)
{
clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
clear_attachments[num_clear_attachments].colorAttachment = 0;
clear_attachments[num_clear_attachments].clearValue = clear_color_value;
num_clear_attachments++;
color_enable = false;
alpha_enable = false;
}
if (z_enable)
{
clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
clear_attachments[num_clear_attachments].colorAttachment = 0;
clear_attachments[num_clear_attachments].clearValue = clear_depth_value;
num_clear_attachments++;
z_enable = false;
}
if (num_clear_attachments > 0)
{
VkClearRect vk_rect = {target_vk_rc, 0, FramebufferManager::GetInstance()->GetEFBLayers()};
if (!StateTracker::GetInstance()->IsWithinRenderArea(
target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width,
target_vk_rc.extent.height))
{
StateTracker::GetInstance()->EndClearRenderPass();
}
StateTracker::GetInstance()->BeginRenderPass();
vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_clear_attachments,
clear_attachments, 1, &vk_rect);
}
}
// Anything left over for the slow path?
if (!color_enable && !alpha_enable && !z_enable)
return;
// Clearing must occur within a render pass.
if (!StateTracker::GetInstance()->IsWithinRenderArea(target_vk_rc.offset.x, target_vk_rc.offset.y,
target_vk_rc.extent.width,
target_vk_rc.extent.height))
{
StateTracker::GetInstance()->EndClearRenderPass();
}
StateTracker::GetInstance()->BeginRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
// Mask away the appropriate colors and use a shader
BlendingState blend_state = RenderState::GetNoBlendingBlendState();
blend_state.colorupdate = color_enable;
blend_state.alphaupdate = alpha_enable;
DepthState depth_state = RenderState::GetNoDepthTestingDepthStencilState();
depth_state.testenable = z_enable;
depth_state.updateenable = z_enable;
depth_state.func = ZMode::ALWAYS;
// No need to start a new render pass, but we do need to restore viewport state
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
FramebufferManager::GetInstance()->GetEFBLoadRenderPass(),
g_shader_cache->GetPassthroughVertexShader(),
g_shader_cache->GetPassthroughGeometryShader(), m_clear_fragment_shader);
draw.SetMultisamplingState(FramebufferManager::GetInstance()->GetEFBMultisamplingState());
draw.SetDepthState(depth_state);
draw.SetBlendState(blend_state);
draw.DrawColoredQuad(target_rc.left, target_rc.top, target_rc.GetWidth(), target_rc.GetHeight(),
clear_color_value.color.float32[0], clear_color_value.color.float32[1],
clear_color_value.color.float32[2], clear_color_value.color.float32[3],
clear_depth_value.depthStencil.depth);
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
FramebufferManager::GetInstance()->ReinterpretPixelData(convtype);
// EFB framebuffer has now changed, so update accordingly.
BindEFBToStateTracker();
}
void Renderer::SwapImpl(AbstractTexture* texture, const EFBRectangle& xfb_region, u64 ticks)
{
// Pending/batched EFB pokes should be included in the final image.
FramebufferManager::GetInstance()->FlushEFBPokes();
auto* xfb_texture = static_cast<VKTexture*>(texture);
// End the current render pass.
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->OnEndFrame();
// Handle host window resizes.
CheckForSurfaceChange();
CheckForSurfaceResize();
// There are a few variables which can alter the final window draw rectangle, and some of them
// are determined by guest state. Currently, the only way to catch these is to update every frame.
UpdateDrawRectangle();
// Ensure the worker thread is not still submitting a previous command buffer.
// In other words, the last frame has been submitted (otherwise the next call would
// be a race, as the image may not have been consumed yet).
g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
// Draw to the screen if we have a swap chain.
if (m_swap_chain)
{
DrawScreen(xfb_texture, xfb_region);
// Submit the current command buffer, signaling rendering finished semaphore when it's done
// Because this final command buffer is rendering to the swap chain, we need to wait for
// the available semaphore to be signaled before executing the buffer. This final submission
// can happen off-thread in the background while we're preparing the next frame.
g_command_buffer_mgr->SubmitCommandBuffer(
true, m_image_available_semaphore, m_rendering_finished_semaphore,
m_swap_chain->GetSwapChain(), m_swap_chain->GetCurrentImageIndex());
}
else
{
// No swap chain, just execute command buffer.
g_command_buffer_mgr->SubmitCommandBuffer(true);
}
// NOTE: It is important that no rendering calls are made to the EFB between submitting the
// (now-previous) frame and after the below config checks are completed. If the target size
// changes, as the resize methods to not defer the destruction of the framebuffer, the current
// command buffer will contain references to a now non-existent framebuffer.
// Prep for the next frame (get command buffer ready) before doing anything else.
BeginFrame();
// Restore the EFB color texture to color attachment ready for rendering the next frame.
FramebufferManager::GetInstance()->GetEFBColorTexture()->TransitionToLayout(
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
RestoreAPIState();
// Determine what (if anything) has changed in the config.
CheckForConfigChanges();
// Clean up stale textures.
TextureCache::GetInstance()->Cleanup(frameCount);
}
void Renderer::DrawScreen(VKTexture* xfb_texture, const EFBRectangle& xfb_region)
{
VkResult res;
if (!g_command_buffer_mgr->CheckLastPresentFail())
{
// Grab the next image from the swap chain in preparation for drawing the window.
res = m_swap_chain->AcquireNextImage(m_image_available_semaphore);
}
else
{
// If the last present failed, we need to recreate the swap chain.
res = VK_ERROR_OUT_OF_DATE_KHR;
}
if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR)
{
// There's an issue here. We can't resize the swap chain while the GPU is still busy with it,
// but calling WaitForGPUIdle would create a deadlock as PrepareToSubmitCommandBuffer has been
// called by SwapImpl. WaitForGPUIdle waits on the semaphore, which PrepareToSubmitCommandBuffer
// has already done, so it blocks indefinitely. To work around this, we submit the current
// command buffer, resize the swap chain (which calls WaitForGPUIdle), and then finally call
// PrepareToSubmitCommandBuffer to return to the state that the caller expects.
g_command_buffer_mgr->SubmitCommandBuffer(false);
m_swap_chain->ResizeSwapChain();
BeginFrame();
g_command_buffer_mgr->PrepareToSubmitCommandBuffer();
res = m_swap_chain->AcquireNextImage(m_image_available_semaphore);
}
if (res != VK_SUCCESS)
PanicAlert("Failed to grab image from swap chain");
// Transition from undefined (or present src, but it can be substituted) to
// color attachment ready for writing. These transitions must occur outside
// a render pass, unless the render pass declares a self-dependency.
Texture2D* backbuffer = m_swap_chain->GetCurrentTexture();
backbuffer->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED);
backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
m_current_framebuffer = nullptr;
m_current_framebuffer_width = backbuffer->GetWidth();
m_current_framebuffer_height = backbuffer->GetHeight();
// Draw to the backbuffer.
VkRect2D region = {{0, 0}, {backbuffer->GetWidth(), backbuffer->GetHeight()}};
StateTracker::GetInstance()->SetRenderPass(m_swap_chain_render_pass,
m_swap_chain_clear_render_pass);
StateTracker::GetInstance()->SetFramebuffer(m_swap_chain->GetCurrentFramebuffer(), region);
// Begin render pass for rendering to the swap chain.
VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
StateTracker::GetInstance()->BeginClearRenderPass(region, &clear_value, 1);
// Draw
BlitScreen(m_swap_chain_render_pass, GetTargetRectangle(), xfb_region,
xfb_texture->GetRawTexIdentifier());
// Draw OSD
Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0,
backbuffer->GetWidth(), backbuffer->GetHeight());
DrawDebugText();
OSD::DoCallbacks(OSD::CallbackType::OnFrame);
OSD::DrawMessages();
// End drawing to backbuffer
StateTracker::GetInstance()->EndRenderPass();
// Transition the backbuffer to PRESENT_SRC to ensure all commands drawing
// to it have finished before present.
backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR);
}
void Renderer::BlitScreen(VkRenderPass render_pass, const TargetRectangle& dst_rect,
const TargetRectangle& src_rect, const Texture2D* src_tex)
{
VulkanPostProcessing* post_processor = static_cast<VulkanPostProcessing*>(m_post_processor.get());
if (g_ActiveConfig.stereo_mode == StereoMode::SBS ||
g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
TargetRectangle left_rect;
TargetRectangle right_rect;
std::tie(left_rect, right_rect) = ConvertStereoRectangle(dst_rect);
post_processor->BlitFromTexture(left_rect, src_rect, src_tex, 0, render_pass);
post_processor->BlitFromTexture(right_rect, src_rect, src_tex, 1, render_pass);
}
else if (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer)
{
post_processor->BlitFromTexture(dst_rect, src_rect, src_tex, -1, render_pass);
}
else
{
post_processor->BlitFromTexture(dst_rect, src_rect, src_tex, 0, render_pass);
}
}
void Renderer::CheckForSurfaceChange()
{
if (!m_surface_changed.TestAndClear() || !m_swap_chain)
return;
// Submit the current draws up until rendering the XFB.
g_command_buffer_mgr->ExecuteCommandBuffer(false, false);
g_command_buffer_mgr->WaitForGPUIdle();
// Clear the present failed flag, since we don't want to resize after recreating.
g_command_buffer_mgr->CheckLastPresentFail();
// Recreate the surface. If this fails we're in trouble.
if (!m_swap_chain->RecreateSurface(m_new_surface_handle))
PanicAlert("Failed to recreate Vulkan surface. Cannot continue.");
m_new_surface_handle = nullptr;
// Handle case where the dimensions are now different.
OnSwapChainResized();
}
void Renderer::CheckForSurfaceResize()
{
if (!m_surface_resized.TestAndClear())
return;
// If we don't have a surface, how can we resize the swap chain?
// CheckForSurfaceChange should handle this case.
if (!m_swap_chain)
{
WARN_LOG(VIDEO, "Surface resize event received without active surface, ignoring");
return;
}
// Wait for the GPU to catch up since we're going to destroy the swap chain.
g_command_buffer_mgr->ExecuteCommandBuffer(false, false);
g_command_buffer_mgr->WaitForGPUIdle();
// Clear the present failed flag, since we don't want to resize after recreating.
g_command_buffer_mgr->CheckLastPresentFail();
// Resize the swap chain.
m_swap_chain->RecreateSwapChain();
OnSwapChainResized();
}
void Renderer::CheckForConfigChanges()
{
// Save the video config so we can compare against to determine which settings have changed.
const u32 old_multisamples = g_ActiveConfig.iMultisamples;
const int old_anisotropy = g_ActiveConfig.iMaxAnisotropy;
const bool old_force_filtering = g_ActiveConfig.bForceFiltering;
// Copy g_Config to g_ActiveConfig.
// NOTE: This can potentially race with the UI thread, however if it does, the changes will be
// delayed until the next time CheckForConfigChanges is called.
UpdateActiveConfig();
// Determine which (if any) settings have changed.
const bool multisamples_changed = old_multisamples != g_ActiveConfig.iMultisamples;
const bool anisotropy_changed = old_anisotropy != g_ActiveConfig.iMaxAnisotropy;
const bool force_texture_filtering_changed =
old_force_filtering != g_ActiveConfig.bForceFiltering;
// Update texture cache settings with any changed options.
TextureCache::GetInstance()->OnConfigChanged(g_ActiveConfig);
// Handle settings that can cause the EFB framebuffer to change.
if (CalculateTargetSize() || multisamples_changed)
RecreateEFBFramebuffer();
// MSAA samples changed, we need to recreate the EFB render pass.
// If the stereoscopy mode changed, we need to recreate the buffers as well.
// SSAA changed on/off, we have to recompile shaders.
// Changing stereoscopy from off<->on also requires shaders to be recompiled.
if (CheckForHostConfigChanges())
{
RecreateEFBFramebuffer();
RecompileShaders();
FramebufferManager::GetInstance()->RecompileShaders();
g_shader_cache->ReloadPipelineCache();
g_shader_cache->RecompileSharedShaders();
}
// For vsync, we need to change the present mode, which means recreating the swap chain.
if (m_swap_chain && g_ActiveConfig.IsVSync() != m_swap_chain->IsVSyncEnabled())
{
g_command_buffer_mgr->WaitForGPUIdle();
m_swap_chain->SetVSync(g_ActiveConfig.IsVSync());
}
// For quad-buffered stereo we need to change the layer count, so recreate the swap chain.
if (m_swap_chain &&
(g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer) != m_swap_chain->IsStereoEnabled())
{
g_command_buffer_mgr->WaitForGPUIdle();
m_swap_chain->RecreateSwapChain();
}
// Wipe sampler cache if force texture filtering or anisotropy changes.
if (anisotropy_changed || force_texture_filtering_changed)
ResetSamplerStates();
// Check for a changed post-processing shader and recompile if needed.
static_cast<VulkanPostProcessing*>(m_post_processor.get())->UpdateConfig();
}
void Renderer::OnSwapChainResized()
{
m_backbuffer_width = m_swap_chain->GetWidth();
m_backbuffer_height = m_swap_chain->GetHeight();
}
void Renderer::BindEFBToStateTracker()
{
// Update framebuffer in state tracker
VkRect2D framebuffer_size = {{0, 0},
{FramebufferManager::GetInstance()->GetEFBWidth(),
FramebufferManager::GetInstance()->GetEFBHeight()}};
StateTracker::GetInstance()->SetRenderPass(
FramebufferManager::GetInstance()->GetEFBLoadRenderPass(),
FramebufferManager::GetInstance()->GetEFBClearRenderPass());
StateTracker::GetInstance()->SetFramebuffer(
FramebufferManager::GetInstance()->GetEFBFramebuffer(), framebuffer_size);
m_current_framebuffer = nullptr;
m_current_framebuffer_width = FramebufferManager::GetInstance()->GetEFBWidth();
m_current_framebuffer_height = FramebufferManager::GetInstance()->GetEFBHeight();
}
void Renderer::RecreateEFBFramebuffer()
{
// Ensure the GPU is finished with the current EFB textures.
g_command_buffer_mgr->WaitForGPUIdle();
FramebufferManager::GetInstance()->RecreateEFBFramebuffer();
BindEFBToStateTracker();
// Viewport and scissor rect have to be reset since they will be scaled differently.
BPFunctions::SetViewport();
BPFunctions::SetScissor();
}
void Renderer::ApplyState()
{
}
void Renderer::ResetAPIState()
{
// End the EFB render pass if active
StateTracker::GetInstance()->EndRenderPass();
}
void Renderer::RestoreAPIState()
{
StateTracker::GetInstance()->EndRenderPass();
if (m_current_framebuffer)
static_cast<const VKFramebuffer*>(m_current_framebuffer)->TransitionForSample();
BindEFBToStateTracker();
BPFunctions::SetViewport();
BPFunctions::SetScissor();
// Instruct the state tracker to re-bind everything before the next draw
StateTracker::GetInstance()->SetPendingRebind();
}
void Renderer::BindFramebuffer(const VKFramebuffer* fb)
{
const VkRect2D render_area = {static_cast<int>(fb->GetWidth()),
static_cast<int>(fb->GetHeight())};
StateTracker::GetInstance()->EndRenderPass();
if (m_current_framebuffer)
static_cast<const VKFramebuffer*>(m_current_framebuffer)->TransitionForSample();
fb->TransitionForRender();
StateTracker::GetInstance()->SetFramebuffer(fb->GetFB(), render_area);
StateTracker::GetInstance()->SetRenderPass(fb->GetLoadRenderPass(), fb->GetClearRenderPass());
m_current_framebuffer = fb;
m_current_framebuffer_width = fb->GetWidth();
m_current_framebuffer_height = fb->GetHeight();
}
void Renderer::SetFramebuffer(const AbstractFramebuffer* framebuffer)
{
const VKFramebuffer* vkfb = static_cast<const VKFramebuffer*>(framebuffer);
BindFramebuffer(vkfb);
StateTracker::GetInstance()->BeginRenderPass();
}
void Renderer::SetAndDiscardFramebuffer(const AbstractFramebuffer* framebuffer)
{
const VKFramebuffer* vkfb = static_cast<const VKFramebuffer*>(framebuffer);
BindFramebuffer(vkfb);
// If we're discarding, begin the discard pass, then switch to a load pass.
// This way if the command buffer is flushed, we don't start another discard pass.
StateTracker::GetInstance()->SetRenderPass(vkfb->GetDiscardRenderPass(),
vkfb->GetClearRenderPass());
StateTracker::GetInstance()->BeginRenderPass();
StateTracker::GetInstance()->SetRenderPass(vkfb->GetLoadRenderPass(), vkfb->GetClearRenderPass());
}
void Renderer::SetAndClearFramebuffer(const AbstractFramebuffer* framebuffer,
const ClearColor& color_value, float depth_value)
{
const VKFramebuffer* vkfb = static_cast<const VKFramebuffer*>(framebuffer);
BindFramebuffer(vkfb);
const VkRect2D render_area = {static_cast<int>(vkfb->GetWidth()),
static_cast<int>(vkfb->GetHeight())};
std::array<VkClearValue, 2> clear_values;
u32 num_clear_values = 0;
if (vkfb->GetColorFormat() != AbstractTextureFormat::Undefined)
{
std::memcpy(clear_values[num_clear_values].color.float32, color_value.data(),
sizeof(clear_values[num_clear_values].color.float32));
num_clear_values++;
}
if (vkfb->GetDepthFormat() != AbstractTextureFormat::Undefined)
{
clear_values[num_clear_values].depthStencil.depth = depth_value;
clear_values[num_clear_values].depthStencil.stencil = 0;
num_clear_values++;
}
StateTracker::GetInstance()->BeginClearRenderPass(render_area, clear_values.data(),
num_clear_values);
}
void Renderer::SetTexture(u32 index, const AbstractTexture* texture)
{
// Texture should always be in SHADER_READ_ONLY layout prior to use.
// This is so we don't need to transition during render passes.
auto* tex = texture ? static_cast<const VKTexture*>(texture)->GetRawTexIdentifier() : nullptr;
DEBUG_ASSERT(!tex || tex->GetLayout() == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
StateTracker::GetInstance()->SetTexture(index, tex ? tex->GetView() : VK_NULL_HANDLE);
}
void Renderer::SetSamplerState(u32 index, const SamplerState& state)
{
// Skip lookup if the state hasn't changed.
if (m_sampler_states[index].hex == state.hex)
return;
// Look up new state and replace in state tracker.
VkSampler sampler = g_object_cache->GetSampler(state);
if (sampler == VK_NULL_HANDLE)
{
ERROR_LOG(VIDEO, "Failed to create sampler");
sampler = g_object_cache->GetPointSampler();
}
StateTracker::GetInstance()->SetSampler(index, sampler);
m_sampler_states[index].hex = state.hex;
}
void Renderer::UnbindTexture(const AbstractTexture* texture)
{
StateTracker::GetInstance()->UnbindTexture(
static_cast<const VKTexture*>(texture)->GetRawTexIdentifier()->GetView());
}
void Renderer::ResetSamplerStates()
{
// Ensure none of the sampler objects are in use.
// This assumes that none of the samplers are in use on the command list currently being recorded.
g_command_buffer_mgr->WaitForGPUIdle();
// Invalidate all sampler states, next draw will re-initialize them.
for (size_t i = 0; i < m_sampler_states.size(); i++)
{
m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex;
StateTracker::GetInstance()->SetSampler(i, g_object_cache->GetPointSampler());
}
// Invalidate all sampler objects (some will be unused now).
g_object_cache->ClearSamplerCache();
}
void Renderer::SetInterlacingMode()
{
}
void Renderer::SetScissorRect(const MathUtil::Rectangle<int>& rc)
{
VkRect2D scissor = {{rc.left, rc.top},
{static_cast<u32>(rc.GetWidth()), static_cast<u32>(rc.GetHeight())}};
StateTracker::GetInstance()->SetScissor(scissor);
}
void Renderer::SetViewport(float x, float y, float width, float height, float near_depth,
float far_depth)
{
VkViewport viewport = {x, y, std::max(width, 1.0f), std::max(height, 1.0f),
near_depth, far_depth};
StateTracker::GetInstance()->SetViewport(viewport);
}
void Renderer::Draw(u32 base_vertex, u32 num_vertices)
{
if (StateTracker::GetInstance()->Bind())
return;
vkCmdDraw(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_vertices, 1, base_vertex, 0);
}
void Renderer::DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex)
{
if (!StateTracker::GetInstance()->Bind())
return;
vkCmdDrawIndexed(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_indices, 1, base_index,
base_vertex, 0);
}
void Renderer::RecompileShaders()
{
DestroyShaders();
if (!CompileShaders())
PanicAlert("Failed to recompile shaders.");
}
bool Renderer::CompileShaders()
{
static const char CLEAR_FRAGMENT_SHADER_SOURCE[] = R"(
layout(location = 0) in float3 uv0;
layout(location = 1) in float4 col0;
layout(location = 0) out float4 ocol0;
void main()
{
ocol0 = col0;
}
)";
std::string source = g_shader_cache->GetUtilityShaderHeader() + CLEAR_FRAGMENT_SHADER_SOURCE;
m_clear_fragment_shader = Util::CompileAndCreateFragmentShader(source);
return m_clear_fragment_shader != VK_NULL_HANDLE;
}
void Renderer::DestroyShaders()
{
auto DestroyShader = [this](VkShaderModule& shader) {
if (shader != VK_NULL_HANDLE)
{
vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr);
shader = VK_NULL_HANDLE;
}
};
DestroyShader(m_clear_fragment_shader);
}
} // namespace Vulkan