dolphin/Source/Core/DiscIO/VolumeWii.cpp

422 lines
13 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "DiscIO/VolumeWii.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstring>
#include <map>
#include <mbedtls/aes.h>
#include <mbedtls/sha1.h>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/Swap.h"
#include "DiscIO/Blob.h"
#include "DiscIO/DiscExtractor.h"
#include "DiscIO/Enums.h"
#include "DiscIO/Filesystem.h"
#include "DiscIO/Volume.h"
namespace DiscIO
{
constexpr u64 PARTITION_DATA_OFFSET = 0x20000;
VolumeWii::VolumeWii(std::unique_ptr<BlobReader> reader)
: m_pReader(std::move(reader)), m_game_partition(PARTITION_NONE),
m_last_decrypted_block(UINT64_MAX)
{
_assert_(m_pReader);
if (m_pReader->ReadSwapped<u32>(0x60) != u32(0))
{
// No partitions - just read unencrypted data like with a GC disc
return;
}
for (u32 partition_group = 0; partition_group < 4; ++partition_group)
{
const std::optional<u32> number_of_partitions =
m_pReader->ReadSwapped<u32>(0x40000 + (partition_group * 8));
if (!number_of_partitions)
continue;
const std::optional<u64> partition_table_offset =
ReadSwappedAndShifted(0x40000 + (partition_group * 8) + 4, PARTITION_NONE);
if (!partition_table_offset)
continue;
for (u32 i = 0; i < number_of_partitions; i++)
{
const std::optional<u64> partition_offset =
ReadSwappedAndShifted(*partition_table_offset + (i * 8), PARTITION_NONE);
if (!partition_offset)
continue;
const Partition partition(*partition_offset);
const std::optional<u32> partition_type =
m_pReader->ReadSwapped<u32>(*partition_table_offset + (i * 8) + 4);
if (!partition_type)
continue;
// If this is the game partition, set m_game_partition
if (m_game_partition == PARTITION_NONE && *partition_type == 0)
m_game_partition = partition;
auto get_ticket = [this, partition]() -> IOS::ES::TicketReader {
std::vector<u8> ticket_buffer(sizeof(IOS::ES::Ticket));
if (!m_pReader->Read(partition.offset, ticket_buffer.size(), ticket_buffer.data()))
return INVALID_TICKET;
return IOS::ES::TicketReader{std::move(ticket_buffer)};
};
auto get_tmd = [this, partition]() -> IOS::ES::TMDReader {
const std::optional<u32> tmd_size = m_pReader->ReadSwapped<u32>(partition.offset + 0x2a4);
const std::optional<u64> tmd_address =
ReadSwappedAndShifted(partition.offset + 0x2a8, PARTITION_NONE);
if (!tmd_size || !tmd_address)
return INVALID_TMD;
if (!IOS::ES::IsValidTMDSize(*tmd_size))
{
// This check is normally done by ES in ES_DiVerify, but that would happen too late
// (after allocating the buffer), so we do the check here.
PanicAlert("Invalid TMD size");
return INVALID_TMD;
}
std::vector<u8> tmd_buffer(*tmd_size);
if (!m_pReader->Read(partition.offset + *tmd_address, *tmd_size, tmd_buffer.data()))
return INVALID_TMD;
return IOS::ES::TMDReader{std::move(tmd_buffer)};
};
auto get_key = [this, partition]() -> std::unique_ptr<mbedtls_aes_context> {
const IOS::ES::TicketReader& ticket = *m_partitions[partition].ticket;
if (!ticket.IsValid())
return nullptr;
const std::array<u8, 16> key = ticket.GetTitleKey();
std::unique_ptr<mbedtls_aes_context> aes_context = std::make_unique<mbedtls_aes_context>();
mbedtls_aes_setkey_dec(aes_context.get(), key.data(), 128);
return aes_context;
};
m_partitions.emplace(
partition, PartitionDetails{Common::Lazy<std::unique_ptr<mbedtls_aes_context>>(get_key),
Common::Lazy<IOS::ES::TicketReader>(get_ticket),
Common::Lazy<IOS::ES::TMDReader>(get_tmd), *partition_type});
}
}
}
VolumeWii::~VolumeWii()
{
}
bool VolumeWii::Read(u64 _ReadOffset, u64 _Length, u8* _pBuffer, const Partition& partition) const
{
if (partition == PARTITION_NONE)
return m_pReader->Read(_ReadOffset, _Length, _pBuffer);
if (m_pReader->SupportsReadWiiDecrypted())
return m_pReader->ReadWiiDecrypted(_ReadOffset, _Length, _pBuffer, partition.offset);
// Get the decryption key for the partition
auto it = m_partitions.find(partition);
if (it == m_partitions.end())
return false;
mbedtls_aes_context* aes_context = it->second.key->get();
if (!aes_context)
return false;
std::vector<u8> read_buffer(BLOCK_TOTAL_SIZE);
while (_Length > 0)
{
// Calculate offsets
u64 block_offset_on_disc =
partition.offset + PARTITION_DATA_OFFSET + _ReadOffset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE;
u64 data_offset_in_block = _ReadOffset % BLOCK_DATA_SIZE;
if (m_last_decrypted_block != block_offset_on_disc)
{
// Read the current block
if (!m_pReader->Read(block_offset_on_disc, BLOCK_TOTAL_SIZE, read_buffer.data()))
return false;
// Decrypt the block's data.
// 0x3D0 - 0x3DF in read_buffer will be overwritten,
// but that won't affect anything, because we won't
// use the content of read_buffer anymore after this
mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, BLOCK_DATA_SIZE, &read_buffer[0x3D0],
&read_buffer[BLOCK_HEADER_SIZE], m_last_decrypted_block_data);
m_last_decrypted_block = block_offset_on_disc;
// The only thing we currently use from the 0x000 - 0x3FF part
// of the block is the IV (at 0x3D0), but it also contains SHA-1
// hashes that IOS uses to check that discs aren't tampered with.
// http://wiibrew.org/wiki/Wii_Disc#Encrypted
}
// Copy the decrypted data
u64 copy_size = std::min(_Length, BLOCK_DATA_SIZE - data_offset_in_block);
memcpy(_pBuffer, &m_last_decrypted_block_data[data_offset_in_block],
static_cast<size_t>(copy_size));
// Update offsets
_Length -= copy_size;
_pBuffer += copy_size;
_ReadOffset += copy_size;
}
return true;
}
std::vector<Partition> VolumeWii::GetPartitions() const
{
std::vector<Partition> partitions;
for (const auto& pair : m_partitions)
partitions.push_back(pair.first);
return partitions;
}
Partition VolumeWii::GetGamePartition() const
{
return m_game_partition;
}
std::optional<u32> VolumeWii::GetPartitionType(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? it->second.type : std::optional<u32>();
}
std::optional<u64> VolumeWii::GetTitleID(const Partition& partition) const
{
const IOS::ES::TicketReader& ticket = GetTicket(partition);
if (!ticket.IsValid())
return {};
return ticket.GetTitleId();
}
const IOS::ES::TicketReader& VolumeWii::GetTicket(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? *it->second.ticket : INVALID_TICKET;
}
const IOS::ES::TMDReader& VolumeWii::GetTMD(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? *it->second.tmd : INVALID_TMD;
}
u64 VolumeWii::PartitionOffsetToRawOffset(u64 offset, const Partition& partition)
{
if (partition == PARTITION_NONE)
return offset;
return partition.offset + PARTITION_DATA_OFFSET + (offset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE) +
(offset % BLOCK_DATA_SIZE);
}
std::string VolumeWii::GetGameID(const Partition& partition) const
{
char ID[6];
if (!Read(0, 6, (u8*)ID, partition))
return std::string();
return DecodeString(ID);
}
Region VolumeWii::GetRegion() const
{
const std::optional<u32> region_code = m_pReader->ReadSwapped<u32>(0x4E000);
if (!region_code)
return Region::UNKNOWN_REGION;
const Region region = static_cast<Region>(*region_code);
return region <= Region::NTSC_K ? region : Region::UNKNOWN_REGION;
}
Country VolumeWii::GetCountry(const Partition& partition) const
{
// The 0 that we use as a default value is mapped to COUNTRY_UNKNOWN and UNKNOWN_REGION
u8 country_byte = ReadSwapped<u8>(3, partition).value_or(0);
const Region region = GetRegion();
if (RegionSwitchWii(country_byte) != region)
return TypicalCountryForRegion(region);
return CountrySwitch(country_byte);
}
std::string VolumeWii::GetMakerID(const Partition& partition) const
{
char makerID[2];
if (!Read(0x4, 0x2, (u8*)&makerID, partition))
return std::string();
return DecodeString(makerID);
}
std::optional<u16> VolumeWii::GetRevision(const Partition& partition) const
{
std::optional<u8> revision = ReadSwapped<u8>(7, partition);
return revision ? *revision : std::optional<u16>();
}
std::string VolumeWii::GetInternalName(const Partition& partition) const
{
char name_buffer[0x60];
if (Read(0x20, 0x60, (u8*)&name_buffer, partition))
return DecodeString(name_buffer);
return "";
}
std::map<Language, std::string> VolumeWii::GetLongNames() const
{
std::unique_ptr<FileSystem> file_system(CreateFileSystem(this, GetGamePartition()));
if (!file_system)
return {};
std::vector<u8> opening_bnr(NAMES_TOTAL_BYTES);
std::unique_ptr<FileInfo> file_info = file_system->FindFileInfo("opening.bnr");
opening_bnr.resize(ReadFile(*this, GetGamePartition(), file_info.get(), opening_bnr.data(),
opening_bnr.size(), 0x5C));
return ReadWiiNames(opening_bnr);
}
std::vector<u32> VolumeWii::GetBanner(int* width, int* height) const
{
*width = 0;
*height = 0;
const std::optional<u64> title_id = GetTitleID(GetGamePartition());
if (!title_id)
return std::vector<u32>();
return GetWiiBanner(width, height, *title_id);
}
std::string VolumeWii::GetApploaderDate(const Partition& partition) const
{
char date[16];
if (!Read(0x2440, 0x10, (u8*)&date, partition))
return std::string();
return DecodeString(date);
}
Platform VolumeWii::GetVolumeType() const
{
return Platform::WII_DISC;
}
std::optional<u8> VolumeWii::GetDiscNumber(const Partition& partition) const
{
return ReadSwapped<u8>(6, partition);
}
BlobType VolumeWii::GetBlobType() const
{
return m_pReader->GetBlobType();
}
u64 VolumeWii::GetSize() const
{
return m_pReader->GetDataSize();
}
u64 VolumeWii::GetRawSize() const
{
return m_pReader->GetRawSize();
}
bool VolumeWii::CheckIntegrity(const Partition& partition) const
{
// Get the decryption key for the partition
auto it = m_partitions.find(partition);
if (it == m_partitions.end())
return false;
mbedtls_aes_context* aes_context = it->second.key->get();
if (!aes_context)
return false;
// Get partition data size
u32 partSizeDiv4;
m_pReader->Read(partition.offset + 0x2BC, 4, (u8*)&partSizeDiv4);
u64 partDataSize = (u64)Common::swap32(partSizeDiv4) * 4;
u32 nClusters = (u32)(partDataSize / 0x8000);
for (u32 clusterID = 0; clusterID < nClusters; ++clusterID)
{
u64 clusterOff = partition.offset + PARTITION_DATA_OFFSET + (u64)clusterID * 0x8000;
// Read and decrypt the cluster metadata
u8 clusterMDCrypted[0x400];
u8 clusterMD[0x400];
u8 IV[16] = {0};
if (!m_pReader->Read(clusterOff, 0x400, clusterMDCrypted))
{
WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read metadata", clusterID);
return false;
}
mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, 0x400, IV, clusterMDCrypted, clusterMD);
// Some clusters have invalid data and metadata because they aren't
// meant to be read by the game (for example, holes between files). To
// try to avoid reporting errors because of these clusters, we check
// the 0x00 paddings in the metadata.
//
// This may cause some false negatives though: some bad clusters may be
// skipped because they are *too* bad and are not even recognized as
// valid clusters. To be improved.
bool meaningless = false;
for (u32 idx = 0x26C; idx < 0x280; ++idx)
if (clusterMD[idx] != 0)
meaningless = true;
if (meaningless)
continue;
u8 clusterData[0x7C00];
if (!Read((u64)clusterID * 0x7C00, 0x7C00, clusterData, partition))
{
WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read data", clusterID);
return false;
}
for (u32 hashID = 0; hashID < 31; ++hashID)
{
u8 hash[20];
mbedtls_sha1(clusterData + hashID * 0x400, 0x400, hash);
// Note that we do not use strncmp here
if (memcmp(hash, clusterMD + hashID * 20, 20))
{
WARN_LOG(DISCIO, "Integrity Check: fail at cluster %d: hash %d is invalid", clusterID,
hashID);
return false;
}
}
}
return true;
}
} // namespace