101 lines
3.4 KiB
C++
101 lines
3.4 KiB
C++
// Copyright 2014 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <limits>
|
|
#include <random>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "Common/MathUtil.h"
|
|
|
|
TEST(MathUtil, Clamp)
|
|
{
|
|
EXPECT_EQ(1, MathUtil::Clamp(1, 0, 2));
|
|
EXPECT_EQ(1.0, MathUtil::Clamp(1.0, 0.0, 2.0));
|
|
|
|
EXPECT_EQ(2, MathUtil::Clamp(4, 0, 2));
|
|
EXPECT_EQ(2.0, MathUtil::Clamp(4.0, 0.0, 2.0));
|
|
|
|
EXPECT_EQ(0, MathUtil::Clamp(-1, 0, 2));
|
|
EXPECT_EQ(0.0, MathUtil::Clamp(-1.0, 0.0, 2.0));
|
|
}
|
|
|
|
TEST(MathUtil, IsINF)
|
|
{
|
|
EXPECT_TRUE(MathUtil::IsINF(+std::numeric_limits<double>::infinity()));
|
|
EXPECT_TRUE(MathUtil::IsINF(-std::numeric_limits<double>::infinity()));
|
|
}
|
|
|
|
TEST(MathUtil, IsNAN)
|
|
{
|
|
EXPECT_TRUE(MathUtil::IsNAN(std::numeric_limits<double>::quiet_NaN()));
|
|
EXPECT_TRUE(MathUtil::IsNAN(std::numeric_limits<double>::signaling_NaN()));
|
|
}
|
|
|
|
TEST(MathUtil, IsQNAN)
|
|
{
|
|
EXPECT_TRUE(MathUtil::IsQNAN(std::numeric_limits<double>::quiet_NaN()));
|
|
EXPECT_FALSE(MathUtil::IsQNAN(std::numeric_limits<double>::signaling_NaN()));
|
|
}
|
|
|
|
TEST(MathUtil, IsSNAN)
|
|
{
|
|
EXPECT_FALSE(MathUtil::IsSNAN(std::numeric_limits<double>::quiet_NaN()));
|
|
EXPECT_TRUE(MathUtil::IsSNAN(std::numeric_limits<double>::signaling_NaN()));
|
|
}
|
|
|
|
TEST(MathUtil, IntLog2)
|
|
{
|
|
EXPECT_EQ(0, IntLog2(1));
|
|
EXPECT_EQ(1, IntLog2(2));
|
|
EXPECT_EQ(2, IntLog2(4));
|
|
EXPECT_EQ(3, IntLog2(8));
|
|
EXPECT_EQ(63, IntLog2(0x8000000000000000ull));
|
|
|
|
// Rounding behavior.
|
|
EXPECT_EQ(3, IntLog2(15));
|
|
EXPECT_EQ(63, IntLog2(0xFFFFFFFFFFFFFFFFull));
|
|
}
|
|
|
|
TEST(MathUtil, FlushToZero)
|
|
{
|
|
// To test the software implementation we need to make sure FTZ and DAZ are disabled.
|
|
// Using volatile here to ensure the compiler doesn't constant-fold it,
|
|
// we want the multiplication to occur at test runtime.
|
|
volatile float s = std::numeric_limits<float>::denorm_min();
|
|
volatile double d = std::numeric_limits<double>::denorm_min();
|
|
// Casting away the volatile attribute is required in order for msvc to resolve this to the
|
|
// correct instance of the comparison function.
|
|
EXPECT_LT(0.f, (float)(s * 2));
|
|
EXPECT_LT(0.0, (double)(d * 2));
|
|
|
|
EXPECT_EQ(+0.0, MathUtil::FlushToZero(+std::numeric_limits<double>::denorm_min()));
|
|
EXPECT_EQ(-0.0, MathUtil::FlushToZero(-std::numeric_limits<double>::denorm_min()));
|
|
EXPECT_EQ(+0.0, MathUtil::FlushToZero(+std::numeric_limits<double>::min() / 2));
|
|
EXPECT_EQ(-0.0, MathUtil::FlushToZero(-std::numeric_limits<double>::min() / 2));
|
|
EXPECT_EQ(std::numeric_limits<double>::min(), MathUtil::FlushToZero(std::numeric_limits<double>::min()));
|
|
EXPECT_EQ(std::numeric_limits<double>::max(), MathUtil::FlushToZero(std::numeric_limits<double>::max()));
|
|
EXPECT_EQ(+std::numeric_limits<double>::infinity(), MathUtil::FlushToZero(+std::numeric_limits<double>::infinity()));
|
|
EXPECT_EQ(-std::numeric_limits<double>::infinity(), MathUtil::FlushToZero(-std::numeric_limits<double>::infinity()));
|
|
|
|
// Test all subnormals as well as an equally large set of random normal floats.
|
|
std::default_random_engine engine(0);
|
|
std::uniform_int_distribution<u32> dist(0x00800000u, 0x7fffffffu);
|
|
for (u32 i = 0; i <= 0x007fffffu; ++i)
|
|
{
|
|
MathUtil::IntFloat x(i);
|
|
EXPECT_EQ(+0.f, MathUtil::FlushToZero(x.f));
|
|
|
|
x.i = i | 0x80000000u;
|
|
EXPECT_EQ(-0.f, MathUtil::FlushToZero(x.f));
|
|
|
|
x.i = dist(engine);
|
|
MathUtil::IntFloat y(MathUtil::FlushToZero(x.f));
|
|
EXPECT_EQ(x.i, y.i);
|
|
|
|
x.i |= 0x80000000u;
|
|
y.f = MathUtil::FlushToZero(x.f);
|
|
EXPECT_EQ(x.i, y.i);
|
|
}
|
|
}
|