dolphin/Source/UnitTests/Common/x64EmitterTest.cpp

1043 lines
29 KiB
C++

// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <cstring>
#include <cctype>
#include <disasm.h> // From Bochs, fallback included in Externals.
#include <map>
#include <memory>
#include <vector>
#include <gtest/gtest.h>
// gtest defines the TEST macro to generate test case functions. It conflicts
// with the TEST method in the x64Emitter.
//
// Since we use TEST_F in this file to attach the test cases to a fixture, we
// can get away with simply undef'ing TEST. Phew.
#undef TEST
#include "Common/CPUDetect.h"
#include "Common/x64Emitter.h"
namespace Gen
{
struct NamedReg
{
X64Reg reg;
std::string name;
};
const std::vector<NamedReg> reg8names {
{ RAX, "al" }, { RBX, "bl" }, { RCX, "cl" }, { RDX, "dl" },
{ RSI, "sil" }, { RDI, "dil" }, { RBP, "bpl" }, { RSP, "spl" },
{ R8, "r8b" }, { R9, "r9b" }, { R10, "r10b" }, { R11, "r11b" },
{ R12, "r12b" }, { R13, "r13b" }, { R14, "r14b" }, { R15, "r15b" },
};
const std::vector<NamedReg> reg8hnames {
{ AH, "ah" }, { BH, "bh" }, { CH, "ch" }, { DH, "dh" },
};
const std::vector<NamedReg> reg16names {
{ RAX, "ax" }, { RBX, "bx" }, { RCX, "cx" }, { RDX, "dx" },
{ RSI, "si" }, { RDI, "di" }, { RBP, "bp" }, { RSP, "sp" },
{ R8, "r8w" }, { R9, "r9w" }, { R10, "r10w" }, { R11, "r11w" },
{ R12, "r12w" }, { R13, "r13w" }, { R14, "r14w" }, { R15, "r15w" },
};
const std::vector<NamedReg> reg32names {
{ RAX, "eax" }, { RBX, "ebx" }, { RCX, "ecx" }, { RDX, "edx" },
{ RSI, "esi" }, { RDI, "edi" }, { RBP, "ebp" }, { RSP, "esp" },
{ R8, "r8d" }, { R9, "r9d" }, { R10, "r10d" }, { R11, "r11d" },
{ R12, "r12d" }, { R13, "r13d" }, { R14, "r14d" }, { R15, "r15d" },
};
const std::vector<NamedReg> reg64names {
{ RAX, "rax" }, { RBX, "rbx" }, { RCX, "rcx" }, { RDX, "rdx" },
{ RSI, "rsi" }, { RDI, "rdi" }, { RBP, "rbp" }, { RSP, "rsp" },
{ R8, "r8" }, { R9, "r9" }, { R10, "r10" }, { R11, "r11" },
{ R12, "r12" }, { R13, "r13" }, { R14, "r14" }, { R15, "r15" },
};
const std::vector<NamedReg> xmmnames {
{ XMM0, "xmm0" }, { XMM1, "xmm1" }, { XMM2, "xmm2" }, { XMM3, "xmm3" },
{ XMM4, "xmm4" }, { XMM5, "xmm5" }, { XMM6, "xmm6" }, { XMM7, "xmm7" },
{ XMM8, "xmm8" }, { XMM9, "xmm9" }, { XMM10, "xmm10" }, { XMM11, "xmm11" },
{ XMM12, "xmm12" }, { XMM13, "xmm13" }, { XMM14, "xmm14" }, { XMM15, "xmm15" },
};
const std::vector<NamedReg> ymmnames {
{ YMM0, "ymm0" }, { YMM1, "ymm1" }, { YMM2, "ymm2" }, { YMM3, "ymm3" },
{ YMM4, "ymm4" }, { YMM5, "ymm5" }, { YMM6, "ymm6" }, { YMM7, "ymm7" },
{ YMM8, "ymm8" }, { YMM9, "ymm9" }, { YMM10, "ymm10" }, { YMM11, "ymm11" },
{ YMM12, "ymm12" }, { YMM13, "ymm13" }, { YMM14, "ymm14" }, { YMM15, "ymm15" },
};
struct { CCFlags cc; std::string name; } ccnames[] = {
{ CC_O, "o" }, { CC_NO, "no" },
{ CC_B, "b" }, { CC_NB, "nb" },
{ CC_Z, "z" }, { CC_NZ, "nz" },
{ CC_BE, "be" }, { CC_NBE, "nbe" },
{ CC_S, "s" }, { CC_NS, "ns" },
{ CC_P, "p" }, { CC_NP, "np" },
{ CC_L, "l" }, { CC_NL, "nl" },
{ CC_LE, "le" }, { CC_NLE, "nle" },
};
class x64EmitterTest : public testing::Test
{
protected:
void SetUp() override
{
memset(&cpu_info, 0xFF, sizeof (cpu_info));
emitter.reset(new X64CodeBlock());
emitter->AllocCodeSpace(4096);
code_buffer = emitter->GetWritableCodePtr();
disasm.reset(new disassembler);
disasm->set_syntax_intel();
}
void ExpectDisassembly(const std::string& expected)
{
std::string disasmed;
const u8* generated_code_iterator = code_buffer;
while (generated_code_iterator < emitter->GetCodePtr())
{
char instr_buffer[1024] = "";
generated_code_iterator += disasm->disasm64(
(u64)generated_code_iterator,
(u64)generated_code_iterator,
generated_code_iterator, instr_buffer);
disasmed += instr_buffer;
disasmed += "\n";
}
auto NormalizeAssembly = [](const std::string& str) -> std::string {
// Normalize assembly code to make it suitable for equality checks.
// In particular:
// * Replace all whitespace characters by a single space.
// * Remove leading and trailing whitespaces.
// * Lowercase everything.
// * Remove all (0x...) addresses.
std::string out;
bool previous_was_space = false;
bool inside_parens = false;
for (auto c : str)
{
c = tolower(c);
if (c == '(')
{
inside_parens = true;
continue;
}
else if (inside_parens)
{
if (c == ')')
inside_parens = false;
continue;
}
else if (isspace(c))
{
previous_was_space = true;
continue;
}
else if (previous_was_space)
{
previous_was_space = false;
if (!out.empty())
out += ' ';
}
out += c;
}
return out;
};
std::string expected_norm = NormalizeAssembly(expected);
std::string disasmed_norm = NormalizeAssembly(disasmed);
EXPECT_EQ(expected_norm, disasmed_norm);
// Reset code buffer afterwards.
emitter->SetCodePtr(code_buffer);
}
std::unique_ptr<X64CodeBlock> emitter;
std::unique_ptr<disassembler> disasm;
u8* code_buffer;
};
#define TEST_INSTR_NO_OPERANDS(Name, ExpectedDisasm) \
TEST_F(x64EmitterTest, Name) \
{ \
emitter->Name(); \
ExpectDisassembly(ExpectedDisasm); \
}
TEST_INSTR_NO_OPERANDS(INT3, "int3")
TEST_INSTR_NO_OPERANDS(NOP, "nop")
TEST_INSTR_NO_OPERANDS(PAUSE, "pause")
TEST_INSTR_NO_OPERANDS(STC, "stc")
TEST_INSTR_NO_OPERANDS(CLC, "clc")
TEST_INSTR_NO_OPERANDS(CMC, "cmc")
TEST_INSTR_NO_OPERANDS(LAHF, "lahf")
TEST_INSTR_NO_OPERANDS(SAHF, "sahf")
TEST_INSTR_NO_OPERANDS(PUSHF, "pushf")
TEST_INSTR_NO_OPERANDS(POPF, "popf")
TEST_INSTR_NO_OPERANDS(RET, "ret")
TEST_INSTR_NO_OPERANDS(RET_FAST, "rep ret")
TEST_INSTR_NO_OPERANDS(UD2, "ud2a")
TEST_INSTR_NO_OPERANDS(JMPself, "jmp .-2")
TEST_INSTR_NO_OPERANDS(LFENCE, "lfence")
TEST_INSTR_NO_OPERANDS(MFENCE, "mfence")
TEST_INSTR_NO_OPERANDS(SFENCE, "sfence")
TEST_INSTR_NO_OPERANDS(CWD, "cwd")
TEST_INSTR_NO_OPERANDS(CDQ, "cdq")
TEST_INSTR_NO_OPERANDS(CQO, "cqo")
TEST_INSTR_NO_OPERANDS(CBW, "cbw")
TEST_INSTR_NO_OPERANDS(CWDE, "cwde")
TEST_INSTR_NO_OPERANDS(CDQE, "cdqe")
TEST_INSTR_NO_OPERANDS(XCHG_AHAL, "xchg al, ah")
TEST_INSTR_NO_OPERANDS(FWAIT, "fwait")
TEST_INSTR_NO_OPERANDS(FNSTSW_AX, "fnstsw ax")
TEST_INSTR_NO_OPERANDS(RDTSC, "rdtsc")
TEST_F(x64EmitterTest, NOP_MultiByte)
{
// 2 bytes is "rep nop", still a simple nop.
emitter->NOP(2);
ExpectDisassembly("nop");
for (int i = 3; i <= 11; ++i)
{
emitter->NOP(i);
ExpectDisassembly("multibyte nop");
}
// Larger NOPs are split into several NOPs.
emitter->NOP(20);
ExpectDisassembly("multibyte nop "
"multibyte nop");
}
TEST_F(x64EmitterTest, PUSH_Register)
{
for (const auto& r : reg64names)
{
emitter->PUSH(r.reg);
ExpectDisassembly("push " + r.name);
}
}
TEST_F(x64EmitterTest, PUSH_Immediate)
{
emitter->PUSH(64, Imm8(0xf0));
ExpectDisassembly("push 0xfffffffffffffff0");
// X64 is weird like that... this pushes 2 bytes, not 8 bytes with sext.
emitter->PUSH(64, Imm16(0xe0f0));
ExpectDisassembly("push 0xe0f0");
emitter->PUSH(64, Imm32(0xc0d0e0f0));
ExpectDisassembly("push 0xffffffffc0d0e0f0");
}
TEST_F(x64EmitterTest, PUSH_MComplex)
{
emitter->PUSH(64, MComplex(RAX, RBX, SCALE_2, 4));
ExpectDisassembly("push qword ptr ds:[rax+rbx*2+4]");
}
TEST_F(x64EmitterTest, POP_Register)
{
for (const auto& r : reg64names)
{
emitter->POP(r.reg);
ExpectDisassembly("pop " + r.name);
}
}
TEST_F(x64EmitterTest, JMP)
{
emitter->NOP(6);
emitter->JMP(code_buffer);
ExpectDisassembly("multibyte nop "
"jmp .-8");
emitter->NOP(6);
emitter->JMP(code_buffer, true);
ExpectDisassembly("multibyte nop "
"jmp .-11");
}
TEST_F(x64EmitterTest, JMPptr_Register)
{
for (const auto& r : reg64names)
{
emitter->JMPptr(R(r.reg));
ExpectDisassembly("jmp " + r.name);
}
}
// TODO: J/SetJumpTarget
// TODO: CALL
// TODO: J_CC
TEST_F(x64EmitterTest, SETcc)
{
for (const auto& cc : ccnames)
{
for (const auto& r : reg8names)
{
emitter->SETcc(cc.cc, R(r.reg));
ExpectDisassembly("set" + cc.name + " " + r.name);
}
for (const auto& r : reg8hnames)
{
emitter->SETcc(cc.cc, R(r.reg));
ExpectDisassembly("set" + cc.name + " " + r.name);
}
}
}
TEST_F(x64EmitterTest, CMOVcc_Register)
{
for (const auto& cc : ccnames)
{
emitter->CMOVcc(64, RAX, R(R12), cc.cc);
emitter->CMOVcc(32, RAX, R(R12), cc.cc);
emitter->CMOVcc(16, RAX, R(R12), cc.cc);
ExpectDisassembly("cmov" + cc.name + " rax, r12 "
"cmov" + cc.name + " eax, r12d "
"cmov" + cc.name + " ax, r12w");
}
}
#define BITSEARCH_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string size; \
std::string rax_name; \
} regsets[] = { \
{ 16, reg16names, "word", "ax" }, \
{ 32, reg32names, "dword", "eax" }, \
{ 64, reg64names, "qword", "rax" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, r.reg, R(RAX)); \
emitter->Name(regset.bits, RAX, R(r.reg)); \
emitter->Name(regset.bits, r.reg, MatR(RAX)); \
ExpectDisassembly(#Name " " + r.name + ", " + regset.rax_name + " " \
#Name " " + regset.rax_name + ", " + r.name + " " \
#Name " " + r.name + ", " + regset.size + " ptr ds:[rax] " ); \
} \
}
BITSEARCH_TEST(BSR);
BITSEARCH_TEST(BSF);
BITSEARCH_TEST(LZCNT);
BITSEARCH_TEST(TZCNT);
TEST_F(x64EmitterTest, PREFETCH)
{
emitter->PREFETCH(XEmitter::PF_NTA, MatR(R12));
emitter->PREFETCH(XEmitter::PF_T0, MatR(R12));
emitter->PREFETCH(XEmitter::PF_T1, MatR(R12));
emitter->PREFETCH(XEmitter::PF_T2, MatR(R12));
ExpectDisassembly("prefetchnta byte ptr ds:[r12] "
"prefetcht0 byte ptr ds:[r12] "
"prefetcht1 byte ptr ds:[r12] "
"prefetcht2 byte ptr ds:[r12]");
}
TEST_F(x64EmitterTest, MOVNTI)
{
emitter->MOVNTI(32, MatR(RAX), R12);
emitter->MOVNTI(32, M(code_buffer), R12);
emitter->MOVNTI(64, MatR(RAX), R12);
emitter->MOVNTI(64, M(code_buffer), R12);
ExpectDisassembly("movnti dword ptr ds:[rax], r12d "
"movnti dword ptr ds:[rip-12], r12d "
"movnti qword ptr ds:[rax], r12 "
"movnti qword ptr ds:[rip-24], r12");
}
// Grouped together since these 3 instructions do exactly the same thing.
TEST_F(x64EmitterTest, MOVNT_DQ_PS_PD)
{
for (const auto& r : xmmnames)
{
emitter->MOVNTDQ(MatR(RAX), r.reg);
emitter->MOVNTPS(MatR(RAX), r.reg);
emitter->MOVNTPD(MatR(RAX), r.reg);
ExpectDisassembly("movntdq dqword ptr ds:[rax], " + r.name + " "
"movntps dqword ptr ds:[rax], " + r.name + " "
"movntpd dqword ptr ds:[rax], " + r.name);
}
}
#define MUL_DIV_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string out_name; \
} regsets[] = { \
{ 8, reg8names, "al" }, \
{ 8, reg8hnames, "al" }, \
{ 16, reg16names, "ax" }, \
{ 32, reg32names, "eax" }, \
{ 64, reg64names, "rax" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, R(r.reg)); \
ExpectDisassembly(#Name " " + regset.out_name + ", " + r.name); \
} \
}
MUL_DIV_TEST(MUL)
MUL_DIV_TEST(IMUL)
MUL_DIV_TEST(DIV)
MUL_DIV_TEST(IDIV)
// TODO: More complex IMUL variants.
#define SHIFT_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
} regsets[] = { \
{ 8, reg8names }, \
{ 8, reg8hnames }, \
{ 16, reg16names }, \
{ 32, reg32names }, \
{ 64, reg64names }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, R(r.reg), Imm8(1)); \
emitter->Name(regset.bits, R(r.reg), Imm8(4)); \
emitter->Name(regset.bits, R(r.reg), R(CL)); \
ExpectDisassembly(#Name " " + r.name + ", 1 " \
#Name " " + r.name + ", 0x04 " \
#Name " " + r.name + ", cl"); \
} \
}
SHIFT_TEST(ROL)
SHIFT_TEST(ROR)
SHIFT_TEST(RCL)
SHIFT_TEST(RCR)
SHIFT_TEST(SHL)
SHIFT_TEST(SHR)
SHIFT_TEST(SAR)
#define BT_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string out_name; \
std::string size; \
} regsets[] = { \
{ 16, reg16names, "ax", "word" }, \
{ 32, reg32names, "eax", "dword" }, \
{ 64, reg64names, "rax", "qword" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, R(r.reg), R(RAX)); \
emitter->Name(regset.bits, R(RAX), R(r.reg)); \
emitter->Name(regset.bits, R(r.reg), Imm8(0x42)); \
emitter->Name(regset.bits, MatR(R12), R(r.reg)); \
ExpectDisassembly(#Name " " + r.name + ", " + regset.out_name + " " \
#Name " " + regset.out_name + ", " + r.name + " " \
#Name " " + r.name + ", 0x42 " \
#Name " " + regset.size + " ptr ds:[r12], " + r.name); \
} \
}
BT_TEST(BT)
BT_TEST(BTS)
BT_TEST(BTR)
BT_TEST(BTC)
// TODO: LEA tests
#define ONE_OP_ARITH_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string size; \
} regsets[] = { \
{ 8, reg8names, "byte" }, \
{ 8, reg8hnames, "byte" }, \
{ 16, reg16names, "word" }, \
{ 32, reg32names, "dword" }, \
{ 64, reg64names, "qword" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, R(r.reg)); \
emitter->Name(regset.bits, MatR(RAX)); \
emitter->Name(regset.bits, MatR(R12)); \
ExpectDisassembly(#Name " " + r.name + " " \
#Name " " + regset.size + " ptr ds:[rax] " \
#Name " " + regset.size + " ptr ds:[r12]"); \
} \
}
ONE_OP_ARITH_TEST(NOT)
ONE_OP_ARITH_TEST(NEG)
#define TWO_OP_ARITH_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string size; \
std::string rax_name; \
Gen::OpArg imm; \
std::string immname; \
} regsets[] = { \
{ 8, reg8names, "byte", "al", Imm8(0xEF), "0xef" }, \
{ 8, reg8hnames, "byte", "al", Imm8(0xEF), "0xef" }, \
{ 16, reg16names, "word", "ax", Imm16(0xBEEF), "0xbeef" }, \
{ 32, reg32names, "dword", "eax", Imm32(0xDEADBEEF), "0xdeadbeef" }, \
{ 64, reg64names, "qword", "rax", Imm32(0xDEADBEEF), "0xffffffffdeadbeef" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, R(r.reg), R(RAX)); \
emitter->Name(regset.bits, R(RAX), R(r.reg)); \
emitter->Name(regset.bits, R(r.reg), MatR(RAX)); \
emitter->Name(regset.bits, MatR(RAX), R(r.reg)); \
emitter->Name(regset.bits, R(r.reg), regset.imm); \
ExpectDisassembly(#Name " " + r.name + ", " + regset.rax_name + " " \
#Name " " + regset.rax_name + ", " + r.name + " " \
#Name " " + r.name + ", " + regset.size + " ptr ds:[rax] " \
#Name " " + regset.size + " ptr ds:[rax], " + r.name + " " \
#Name " " + r.name + ", " + regset.immname ); \
} \
}
TWO_OP_ARITH_TEST(ADD)
TWO_OP_ARITH_TEST(ADC)
TWO_OP_ARITH_TEST(SUB)
TWO_OP_ARITH_TEST(SBB)
TWO_OP_ARITH_TEST(AND)
TWO_OP_ARITH_TEST(CMP)
TWO_OP_ARITH_TEST(OR)
TWO_OP_ARITH_TEST(XOR)
TWO_OP_ARITH_TEST(MOV)
// TODO: Disassembler inverts operands here.
// TWO_OP_ARITH_TEST(XCHG)
// TWO_OP_ARITH_TEST(TEST)
TEST_F(x64EmitterTest, BSWAP)
{
struct {
int bits;
std::vector<NamedReg> regs;
} regsets[] = {
{ 32, reg32names },
{ 64, reg64names },
};
for (const auto& regset : regsets)
for (const auto& r : regset.regs)
{
emitter->BSWAP(regset.bits, r.reg);
ExpectDisassembly("bswap " + r.name);
}
}
TEST_F(x64EmitterTest, MOVSX)
{
emitter->MOVSX(16, 8, RAX, R(AH));
emitter->MOVSX(32, 8, RAX, R(R12));
emitter->MOVSX(32, 16, R12, R(RBX));
emitter->MOVSX(64, 8, R12, R(RBX));
emitter->MOVSX(64, 16, RAX, R(R12));
emitter->MOVSX(64, 32, R12, R(RSP));
ExpectDisassembly("movsx ax, ah "
"movsx eax, r12b "
"movsx r12d, bx "
"movsx r12, bl "
"movsx rax, r12w "
"movsxd r12, esp");
}
TEST_F(x64EmitterTest, MOVZX)
{
emitter->MOVZX(16, 8, RAX, R(AH));
emitter->MOVZX(32, 8, R12, R(RBP));
emitter->MOVZX(64, 8, R12, R(RDI));
emitter->MOVZX(32, 16, RAX, R(R12));
emitter->MOVZX(64, 16, RCX, R(RSI));
ExpectDisassembly("movzx ax, ah "
"movzx r12d, bpl "
"movzx r12d, dil " // Generates 32 bit movzx
"movzx eax, r12w "
"movzx ecx, si");
}
TEST_F(x64EmitterTest, MOVBE)
{
emitter->MOVBE(16, RAX, MatR(R12));
emitter->MOVBE(16, MatR(RAX), R12);
emitter->MOVBE(32, RAX, MatR(R12));
emitter->MOVBE(32, MatR(RAX), R12);
emitter->MOVBE(64, RAX, MatR(R12));
emitter->MOVBE(64, MatR(RAX), R12);
ExpectDisassembly("movbe ax, word ptr ds:[r12] "
"movbe word ptr ds:[rax], r12w "
"movbe eax, dword ptr ds:[r12] "
"movbe dword ptr ds:[rax], r12d "
"movbe rax, qword ptr ds:[r12] "
"movbe qword ptr ds:[rax], r12");
}
TEST_F(x64EmitterTest, STMXCSR)
{
emitter->STMXCSR(MatR(R12));
ExpectDisassembly("stmxcsr dword ptr ds:[r12]");
}
TEST_F(x64EmitterTest, LDMXCSR)
{
emitter->LDMXCSR(MatR(R12));
ExpectDisassembly("ldmxcsr dword ptr ds:[r12]");
}
TEST_F(x64EmitterTest, FLD_FST_FSTP)
{
emitter->FLD(32, MatR(RBP));
emitter->FLD(64, MatR(RBP));
emitter->FLD(80, MatR(RBP));
emitter->FST(32, MatR(RBP));
emitter->FST(64, MatR(RBP));
// No 80 bit version of FST
emitter->FSTP(32, MatR(RBP));
emitter->FSTP(64, MatR(RBP));
emitter->FSTP(80, MatR(RBP));
ExpectDisassembly("fld dword ptr ss:[rbp] "
"fld qword ptr ss:[rbp] "
"fld tbyte ptr ss:[rbp] "
"fst dword ptr ss:[rbp] "
"fst qword ptr ss:[rbp] "
"fstp dword ptr ss:[rbp] "
"fstp qword ptr ss:[rbp] "
"fstp tbyte ptr ss:[rbp]");
}
#define TWO_OP_SSE_TEST(Name, MemBits) \
TEST_F(x64EmitterTest, Name) \
{ \
for (const auto& r1 : xmmnames) \
{ \
for (const auto& r2 : xmmnames) \
{ \
emitter->Name(r1.reg, R(r2.reg)); \
ExpectDisassembly(#Name " " + r1.name + ", " + r2.name); \
} \
emitter->Name(r1.reg, MatR(R12)); \
ExpectDisassembly(#Name " " + r1.name + ", " MemBits " ptr ds:[r12]"); \
} \
}
TWO_OP_SSE_TEST(ADDSS, "dword")
TWO_OP_SSE_TEST(SUBSS, "dword")
TWO_OP_SSE_TEST(MULSS, "dword")
TWO_OP_SSE_TEST(DIVSS, "dword")
TWO_OP_SSE_TEST(MINSS, "dword")
TWO_OP_SSE_TEST(MAXSS, "dword")
TWO_OP_SSE_TEST(SQRTSS, "dword")
TWO_OP_SSE_TEST(RSQRTSS, "dword")
TWO_OP_SSE_TEST(ADDSD, "qword")
TWO_OP_SSE_TEST(SUBSD, "qword")
TWO_OP_SSE_TEST(MULSD, "qword")
TWO_OP_SSE_TEST(DIVSD, "qword")
TWO_OP_SSE_TEST(MINSD, "qword")
TWO_OP_SSE_TEST(MAXSD, "qword")
TWO_OP_SSE_TEST(SQRTSD, "qword")
TWO_OP_SSE_TEST(ADDPS, "dqword")
TWO_OP_SSE_TEST(SUBPS, "dqword")
TWO_OP_SSE_TEST(MULPS, "dqword")
TWO_OP_SSE_TEST(DIVPS, "dqword")
TWO_OP_SSE_TEST(MINPS, "dqword")
TWO_OP_SSE_TEST(MAXPS, "dqword")
TWO_OP_SSE_TEST(SQRTPS, "dqword")
TWO_OP_SSE_TEST(RSQRTPS, "dqword")
TWO_OP_SSE_TEST(ANDPS, "dqword")
TWO_OP_SSE_TEST(ANDNPS, "dqword")
TWO_OP_SSE_TEST(ORPS, "dqword")
TWO_OP_SSE_TEST(XORPS, "dqword")
TWO_OP_SSE_TEST(ADDPD, "dqword")
TWO_OP_SSE_TEST(SUBPD, "dqword")
TWO_OP_SSE_TEST(MULPD, "dqword")
TWO_OP_SSE_TEST(DIVPD, "dqword")
TWO_OP_SSE_TEST(MINPD, "dqword")
TWO_OP_SSE_TEST(MAXPD, "dqword")
TWO_OP_SSE_TEST(SQRTPD, "dqword")
TWO_OP_SSE_TEST(ANDPD, "dqword")
TWO_OP_SSE_TEST(ANDNPD, "dqword")
TWO_OP_SSE_TEST(ORPD, "dqword")
TWO_OP_SSE_TEST(XORPD, "dqword")
TWO_OP_SSE_TEST(MOVDDUP, "qword")
TWO_OP_SSE_TEST(UNPCKLPS, "dqword")
TWO_OP_SSE_TEST(UNPCKHPS, "dqword")
TWO_OP_SSE_TEST(UNPCKLPD, "dqword")
TWO_OP_SSE_TEST(UNPCKHPD, "dqword")
TWO_OP_SSE_TEST(COMISS, "dword")
TWO_OP_SSE_TEST(UCOMISS, "dword")
TWO_OP_SSE_TEST(COMISD, "qword")
TWO_OP_SSE_TEST(UCOMISD, "qword")
// register-only instructions
#define TWO_OP_SSE_REG_TEST(Name, MemBits) \
TEST_F(x64EmitterTest, Name) \
{ \
for (const auto& r1 : xmmnames) \
{ \
for (const auto& r2 : xmmnames) \
{ \
emitter->Name(r1.reg, r2.reg); \
ExpectDisassembly(#Name " " + r1.name + ", " + r2.name); \
} \
} \
}
TWO_OP_SSE_REG_TEST(MOVHLPS, "qword")
TWO_OP_SSE_REG_TEST(MOVLHPS, "qword")
// "register + memory"-only instructions
#define TWO_OP_SSE_MEM_TEST(Name, MemBits) \
TEST_F(x64EmitterTest, Name) \
{ \
for (const auto& r1 : xmmnames) \
{ \
emitter->Name(r1.reg, MatR(R12)); \
ExpectDisassembly(#Name " " + r1.name + ", " MemBits " ptr ds:[r12]"); \
emitter->Name(MatR(R12), r1.reg); \
ExpectDisassembly(#Name " " MemBits " ptr ds:[r12], " + r1.name); \
} \
}
TWO_OP_SSE_MEM_TEST(MOVLPS, "qword")
TWO_OP_SSE_MEM_TEST(MOVHPS, "qword")
TWO_OP_SSE_MEM_TEST(MOVLPD, "qword")
TWO_OP_SSE_MEM_TEST(MOVHPD, "qword")
// TODO: CMPSS/SD
// TODO: SHUFPS/PD
// TODO: more SSE MOVs
// TODO: MOVMSK
TEST_F(x64EmitterTest, MASKMOVDQU)
{
for (const auto& r1 : xmmnames)
{
for (const auto& r2 : xmmnames)
{
emitter->MASKMOVDQU(r1.reg, r2.reg);
ExpectDisassembly("maskmovdqu " + r1.name + ", " + r2.name + ", dqword ptr ds:[rdi]");
}
}
}
TEST_F(x64EmitterTest, LDDQU)
{
for (const auto& r : xmmnames)
{
emitter->LDDQU(r.reg, MatR(R12));
ExpectDisassembly("lddqu " + r.name + ", dqword ptr ds:[r12]");
}
}
TWO_OP_SSE_TEST(CVTPS2PD, "dqword")
TWO_OP_SSE_TEST(CVTPD2PS, "dqword")
TWO_OP_SSE_TEST(CVTSS2SD, "dword")
TWO_OP_SSE_TEST(CVTSD2SS, "qword")
TWO_OP_SSE_TEST(CVTDQ2PD, "qword")
TWO_OP_SSE_TEST(CVTPD2DQ, "dqword")
TWO_OP_SSE_TEST(CVTDQ2PS, "dqword")
TWO_OP_SSE_TEST(CVTPS2DQ, "dqword")
TWO_OP_SSE_TEST(CVTTPS2DQ, "dqword")
TWO_OP_SSE_TEST(CVTTPD2DQ, "dqword")
// TODO: CVT2SI
TWO_OP_SSE_TEST(PACKSSDW, "dqword")
TWO_OP_SSE_TEST(PACKSSWB, "dqword")
TWO_OP_SSE_TEST(PACKUSDW, "dqword")
TWO_OP_SSE_TEST(PACKUSWB, "dqword")
TWO_OP_SSE_TEST(PUNPCKLBW, "dqword")
TWO_OP_SSE_TEST(PUNPCKLWD, "dqword")
TWO_OP_SSE_TEST(PUNPCKLDQ, "dqword")
TWO_OP_SSE_TEST(PTEST, "dqword")
TWO_OP_SSE_TEST(PAND, "dqword")
TWO_OP_SSE_TEST(PANDN, "dqword")
TWO_OP_SSE_TEST(POR, "dqword")
TWO_OP_SSE_TEST(PXOR, "dqword")
TWO_OP_SSE_TEST(PADDB, "dqword")
TWO_OP_SSE_TEST(PADDW, "dqword")
TWO_OP_SSE_TEST(PADDD, "dqword")
TWO_OP_SSE_TEST(PADDQ, "dqword")
TWO_OP_SSE_TEST(PADDSB, "dqword")
TWO_OP_SSE_TEST(PADDSW, "dqword")
TWO_OP_SSE_TEST(PADDUSB, "dqword")
TWO_OP_SSE_TEST(PADDUSW, "dqword")
TWO_OP_SSE_TEST(PSUBB, "dqword")
TWO_OP_SSE_TEST(PSUBW, "dqword")
TWO_OP_SSE_TEST(PSUBD, "dqword")
TWO_OP_SSE_TEST(PSUBQ, "dqword")
TWO_OP_SSE_TEST(PSUBUSB, "dqword")
TWO_OP_SSE_TEST(PSUBUSW, "dqword")
TWO_OP_SSE_TEST(PAVGB, "dqword")
TWO_OP_SSE_TEST(PAVGW, "dqword")
TWO_OP_SSE_TEST(PCMPEQB, "dqword")
TWO_OP_SSE_TEST(PCMPEQW, "dqword")
TWO_OP_SSE_TEST(PCMPEQD, "dqword")
TWO_OP_SSE_TEST(PCMPGTB, "dqword")
TWO_OP_SSE_TEST(PCMPGTW, "dqword")
TWO_OP_SSE_TEST(PCMPGTD, "dqword")
TWO_OP_SSE_TEST(PMADDWD, "dqword")
TWO_OP_SSE_TEST(PSADBW, "dqword")
TWO_OP_SSE_TEST(PMAXSW, "dqword")
TWO_OP_SSE_TEST(PMAXUB, "dqword")
TWO_OP_SSE_TEST(PMINSW, "dqword")
TWO_OP_SSE_TEST(PMINUB, "dqword")
TWO_OP_SSE_TEST(PSHUFB, "dqword")
// TODO: PEXT/INS/SHUF/MOVMSK
TWO_OP_SSE_TEST(PMOVSXBW, "qword")
TWO_OP_SSE_TEST(PMOVSXBD, "dword")
TWO_OP_SSE_TEST(PMOVSXBQ, "word")
TWO_OP_SSE_TEST(PMOVSXWD, "qword")
TWO_OP_SSE_TEST(PMOVSXWQ, "dword")
TWO_OP_SSE_TEST(PMOVSXDQ, "qword")
TWO_OP_SSE_TEST(PMOVZXBW, "qword")
TWO_OP_SSE_TEST(PMOVZXBD, "dword")
TWO_OP_SSE_TEST(PMOVZXBQ, "word")
TWO_OP_SSE_TEST(PMOVZXWD, "qword")
TWO_OP_SSE_TEST(PMOVZXWQ, "dword")
TWO_OP_SSE_TEST(PMOVZXDQ, "qword")
// TODO: BLEND
// TODO: AVX
// for VEX GPR instructions that take the form op reg, r/m, reg
#define VEX_RMR_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string out_name; \
std::string size; \
} regsets[] = { \
{ 32, reg32names, "eax", "dword" }, \
{ 64, reg64names, "rax", "qword" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, r.reg, R(RAX), RAX); \
emitter->Name(regset.bits, RAX, R(r.reg), RAX); \
emitter->Name(regset.bits, RAX, MatR(R12), r.reg); \
ExpectDisassembly(#Name " " + r.name + ", " + regset.out_name + ", " + regset.out_name + " " \
#Name " " + regset.out_name + ", " + r.name + ", " + regset.out_name + " " \
#Name " " + regset.out_name + ", " + regset.size + " ptr ds:[r12], " + r.name + " "); \
} \
}
VEX_RMR_TEST(SHRX)
VEX_RMR_TEST(SARX)
VEX_RMR_TEST(SHLX)
VEX_RMR_TEST(BEXTR)
VEX_RMR_TEST(BZHI)
// for VEX GPR instructions that take the form op reg, reg, r/m
#define VEX_RRM_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string out_name; \
std::string size; \
} regsets[] = { \
{ 32, reg32names, "eax", "dword" }, \
{ 64, reg64names, "rax", "qword" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, r.reg, RAX, R(RAX)); \
emitter->Name(regset.bits, RAX, RAX, R(r.reg)); \
emitter->Name(regset.bits, RAX, r.reg, MatR(R12)); \
ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + ", " + regset.out_name + " " \
#Name " " + regset.out_name + ", " + regset.out_name + ", " + r.name + " " \
#Name " " + regset.out_name + ", " + r.name + ", " + regset.size + " ptr ds:[r12] "); \
} \
}
VEX_RRM_TEST(PEXT)
VEX_RRM_TEST(PDEP)
VEX_RRM_TEST(MULX)
VEX_RRM_TEST(ANDN)
// for VEX GPR instructions that take the form op reg, r/m
#define VEX_RM_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string out_name; \
std::string size; \
} regsets[] = { \
{ 32, reg32names, "eax", "dword" }, \
{ 64, reg64names, "rax", "qword" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, r.reg, R(RAX)); \
emitter->Name(regset.bits, RAX, R(r.reg)); \
emitter->Name(regset.bits, r.reg, MatR(R12)); \
ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + " " \
#Name " " + regset.out_name + ", " + r.name + " " \
#Name " " + r.name + ", " + regset.size + " ptr ds:[r12] "); \
} \
}
VEX_RM_TEST(BLSR)
VEX_RM_TEST(BLSMSK)
VEX_RM_TEST(BLSI)
// for VEX GPR instructions that take the form op reg, r/m, imm
#define VEX_RMI_TEST(Name) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string out_name; \
std::string size; \
} regsets[] = { \
{ 32, reg32names, "eax", "dword" }, \
{ 64, reg64names, "rax", "qword" }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(regset.bits, r.reg, R(RAX), 4); \
emitter->Name(regset.bits, RAX, R(r.reg), 4); \
emitter->Name(regset.bits, r.reg, MatR(R12), 4); \
ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + ", 0x04 " \
#Name " " + regset.out_name + ", " + r.name + ", 0x04 " \
#Name " " + r.name + ", " + regset.size + " ptr ds:[r12], 0x04 "); \
} \
}
VEX_RMI_TEST(RORX)
// for AVX instructions that take the form op reg, reg, r/m
#define AVX_RRM_TEST(Name, sizename) \
TEST_F(x64EmitterTest, Name) \
{ \
struct { \
int bits; \
std::vector<NamedReg> regs; \
std::string out_name; \
std::string size; \
} regsets[] = { \
{ 64, xmmnames, "xmm0", sizename }, \
}; \
for (const auto& regset : regsets) \
for (const auto& r : regset.regs) \
{ \
emitter->Name(r.reg, XMM0, R(XMM0)); \
emitter->Name(XMM0, XMM0, R(r.reg)); \
emitter->Name(XMM0, r.reg, MatR(R12)); \
ExpectDisassembly(#Name " " + r.name+ ", " + regset.out_name + ", " + regset.out_name + " " \
#Name " " + regset.out_name + ", " + regset.out_name + ", " + r.name + " " \
#Name " " + regset.out_name + ", " + r.name + ", " + regset.size + " ptr ds:[r12] "); \
} \
}
AVX_RRM_TEST(VANDPS, "dqword")
AVX_RRM_TEST(VANDPD, "dqword")
AVX_RRM_TEST(VANDNPS, "dqword")
AVX_RRM_TEST(VANDNPD, "dqword")
AVX_RRM_TEST(VORPS, "dqword")
AVX_RRM_TEST(VORPD, "dqword")
AVX_RRM_TEST(VXORPS, "dqword")
AVX_RRM_TEST(VXORPD, "dqword")
AVX_RRM_TEST(VPAND, "dqword")
AVX_RRM_TEST(VPANDN, "dqword")
AVX_RRM_TEST(VPOR, "dqword")
AVX_RRM_TEST(VPXOR, "dqword")
#define FMA_TEST(Name, P, packed) \
AVX_RRM_TEST(Name ## 132 ## P ## S, packed ? "dqword" : "dword") \
AVX_RRM_TEST(Name ## 213 ## P ## S, packed ? "dqword" : "dword") \
AVX_RRM_TEST(Name ## 231 ## P ## S, packed ? "dqword" : "dword") \
AVX_RRM_TEST(Name ## 132 ## P ## D, packed ? "dqword" : "qword") \
AVX_RRM_TEST(Name ## 213 ## P ## D, packed ? "dqword" : "qword") \
AVX_RRM_TEST(Name ## 231 ## P ## D, packed ? "dqword" : "qword")
FMA_TEST(VFMADD, P, true)
FMA_TEST(VFMADD, S, false)
FMA_TEST(VFMSUB, P, true)
FMA_TEST(VFMSUB, S, false)
FMA_TEST(VFNMADD, P, true)
FMA_TEST(VFNMADD, S, false)
FMA_TEST(VFNMSUB, P, true)
FMA_TEST(VFNMSUB, S, false)
FMA_TEST(VFMADDSUB, P, true)
FMA_TEST(VFMSUBADD, P, true)
} // namespace Gen