dolphin/Source/Core/VideoCommon/RenderBase.h

177 lines
6.2 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The gpu draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#pragma once
#include <string>
#include "Common/MathUtil.h"
#include "Common/Thread.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/VideoCommon.h"
class PostProcessingShaderImplementation;
// TODO: Move these out of here.
extern int frameCount;
extern int OSDChoice;
extern bool bLastFrameDumped;
// Renderer really isn't a very good name for this class - it's more like "Misc".
// The long term goal is to get rid of this class and replace it with others that make
// more sense.
class Renderer
{
public:
Renderer();
virtual ~Renderer();
enum PixelPerfQuery {
PP_ZCOMP_INPUT_ZCOMPLOC,
PP_ZCOMP_OUTPUT_ZCOMPLOC,
PP_ZCOMP_INPUT,
PP_ZCOMP_OUTPUT,
PP_BLEND_INPUT,
PP_EFB_COPY_CLOCKS
};
virtual void SetColorMask() = 0;
virtual void SetBlendMode(bool forceUpdate) = 0;
virtual void SetScissorRect(const EFBRectangle& rc) = 0;
virtual void SetGenerationMode() = 0;
virtual void SetDepthMode() = 0;
virtual void SetLogicOpMode() = 0;
virtual void SetDitherMode() = 0;
virtual void SetSamplerState(int stage,int texindex) = 0;
virtual void SetInterlacingMode() = 0;
virtual void SetViewport() = 0;
virtual void ApplyState(bool bUseDstAlpha) = 0;
virtual void RestoreState() = 0;
// Ideal internal resolution - determined by display resolution (automatic scaling) and/or a multiple of the native EFB resolution
static int GetTargetWidth() { return s_target_width; }
static int GetTargetHeight() { return s_target_height; }
// Display resolution
static int GetBackbufferWidth() { return s_backbuffer_width; }
static int GetBackbufferHeight() { return s_backbuffer_height; }
static void SetWindowSize(int width, int height);
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0;
static const TargetRectangle& GetTargetRectangle() { return target_rc; }
static void UpdateDrawRectangle(int backbuffer_width, int backbuffer_height);
// Use this to convert a single target rectangle to two stereo rectangles
static void ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc, TargetRectangle& rightRc);
// Use this to upscale native EFB coordinates to IDEAL internal resolution
static int EFBToScaledX(int x);
static int EFBToScaledY(int y);
// Floating point versions of the above - only use them if really necessary
static float EFBToScaledXf(float x) { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); }
static float EFBToScaledYf(float y) { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); }
// Random utilities
static void SetScreenshot(const std::string& filename);
static void DrawDebugText();
virtual void RenderText(const std::string& text, int left, int top, u32 color) = 0;
virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) = 0;
virtual void ReinterpretPixelData(unsigned int convtype) = 0;
static void RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbWidth, u32 fbHeight, float Gamma = 1.0f);
virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0;
virtual u16 BBoxRead(int index) = 0;
virtual void BBoxWrite(int index, u16 value) = 0;
// What's the real difference between these? Too similar names.
virtual void ResetAPIState() = 0;
virtual void RestoreAPIState() = 0;
// Finish up the current frame, print some stats
static void Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,float Gamma = 1.0f);
virtual void SwapImpl(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, float Gamma = 1.0f) = 0;
virtual bool SaveScreenshot(const std::string &filename, const TargetRectangle &rc) = 0;
static PEControl::PixelFormat GetPrevPixelFormat() { return prev_efb_format; }
static void StorePixelFormat(PEControl::PixelFormat new_format) { prev_efb_format = new_format; }
PostProcessingShaderImplementation* GetPostProcessor() { return m_post_processor; }
// Max height/width
virtual int GetMaxTextureSize() = 0;
protected:
static void CalculateTargetScale(int x, int y, int* scaledX, int* scaledY);
bool CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height);
static void CheckFifoRecording();
static void RecordVideoMemory();
static volatile bool s_bScreenshot;
static std::mutex s_criticalScreenshot;
static std::string s_sScreenshotName;
#if defined _WIN32 || defined HAVE_LIBAV
bool bAVIDumping;
#else
File::IOFile pFrameDump;
#endif
std::vector<u8> frame_data;
bool bLastFrameDumped;
// The framebuffer size
static int s_target_width;
static int s_target_height;
// TODO: Add functionality to reinit all the render targets when the window is resized.
static int s_backbuffer_width;
static int s_backbuffer_height;
static TargetRectangle target_rc;
// TODO: Can probably eliminate this static var.
static int s_last_efb_scale;
static bool XFBWrited;
FPSCounter m_fps_counter;
static PostProcessingShaderImplementation* m_post_processor;
private:
static PEControl::PixelFormat prev_efb_format;
static unsigned int efb_scale_numeratorX;
static unsigned int efb_scale_numeratorY;
static unsigned int efb_scale_denominatorX;
static unsigned int efb_scale_denominatorY;
};
extern Renderer *g_renderer;