dolphin/Source/Core/InputCommon/ControllerInterface/Xlib/XInput2.cpp

418 lines
14 KiB
C++

// Copyright 2013 Max Eliaser
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wregister"
#include <X11/XKBlib.h>
#pragma GCC diagnostic pop
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fmt/format.h>
#include "InputCommon/ControllerInterface/Xlib/XInput2.h"
#include "Common/StringUtil.h"
// This is an input plugin using the XInput 2.0 extension to the X11 protocol,
// loosely based on the old XLib plugin. (Has nothing to do with the XInput
// API on Windows.)
// This plugin creates one KeyboardMouse object for each master pointer/
// keyboard pair. Each KeyboardMouse object exports four types of controls:
// * Mouse button controls: hardcoded at 32 of them, but could be made to
// support infinitely many mouse buttons in theory; XInput2 has no limit.
// * Mouse cursor controls: one for each cardinal direction. Calculated by
// comparing the absolute position of the mouse pointer on screen to the
// center of the emulator window.
// * Mouse axis controls: one for each cardinal direction. Calculated using
// a running average of relative mouse motion on each axis.
// * Key controls: these correspond to a limited subset of the keyboard
// keys.
// Mouse axis control tuning. Unlike absolute mouse position, relative mouse
// motion data needs to be tweaked and smoothed out a bit to be usable.
// Mouse axis control output is simply divided by this number. In practice,
// that just means you can use a smaller "dead zone" if you bind axis controls
// to a joystick. No real need to make this customizable.
#define MOUSE_AXIS_SENSITIVITY 8.0f
// The mouse axis controls use a weighted running average. Each frame, the new
// value is the average of the old value and the amount of relative mouse
// motion during that frame. The old value is weighted by a ratio of
// MOUSE_AXIS_SMOOTHING:1 compared to the new value. Increasing
// MOUSE_AXIS_SMOOTHING makes the controls smoother, decreasing it makes them
// more responsive. This might be useful as a user-customizable option.
#define MOUSE_AXIS_SMOOTHING 1.5f
namespace ciface::XInput2
{
// This function will add zero or more KeyboardMouse objects to devices.
void PopulateDevices(void* const hwnd)
{
Display* dpy = XOpenDisplay(nullptr);
// xi_opcode is important; it will be used to identify XInput events by
// the polling loop in UpdateInput.
int xi_opcode, event, error;
// verify that the XInput extension is available
if (!XQueryExtension(dpy, "XInputExtension", &xi_opcode, &event, &error))
return;
// verify that the XInput extension is at at least version 2.0
int major = 2, minor = 0;
if (XIQueryVersion(dpy, &major, &minor) != Success)
return;
// register all master devices with Dolphin
XIDeviceInfo* all_masters;
XIDeviceInfo* current_master;
int num_masters;
all_masters = XIQueryDevice(dpy, XIAllMasterDevices, &num_masters);
for (int i = 0; i < num_masters; i++)
{
current_master = &all_masters[i];
if (current_master->use == XIMasterPointer)
{
// Since current_master is a master pointer, its attachment must
// be a master keyboard.
g_controller_interface.AddDevice(std::make_shared<KeyboardMouse>(
(Window)hwnd, xi_opcode, current_master->deviceid, current_master->attachment));
}
}
XCloseDisplay(dpy);
XIFreeDeviceInfo(all_masters);
}
// Apply the event mask to the device and all its slaves. Only used in the
// constructor. Remember, each KeyboardMouse has its own copy of the event
// stream, which is how multiple event masks can "coexist."
void KeyboardMouse::SelectEventsForDevice(XIEventMask* mask, int deviceid)
{
// Set the event mask for the master device.
mask->deviceid = deviceid;
XISelectEvents(m_display, DefaultRootWindow(m_display), mask, 1);
// Query all the master device's slaves and set the same event mask for
// those too. There are two reasons we want to do this. For mouse devices,
// we want the raw motion events, and only slaves (i.e. physical hardware
// devices) emit those. For keyboard devices, selecting slaves avoids
// dealing with key focus.
int num_slaves;
XIDeviceInfo* const all_slaves = XIQueryDevice(m_display, XIAllDevices, &num_slaves);
for (int i = 0; i < num_slaves; i++)
{
XIDeviceInfo* const slave = &all_slaves[i];
if ((slave->use != XISlavePointer && slave->use != XISlaveKeyboard) ||
slave->attachment != deviceid)
{
continue;
}
mask->deviceid = slave->deviceid;
XISelectEvents(m_display, DefaultRootWindow(m_display), mask, 1);
}
XIFreeDeviceInfo(all_slaves);
}
KeyboardMouse::KeyboardMouse(Window window, int opcode, int pointer, int keyboard)
: m_window(window), xi_opcode(opcode), pointer_deviceid(pointer), keyboard_deviceid(keyboard)
{
// The cool thing about each KeyboardMouse object having its own Display
// is that each one gets its own separate copy of the X11 event stream,
// which it can individually filter to get just the events it's interested
// in. So be aware that each KeyboardMouse object actually has its own X11
// "context."
m_display = XOpenDisplay(nullptr);
// should always be 1
int unused;
XIDeviceInfo* const pointer_device = XIQueryDevice(m_display, pointer_deviceid, &unused);
name = std::string(pointer_device->name);
XIFreeDeviceInfo(pointer_device);
{
unsigned char mask_buf[(XI_LASTEVENT + 7) / 8] = {};
XISetMask(mask_buf, XI_ButtonPress);
XISetMask(mask_buf, XI_ButtonRelease);
XISetMask(mask_buf, XI_RawMotion);
XIEventMask mask;
mask.mask = mask_buf;
mask.mask_len = sizeof(mask_buf);
SelectEventsForDevice(&mask, pointer_deviceid);
}
{
unsigned char mask_buf[(XI_LASTEVENT + 7) / 8] = {};
XISetMask(mask_buf, XI_KeyPress);
XISetMask(mask_buf, XI_KeyRelease);
XISetMask(mask_buf, XI_FocusOut);
XIEventMask mask;
mask.mask = mask_buf;
mask.mask_len = sizeof(mask_buf);
SelectEventsForDevice(&mask, keyboard_deviceid);
}
// Keyboard Keys
int min_keycode, max_keycode;
XDisplayKeycodes(m_display, &min_keycode, &max_keycode);
for (int i = min_keycode; i <= max_keycode; ++i)
{
Key* const temp_key = new Key(m_display, i, m_state.keyboard.data());
if (temp_key->m_keyname.length())
AddInput(temp_key);
else
delete temp_key;
}
// Add combined left/right modifiers with consistent naming across platforms.
AddCombinedInput("Alt", {"Alt_L", "Alt_R"});
AddCombinedInput("Shift", {"Shift_L", "Shift_R"});
AddCombinedInput("Ctrl", {"Control_L", "Control_R"});
// Mouse Buttons
for (int i = 0; i < 32; i++)
AddInput(new Button(i, &m_state.buttons));
// Mouse Cursor, X-/+ and Y-/+
for (int i = 0; i != 4; ++i)
AddInput(new Cursor(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.cursor.y : &m_state.cursor.x));
// Mouse Axis, X-/+ and Y-/+
for (int i = 0; i != 4; ++i)
AddInput(new Axis(!!(i & 2), !!(i & 1), (i & 2) ? &m_state.axis.y : &m_state.axis.x));
// Relative Mouse, X-/+ and Y-/+
for (int i = 0; i != 4; ++i)
AddInput(new RelativeMouse(!!(i & 2), !!(i & 1),
(i & 2) ? &m_state.relative_mouse.y : &m_state.relative_mouse.x));
}
KeyboardMouse::~KeyboardMouse()
{
XCloseDisplay(m_display);
}
// Update the mouse cursor controls
void KeyboardMouse::UpdateCursor()
{
double root_x, root_y, win_x, win_y;
Window root, child;
// unused-- we're not interested in button presses here, as those are
// updated using events
XIButtonState button_state;
XIModifierState mods;
XIGroupState group;
XIQueryPointer(m_display, pointer_deviceid, m_window, &root, &child, &root_x, &root_y, &win_x,
&win_y, &button_state, &mods, &group);
free(button_state.mask);
XWindowAttributes win_attribs;
XGetWindowAttributes(m_display, m_window, &win_attribs);
const auto window_scale = g_controller_interface.GetWindowInputScale();
// the mouse position as a range from -1 to 1
m_state.cursor.x = (win_x / std::max(win_attribs.width, 1) * 2 - 1) * window_scale.x;
m_state.cursor.y = (win_y / std::max(win_attribs.height, 1) * 2 - 1) * window_scale.y;
}
void KeyboardMouse::UpdateInput()
{
XFlush(m_display);
// for the axis controls
float delta_x = 0.0f, delta_y = 0.0f;
double delta_delta;
bool mouse_moved = false;
// Iterate through the event queue - update the axis controls, mouse
// button controls, and keyboard controls.
XEvent event;
while (XPending(m_display))
{
XNextEvent(m_display, &event);
if (event.xcookie.type != GenericEvent)
continue;
if (event.xcookie.extension != xi_opcode)
continue;
if (!XGetEventData(m_display, &event.xcookie))
continue;
// only one of these will get used
XIDeviceEvent* dev_event = (XIDeviceEvent*)event.xcookie.data;
XIRawEvent* raw_event = (XIRawEvent*)event.xcookie.data;
switch (event.xcookie.evtype)
{
case XI_ButtonPress:
m_state.buttons |= 1 << (dev_event->detail - 1);
break;
case XI_ButtonRelease:
m_state.buttons &= ~(1 << (dev_event->detail - 1));
break;
case XI_KeyPress:
m_state.keyboard[dev_event->detail / 8] |= 1 << (dev_event->detail % 8);
break;
case XI_KeyRelease:
m_state.keyboard[dev_event->detail / 8] &= ~(1 << (dev_event->detail % 8));
break;
case XI_RawMotion:
mouse_moved = true;
// always safe because there is always at least one byte in
// raw_event->valuators.mask, and if a bit is set in the mask,
// then the value in raw_values is also available.
if (XIMaskIsSet(raw_event->valuators.mask, 0))
{
delta_delta = raw_event->raw_values[0];
// test for inf and nan
if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
delta_x += delta_delta;
}
if (XIMaskIsSet(raw_event->valuators.mask, 1))
{
delta_delta = raw_event->raw_values[1];
// test for inf and nan
if (delta_delta == delta_delta && 1 + delta_delta != delta_delta)
delta_y += delta_delta;
}
break;
case XI_FocusOut:
// Clear keyboard state on FocusOut as we will not be receiving KeyRelease events.
m_state.keyboard.fill(0);
break;
}
XFreeEventData(m_display, &event.xcookie);
}
m_state.relative_mouse.x = delta_x;
m_state.relative_mouse.y = delta_y;
// apply axis smoothing
m_state.axis.x *= MOUSE_AXIS_SMOOTHING;
m_state.axis.x += delta_x;
m_state.axis.x /= MOUSE_AXIS_SMOOTHING + 1.0f;
m_state.axis.y *= MOUSE_AXIS_SMOOTHING;
m_state.axis.y += delta_y;
m_state.axis.y /= MOUSE_AXIS_SMOOTHING + 1.0f;
// Get the absolute position of the mouse pointer
if (mouse_moved)
UpdateCursor();
// KeyRelease and FocusOut events are sometimes not received.
// Cycling Alt-Tab and landing on the same window results in a stuck "Alt" key.
// Unpressed keys are released here.
std::array<char, 32> keyboard;
XQueryKeymap(m_display, keyboard.data());
for (size_t i = 0; i != keyboard.size(); ++i)
m_state.keyboard[i] &= keyboard[i];
}
std::string KeyboardMouse::GetName() const
{
// This is the name string we got from the X server for this master
// pointer/keyboard pair.
return name;
}
std::string KeyboardMouse::GetSource() const
{
return "XInput2";
}
KeyboardMouse::Key::Key(Display* const display, KeyCode keycode, const char* keyboard)
: m_display(display), m_keyboard(keyboard), m_keycode(keycode)
{
int i = 0;
KeySym keysym = 0;
do
{
keysym = XkbKeycodeToKeysym(m_display, keycode, i, 0);
i++;
} while (keysym == NoSymbol && i < 8);
// Convert to upper case for the keyname
if (keysym >= 97 && keysym <= 122)
keysym -= 32;
// 0x0110ffff is the top of the unicode character range according
// to keysymdef.h although it is probably more than we need.
if (keysym == NoSymbol || keysym > 0x0110ffff || XKeysymToString(keysym) == nullptr)
m_keyname = std::string();
else
m_keyname = std::string(XKeysymToString(keysym));
}
ControlState KeyboardMouse::Key::GetState() const
{
return (m_keyboard[m_keycode / 8] & (1 << (m_keycode % 8))) != 0;
}
KeyboardMouse::Button::Button(unsigned int index, unsigned int* buttons)
: m_buttons(buttons), m_index(index)
{
name = fmt::format("Click {}", m_index + 1);
}
ControlState KeyboardMouse::Button::GetState() const
{
return ((*m_buttons & (1 << m_index)) != 0);
}
KeyboardMouse::Cursor::Cursor(u8 index, bool positive, const float* cursor)
: m_cursor(cursor), m_index(index), m_positive(positive)
{
name = fmt::format("Cursor {}{}", static_cast<char>('X' + m_index), (m_positive ? '+' : '-'));
}
ControlState KeyboardMouse::Cursor::GetState() const
{
return std::max(0.0f, *m_cursor / (m_positive ? 1.0f : -1.0f));
}
KeyboardMouse::Axis::Axis(u8 index, bool positive, const float* axis)
: m_axis(axis), m_index(index), m_positive(positive)
{
name = fmt::format("Axis {}{}", static_cast<char>('X' + m_index), (m_positive ? '+' : '-'));
}
KeyboardMouse::RelativeMouse::RelativeMouse(u8 index, bool positive, const float* axis)
: m_axis(axis), m_index(index), m_positive(positive)
{
name =
fmt::format("RelativeMouse {}{}", static_cast<char>('X' + m_index), (m_positive ? '+' : '-'));
}
ControlState KeyboardMouse::Axis::GetState() const
{
return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY));
}
ControlState KeyboardMouse::RelativeMouse::GetState() const
{
return std::max(0.0f, *m_axis / (m_positive ? MOUSE_AXIS_SENSITIVITY : -MOUSE_AXIS_SENSITIVITY));
}
} // namespace ciface::XInput2