dolphin/Source/Core/VideoCommon/XFStructs.cpp

648 lines
22 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/XFStructs.h"
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/Swap.h"
#include "Core/DolphinAnalytics.h"
#include "Core/HW/Memmap.h"
#include "Core/System.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/Fifo.h"
#include "VideoCommon/GeometryShaderManager.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/XFMemory.h"
static void XFMemWritten(u32 transferSize, u32 baseAddress)
{
g_vertex_manager->Flush();
VertexShaderManager::InvalidateXFRange(baseAddress, baseAddress + transferSize);
}
static void XFRegWritten(u32 address, u32 value)
{
if (address >= XFMEM_REGISTERS_START && address < XFMEM_REGISTERS_END)
{
switch (address)
{
case XFMEM_ERROR:
case XFMEM_DIAG:
case XFMEM_STATE0: // internal state 0
case XFMEM_STATE1: // internal state 1
case XFMEM_CLOCK:
case XFMEM_SETGPMETRIC:
// Not implemented
break;
case XFMEM_CLIPDISABLE:
{
ClipDisable setting{.hex = value};
if (setting.disable_clipping_detection)
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::SETS_XF_CLIPDISABLE_BIT_0);
if (setting.disable_trivial_rejection)
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::SETS_XF_CLIPDISABLE_BIT_1);
if (setting.disable_cpoly_clipping_acceleration)
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::SETS_XF_CLIPDISABLE_BIT_2);
break;
}
case XFMEM_VTXSPECS: //__GXXfVtxSpecs, wrote 0004
VertexLoaderManager::g_needs_cp_xf_consistency_check = true;
break;
case XFMEM_SETNUMCHAN:
if (xfmem.numChan.numColorChans != (value & 3))
g_vertex_manager->Flush();
VertexShaderManager::SetLightingConfigChanged();
break;
case XFMEM_SETCHAN0_AMBCOLOR: // Channel Ambient Color
case XFMEM_SETCHAN1_AMBCOLOR:
{
u8 chan = address - XFMEM_SETCHAN0_AMBCOLOR;
if (xfmem.ambColor[chan] != value)
{
g_vertex_manager->Flush();
VertexShaderManager::SetMaterialColorChanged(chan);
}
break;
}
case XFMEM_SETCHAN0_MATCOLOR: // Channel Material Color
case XFMEM_SETCHAN1_MATCOLOR:
{
u8 chan = address - XFMEM_SETCHAN0_MATCOLOR;
if (xfmem.matColor[chan] != value)
{
g_vertex_manager->Flush();
VertexShaderManager::SetMaterialColorChanged(chan + 2);
}
break;
}
case XFMEM_SETCHAN0_COLOR: // Channel Color
case XFMEM_SETCHAN1_COLOR:
case XFMEM_SETCHAN0_ALPHA: // Channel Alpha
case XFMEM_SETCHAN1_ALPHA:
if (((u32*)&xfmem)[address] != (value & 0x7fff))
g_vertex_manager->Flush();
VertexShaderManager::SetLightingConfigChanged();
break;
case XFMEM_DUALTEX:
if (xfmem.dualTexTrans.enabled != bool(value & 1))
g_vertex_manager->Flush();
VertexShaderManager::SetTexMatrixInfoChanged(-1);
break;
case XFMEM_SETMATRIXINDA:
VertexShaderManager::SetTexMatrixChangedA(value);
VertexLoaderManager::g_needs_cp_xf_consistency_check = true;
break;
case XFMEM_SETMATRIXINDB:
VertexShaderManager::SetTexMatrixChangedB(value);
VertexLoaderManager::g_needs_cp_xf_consistency_check = true;
break;
case XFMEM_SETVIEWPORT:
case XFMEM_SETVIEWPORT + 1:
case XFMEM_SETVIEWPORT + 2:
case XFMEM_SETVIEWPORT + 3:
case XFMEM_SETVIEWPORT + 4:
case XFMEM_SETVIEWPORT + 5:
g_vertex_manager->Flush();
VertexShaderManager::SetViewportChanged();
PixelShaderManager::SetViewportChanged();
GeometryShaderManager::SetViewportChanged();
break;
case XFMEM_SETPROJECTION:
case XFMEM_SETPROJECTION + 1:
case XFMEM_SETPROJECTION + 2:
case XFMEM_SETPROJECTION + 3:
case XFMEM_SETPROJECTION + 4:
case XFMEM_SETPROJECTION + 5:
case XFMEM_SETPROJECTION + 6:
g_vertex_manager->Flush();
VertexShaderManager::SetProjectionChanged();
GeometryShaderManager::SetProjectionChanged();
break;
case XFMEM_SETNUMTEXGENS: // GXSetNumTexGens
if (xfmem.numTexGen.numTexGens != (value & 15))
g_vertex_manager->Flush();
break;
case XFMEM_SETTEXMTXINFO:
case XFMEM_SETTEXMTXINFO + 1:
case XFMEM_SETTEXMTXINFO + 2:
case XFMEM_SETTEXMTXINFO + 3:
case XFMEM_SETTEXMTXINFO + 4:
case XFMEM_SETTEXMTXINFO + 5:
case XFMEM_SETTEXMTXINFO + 6:
case XFMEM_SETTEXMTXINFO + 7:
g_vertex_manager->Flush();
VertexShaderManager::SetTexMatrixInfoChanged(address - XFMEM_SETTEXMTXINFO);
break;
case XFMEM_SETPOSTMTXINFO:
case XFMEM_SETPOSTMTXINFO + 1:
case XFMEM_SETPOSTMTXINFO + 2:
case XFMEM_SETPOSTMTXINFO + 3:
case XFMEM_SETPOSTMTXINFO + 4:
case XFMEM_SETPOSTMTXINFO + 5:
case XFMEM_SETPOSTMTXINFO + 6:
case XFMEM_SETPOSTMTXINFO + 7:
g_vertex_manager->Flush();
VertexShaderManager::SetTexMatrixInfoChanged(address - XFMEM_SETPOSTMTXINFO);
break;
// --------------
// Unknown Regs
// --------------
// Maybe these are for Normals?
case 0x1048: // xfmem.texcoords[0].nrmmtxinfo.hex = data; break; ??
case 0x1049:
case 0x104a:
case 0x104b:
case 0x104c:
case 0x104d:
case 0x104e:
case 0x104f:
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_UNKNOWN_XF_COMMAND);
DEBUG_LOG_FMT(VIDEO, "Possible Normal Mtx XF reg?: {:x}={:x}", address, value);
break;
case 0x1013:
case 0x1014:
case 0x1015:
case 0x1016:
case 0x1017:
default:
DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_UNKNOWN_XF_COMMAND);
WARN_LOG_FMT(VIDEO, "Unknown XF Reg: {:x}={:x}", address, value);
break;
}
}
}
void LoadXFReg(u16 base_address, u8 transfer_size, const u8* data)
{
if (base_address > XFMEM_REGISTERS_END)
{
WARN_LOG_FMT(VIDEO, "XF load base address past end of address space: {:x} {} bytes",
base_address, transfer_size);
return;
}
u32 end_address = base_address + transfer_size; // exclusive
// do not allow writes past registers
if (end_address > XFMEM_REGISTERS_END)
{
WARN_LOG_FMT(VIDEO, "XF load ends past end of address space: {:x} {} bytes", base_address,
transfer_size);
end_address = XFMEM_REGISTERS_END;
}
// write to XF mem
if (base_address < XFMEM_REGISTERS_START)
{
const u32 xf_mem_base = base_address;
u32 xf_mem_transfer_size = transfer_size;
if (end_address > XFMEM_REGISTERS_START)
{
xf_mem_transfer_size = XFMEM_REGISTERS_START - base_address;
base_address = XFMEM_REGISTERS_START;
}
XFMemWritten(xf_mem_transfer_size, xf_mem_base);
for (u32 i = 0; i < xf_mem_transfer_size; i++)
{
((u32*)&xfmem)[xf_mem_base + i] = Common::swap32(data);
data += 4;
}
}
// write to XF regs
if (base_address >= XFMEM_REGISTERS_START)
{
for (u32 address = base_address; address < end_address; address++)
{
const u32 value = Common::swap32(data);
XFRegWritten(address, value);
((u32*)&xfmem)[address] = value;
data += 4;
}
}
}
// TODO - verify that it is correct. Seems to work, though.
void LoadIndexedXF(CPArray array, u32 index, u16 address, u8 size)
{
// load stuff from array to address in xf mem
u32* currData = (u32*)(&xfmem) + address;
u32* newData;
auto& system = Core::System::GetInstance();
auto& fifo = system.GetFifo();
if (fifo.UseDeterministicGPUThread())
{
newData = (u32*)fifo.PopFifoAuxBuffer(size * sizeof(u32));
}
else
{
auto& memory = system.GetMemory();
newData = (u32*)memory.GetPointer(g_main_cp_state.array_bases[array] +
g_main_cp_state.array_strides[array] * index);
}
bool changed = false;
for (u32 i = 0; i < size; ++i)
{
if (currData[i] != Common::swap32(newData[i]))
{
changed = true;
XFMemWritten(size, address);
break;
}
}
if (changed)
{
for (u32 i = 0; i < size; ++i)
currData[i] = Common::swap32(newData[i]);
}
}
void PreprocessIndexedXF(CPArray array, u32 index, u16 address, u8 size)
{
auto& system = Core::System::GetInstance();
auto& memory = system.GetMemory();
const u8* new_data = memory.GetPointer(g_preprocess_cp_state.array_bases[array] +
g_preprocess_cp_state.array_strides[array] * index);
const size_t buf_size = size * sizeof(u32);
system.GetFifo().PushFifoAuxBuffer(new_data, buf_size);
}
std::pair<std::string, std::string> GetXFRegInfo(u32 address, u32 value)
{
// Macro to set the register name and make sure it was written correctly via compile time assertion
#define RegName(reg) ((void)(reg), #reg)
#define DescriptionlessReg(reg) std::make_pair(RegName(reg), "");
switch (address)
{
case XFMEM_ERROR:
return DescriptionlessReg(XFMEM_ERROR);
case XFMEM_DIAG:
return DescriptionlessReg(XFMEM_DIAG);
case XFMEM_STATE0: // internal state 0
return std::make_pair(RegName(XFMEM_STATE0), "internal state 0");
case XFMEM_STATE1: // internal state 1
return std::make_pair(RegName(XFMEM_STATE1), "internal state 1");
case XFMEM_CLOCK:
return DescriptionlessReg(XFMEM_CLOCK);
case XFMEM_SETGPMETRIC:
return DescriptionlessReg(XFMEM_SETGPMETRIC);
case XFMEM_CLIPDISABLE:
return std::make_pair(RegName(XFMEM_CLIPDISABLE), fmt::to_string(ClipDisable{.hex = value}));
case XFMEM_VTXSPECS:
return std::make_pair(RegName(XFMEM_VTXSPECS), fmt::to_string(INVTXSPEC{.hex = value}));
case XFMEM_SETNUMCHAN:
return std::make_pair(RegName(XFMEM_SETNUMCHAN),
fmt::format("Number of color channels: {}", value & 3));
break;
case XFMEM_SETCHAN0_AMBCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN0_AMBCOLOR),
fmt::format("Channel 0 Ambient Color: {:08x}", value));
case XFMEM_SETCHAN1_AMBCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN1_AMBCOLOR),
fmt::format("Channel 1 Ambient Color: {:08x}", value));
case XFMEM_SETCHAN0_MATCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN0_MATCOLOR),
fmt::format("Channel 0 Material Color: {:08x}", value));
case XFMEM_SETCHAN1_MATCOLOR:
return std::make_pair(RegName(XFMEM_SETCHAN1_MATCOLOR),
fmt::format("Channel 1 Material Color: {:08x}", value));
case XFMEM_SETCHAN0_COLOR: // Channel Color
return std::make_pair(RegName(XFMEM_SETCHAN0_COLOR),
fmt::format("Channel 0 Color config:\n{}", LitChannel{.hex = value}));
case XFMEM_SETCHAN1_COLOR:
return std::make_pair(RegName(XFMEM_SETCHAN1_COLOR),
fmt::format("Channel 1 Color config:\n{}", LitChannel{.hex = value}));
case XFMEM_SETCHAN0_ALPHA: // Channel Alpha
return std::make_pair(RegName(XFMEM_SETCHAN0_ALPHA),
fmt::format("Channel 0 Alpha config:\n{}", LitChannel{.hex = value}));
case XFMEM_SETCHAN1_ALPHA:
return std::make_pair(RegName(XFMEM_SETCHAN1_ALPHA),
fmt::format("Channel 1 Alpha config:\n{}", LitChannel{.hex = value}));
case XFMEM_DUALTEX:
return std::make_pair(RegName(XFMEM_DUALTEX),
fmt::format("Dual Tex Trans {}", (value & 1) ? "enabled" : "disabled"));
case XFMEM_SETMATRIXINDA:
return std::make_pair(RegName(XFMEM_SETMATRIXINDA),
fmt::format("Matrix index A:\n{}", TMatrixIndexA{.Hex = value}));
case XFMEM_SETMATRIXINDB:
return std::make_pair(RegName(XFMEM_SETMATRIXINDB),
fmt::format("Matrix index B:\n{}", TMatrixIndexB{.Hex = value}));
case XFMEM_SETVIEWPORT:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 0),
fmt::format("Viewport width: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 1:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 1),
fmt::format("Viewport height: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 2:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 2),
fmt::format("Viewport z range: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 3:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 3),
fmt::format("Viewport x origin: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 4:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 4),
fmt::format("Viewport y origin: {}", Common::BitCast<float>(value)));
case XFMEM_SETVIEWPORT + 5:
return std::make_pair(RegName(XFMEM_SETVIEWPORT + 5),
fmt::format("Viewport far z: {}", Common::BitCast<float>(value)));
break;
case XFMEM_SETPROJECTION:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 0),
fmt::format("Projection[0]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 1:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 1),
fmt::format("Projection[1]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 2:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 2),
fmt::format("Projection[2]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 3:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 3),
fmt::format("Projection[3]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 4:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 4),
fmt::format("Projection[4]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 5:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 5),
fmt::format("Projection[5]: {}", Common::BitCast<float>(value)));
case XFMEM_SETPROJECTION + 6:
return std::make_pair(RegName(XFMEM_SETPROJECTION + 6),
fmt::to_string(static_cast<ProjectionType>(value)));
case XFMEM_SETNUMTEXGENS:
return std::make_pair(RegName(XFMEM_SETNUMTEXGENS),
fmt::format("Number of tex gens: {}", value & 15));
case XFMEM_SETTEXMTXINFO:
case XFMEM_SETTEXMTXINFO + 1:
case XFMEM_SETTEXMTXINFO + 2:
case XFMEM_SETTEXMTXINFO + 3:
case XFMEM_SETTEXMTXINFO + 4:
case XFMEM_SETTEXMTXINFO + 5:
case XFMEM_SETTEXMTXINFO + 6:
case XFMEM_SETTEXMTXINFO + 7:
return std::make_pair(
fmt::format("XFMEM_SETTEXMTXINFO Matrix {}", address - XFMEM_SETTEXMTXINFO),
fmt::to_string(TexMtxInfo{.hex = value}));
case XFMEM_SETPOSTMTXINFO:
case XFMEM_SETPOSTMTXINFO + 1:
case XFMEM_SETPOSTMTXINFO + 2:
case XFMEM_SETPOSTMTXINFO + 3:
case XFMEM_SETPOSTMTXINFO + 4:
case XFMEM_SETPOSTMTXINFO + 5:
case XFMEM_SETPOSTMTXINFO + 6:
case XFMEM_SETPOSTMTXINFO + 7:
return std::make_pair(
fmt::format("XFMEM_SETPOSTMTXINFO Matrix {}", address - XFMEM_SETPOSTMTXINFO),
fmt::to_string(PostMtxInfo{.hex = value}));
// --------------
// Unknown Regs
// --------------
// Maybe these are for Normals?
case 0x1048: // xfmem.texcoords[0].nrmmtxinfo.hex = data; break; ??
case 0x1049:
case 0x104a:
case 0x104b:
case 0x104c:
case 0x104d:
case 0x104e:
case 0x104f:
return std::make_pair(
fmt::format("Possible Normal Mtx XF reg?: {:x}={:x}", address, value),
"Maybe these are for Normals? xfmem.texcoords[0].nrmmtxinfo.hex = data; break; ??");
break;
case 0x1013:
case 0x1014:
case 0x1015:
case 0x1016:
case 0x1017:
default:
return std::make_pair(fmt::format("Unknown XF Reg: {:x}={:x}", address, value), "");
}
#undef RegName
#undef DescriptionlessReg
}
std::string GetXFMemName(u32 address)
{
if (address >= XFMEM_POSMATRICES && address < XFMEM_POSMATRICES_END)
{
const u32 row = (address - XFMEM_POSMATRICES) / 4;
const u32 col = (address - XFMEM_POSMATRICES) % 4;
return fmt::format("Position matrix row {:2d} col {:2d}", row, col);
}
else if (address >= XFMEM_NORMALMATRICES && address < XFMEM_NORMALMATRICES_END)
{
const u32 row = (address - XFMEM_NORMALMATRICES) / 3;
const u32 col = (address - XFMEM_NORMALMATRICES) % 3;
return fmt::format("Normal matrix row {:2d} col {:2d}", row, col);
}
else if (address >= XFMEM_POSTMATRICES && address < XFMEM_POSTMATRICES_END)
{
const u32 row = (address - XFMEM_POSTMATRICES) / 4;
const u32 col = (address - XFMEM_POSTMATRICES) % 4;
return fmt::format("Post matrix row {:2d} col {:2d}", row, col);
}
else if (address >= XFMEM_LIGHTS && address < XFMEM_LIGHTS_END)
{
const u32 light = (address - XFMEM_LIGHTS) / 16;
const u32 offset = (address - XFMEM_LIGHTS) % 16;
switch (offset)
{
default:
return fmt::format("Light {} unused param {}", light, offset);
case 3:
return fmt::format("Light {} color", light);
case 4:
case 5:
case 6:
return fmt::format("Light {} cosine attenuation {}", light, offset - 4);
case 7:
case 8:
case 9:
return fmt::format("Light {} distance attenuation {}", light, offset - 7);
case 10:
case 11:
case 12:
// Yagcd says light pos or "inf ldir", while dolphin has a union for dpos and sdir with only
// dpos being used nowadays. As far as I can tell only the DX9 engine once at
// Source/Plugins/Plugin_VideoDX9/Src/TransformEngine.cpp used sdir directly...
return fmt::format("Light {0} {1} position or inf ldir {1}", light, "xyz"[offset - 10]);
case 13:
case 14:
case 15:
// Yagcd says light dir or "1/2 angle", dolphin has union for ddir or shalfangle.
// It would make sense if d stood for direction and s for specular, but it's ddir and
// shalfangle that have the comment "specular lights only", both at the same offset,
// while dpos and sdir have none...
return fmt::format("Light {0} {1} direction or half angle {1}", light, "xyz"[offset - 13]);
}
}
else
{
return fmt::format("Unknown memory {:04x}", address);
}
}
std::string GetXFMemDescription(u32 address, u32 value)
{
if ((address >= XFMEM_POSMATRICES && address < XFMEM_POSMATRICES_END) ||
(address >= XFMEM_NORMALMATRICES && address < XFMEM_NORMALMATRICES_END) ||
(address >= XFMEM_POSTMATRICES && address < XFMEM_POSTMATRICES_END))
{
// The matrices all use floats
return fmt::format("{} = {}", GetXFMemName(address), Common::BitCast<float>(value));
}
else if (address >= XFMEM_LIGHTS && address < XFMEM_LIGHTS_END)
{
// Each light is 16 words; for this function we don't care which light it is
const u32 offset = (address - XFMEM_LIGHTS) % 16;
if (offset <= 3)
{
// The unused parameters (0, 1, 2) and the color (3) should be hex-formatted
return fmt::format("{} = {:08x}", GetXFMemName(address), value);
}
else
{
// Everything else is a float
return fmt::format("{} = {}", GetXFMemName(address), Common::BitCast<float>(value));
}
}
else
{
// Unknown address
return fmt::format("{} = {:08x}", GetXFMemName(address), value);
}
}
std::pair<std::string, std::string> GetXFTransferInfo(u16 base_address, u8 transfer_size,
const u8* data)
{
if (base_address > XFMEM_REGISTERS_END)
{
return std::make_pair("Invalid XF Transfer", "Base address past end of address space");
}
else if (transfer_size == 1 && base_address >= XFMEM_REGISTERS_START)
{
// Write directly to a single register
const u32 value = Common::swap32(data);
return GetXFRegInfo(base_address, value);
}
// More complicated cases
fmt::memory_buffer name, desc;
u32 end_address = base_address + transfer_size; // exclusive
// do not allow writes past registers
if (end_address > XFMEM_REGISTERS_END)
{
fmt::format_to(std::back_inserter(name), "Invalid XF Transfer ");
fmt::format_to(std::back_inserter(desc), "Transfer ends past end of address space\n\n");
end_address = XFMEM_REGISTERS_END;
}
// write to XF mem
if (base_address < XFMEM_REGISTERS_START)
{
const u32 xf_mem_base = base_address;
u32 xf_mem_transfer_size = transfer_size;
if (end_address > XFMEM_REGISTERS_START)
{
xf_mem_transfer_size = XFMEM_REGISTERS_START - base_address;
base_address = XFMEM_REGISTERS_START;
}
fmt::format_to(std::back_inserter(name), "Write {} XF mem words at {:04x}",
xf_mem_transfer_size, xf_mem_base);
for (u32 i = 0; i < xf_mem_transfer_size; i++)
{
const auto mem_desc = GetXFMemDescription(xf_mem_base + i, Common::swap32(data));
fmt::format_to(std::back_inserter(desc), "{}{}", i != 0 ? "\n" : "", mem_desc);
data += 4;
}
if (end_address > XFMEM_REGISTERS_START)
fmt::format_to(std::back_inserter(name), "; ");
}
// write to XF regs
if (base_address >= XFMEM_REGISTERS_START)
{
fmt::format_to(std::back_inserter(name), "Write {} XF regs at {:04x}",
end_address - base_address, base_address);
for (u32 address = base_address; address < end_address; address++)
{
const u32 value = Common::swap32(data);
const auto [regname, regdesc] = GetXFRegInfo(address, value);
fmt::format_to(std::back_inserter(desc), "{}\n{}\n", regname, regdesc);
data += 4;
}
}
return std::make_pair(fmt::to_string(name), fmt::to_string(desc));
}
std::pair<std::string, std::string> GetXFIndexedLoadInfo(CPArray array, u32 index, u16 address,
u8 size)
{
const auto desc = fmt::format("Load {} bytes to XF address {:03x} from CP array {} row {}", size,
address, array, index);
fmt::memory_buffer written;
for (u32 i = 0; i < size; i++)
{
fmt::format_to(std::back_inserter(written), "{}\n", GetXFMemName(address + i));
}
return std::make_pair(desc, fmt::to_string(written));
}