1252 lines
34 KiB
C++
1252 lines
34 KiB
C++
// Copyright (C) 2003 Dolphin Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official SVN repository and contact information can be found at
|
|
// http://code.google.com/p/dolphin-emu/
|
|
|
|
#include <wx/msgdlg.h>
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
#include "Common.h" // Common
|
|
#include "Timer.h"
|
|
#include "pluginspecs_wiimote.h"
|
|
#include "StringUtil.h" // For ArrayToString
|
|
|
|
#include "wiimote_hid.h"
|
|
#include "main.h"
|
|
#include "EmuMain.h"
|
|
#include "EmuSubroutines.h"
|
|
#include "EmuDefinitions.h"
|
|
#include "Config.h" // For g_Config
|
|
|
|
extern SWiimoteInitialize g_WiimoteInitialize;
|
|
|
|
namespace WiiMoteEmu
|
|
{
|
|
|
|
// Recorded movements
|
|
// Variables: 0 = Wiimote, 1 = Nunchuck
|
|
int g_RecordingPlaying[3]; //g_RecordingPlaying[0] = -1; g_RecordingPlaying[1] = -1;
|
|
int g_RecordingCounter[3]; //g_RecordingCounter[0] = 0; g_RecordingCounter[1] = 0;
|
|
int g_RecordingPoint[3]; //g_RecordingPoint[0] = 0; g_RecordingPoint[1] = 0;
|
|
double g_RecordingStart[3]; //g_RecordingStart[0] = 0; g_RecordingStart[1] = 0;
|
|
double g_RecordingCurrentTime[3]; //g_RecordingCurrentTime[0] = 0; g_RecordingCurrentTime[1] = 0;
|
|
|
|
/* Convert from -350 to -3.5 g. The Nunchuck gravity size is 51 compared to the 26 to 28 for the Wiimote.
|
|
So the maximum g values are higher for the Wiimote. */
|
|
int G2Accelerometer(int _G, int XYZ, int Wm)
|
|
{
|
|
float G = (float)_G / 100.0;
|
|
float Neutral = 0.0, OneG = 0.0, Accelerometer;
|
|
|
|
switch(XYZ)
|
|
{
|
|
case 0: // X
|
|
if(Wm == WM_RECORDING_WIIMOTE)
|
|
{
|
|
OneG = (float)g_wm.cal_g.x;
|
|
Neutral = (float)g_wm.cal_zero.x;
|
|
}
|
|
else
|
|
{
|
|
OneG = (float)g_nu.cal_g.x;
|
|
Neutral = (float)g_nu.cal_zero.x;
|
|
}
|
|
break;
|
|
case 1: // Y
|
|
if(Wm == WM_RECORDING_WIIMOTE)
|
|
{
|
|
OneG = (float)g_wm.cal_g.y;
|
|
Neutral = (float)g_wm.cal_zero.y;
|
|
}
|
|
else
|
|
{
|
|
OneG = (float)g_nu.cal_g.y;
|
|
Neutral = (float)g_nu.cal_zero.y;
|
|
}
|
|
break;
|
|
case 2: // Z
|
|
if(Wm == WM_RECORDING_WIIMOTE)
|
|
{
|
|
OneG = (float)g_wm.cal_g.z;
|
|
Neutral = (float)g_wm.cal_zero.z;
|
|
}
|
|
else
|
|
{
|
|
OneG = (float)g_nu.cal_g.z;
|
|
Neutral = (float)g_nu.cal_zero.z;
|
|
}
|
|
break;
|
|
default: PanicAlert("There is a syntax error in a function that is calling G2Accelerometer(%i, %i)", _G, XYZ);
|
|
}
|
|
|
|
Accelerometer = Neutral + (OneG * G);
|
|
int Return = (int)Accelerometer;
|
|
|
|
// Logging
|
|
//DEBUG_LOG(WIIMOTE, "G2Accelerometer():%f %f %f %f", Neutral, OneG, G, Accelerometer);
|
|
|
|
// Boundaries
|
|
if (Return > 255) Return = 255;
|
|
if (Return < 0) Return = 0;
|
|
|
|
return Return;
|
|
}
|
|
|
|
template<class IRReportType>
|
|
bool RecordingPlayAccIR(u8 &_x, u8 &_y, u8 &_z, IRReportType &_IR, int Wm)
|
|
{
|
|
// Check if the recording is on
|
|
if (g_RecordingPlaying[Wm] == -1) return false;
|
|
|
|
// Return if the list is empty
|
|
if(VRecording.at(g_RecordingPlaying[Wm]).Recording.size() == 0)
|
|
{
|
|
g_RecordingPlaying[Wm] = -1;
|
|
DEBUG_LOG(WIIMOTE, "Empty");
|
|
return false;
|
|
}
|
|
|
|
// Return if the playback speed is unset
|
|
if(VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed < 0)
|
|
{
|
|
DEBUG_LOG(WIIMOTE, "PlaybackSpeed empty: %i", g_RecordingPlaying[Wm]);
|
|
g_RecordingPlaying[Wm] = -1;
|
|
return false;
|
|
}
|
|
|
|
// Get IR bytes
|
|
int IRBytes = VRecording.at(g_RecordingPlaying[Wm]).IRBytes;
|
|
|
|
// Return if the IR mode is wrong
|
|
if (Wm == WM_RECORDING_IR
|
|
&& ( (IRBytes == 12 && !(g_ReportingMode[g_ID] == 0x33))
|
|
|| (IRBytes == 10 && !(g_ReportingMode[g_ID] == 0x36 || g_ReportingMode[g_ID] == 0x37))
|
|
)
|
|
)
|
|
{
|
|
DEBUG_LOG(WIIMOTE, "Wrong IR mode: %i", g_RecordingPlaying[Wm]);
|
|
g_RecordingPlaying[Wm] = -1;
|
|
return false;
|
|
}
|
|
|
|
// Get starting time
|
|
if(g_RecordingCounter[Wm] == 0)
|
|
{
|
|
DEBUG_LOG(WIIMOTE, "Begin: %i", Wm);
|
|
g_RecordingStart[Wm] = Common::Timer::GetDoubleTime();
|
|
}
|
|
|
|
// Get current time
|
|
g_RecordingCurrentTime[Wm] = Common::Timer::GetDoubleTime() - g_RecordingStart[Wm];
|
|
|
|
// Modify the current time
|
|
g_RecordingCurrentTime[Wm] *= ((25.0 + (double)VRecording.at(g_RecordingPlaying[Wm]).PlaybackSpeed * 25.0) / 100.0);
|
|
|
|
// Select reading
|
|
for (int i = 0; i < (int)VRecording.at(g_RecordingPlaying[Wm]).Recording.size(); i++)
|
|
if (VRecording.at(g_RecordingPlaying[Wm]).Recording.at(i).Time > g_RecordingCurrentTime[Wm])
|
|
{
|
|
g_RecordingPoint[Wm] = i;
|
|
break; // Break loop
|
|
}
|
|
|
|
// Return if we are at the end of the list
|
|
if(g_RecordingCurrentTime[Wm] >=
|
|
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(
|
|
VRecording.at(g_RecordingPlaying[Wm]).Recording.size() - 1).Time)
|
|
// Or if we are playing back all observations regardless of time
|
|
//g_RecordingPoint[Wm] = g_RecordingCounter[Wm];
|
|
//if (g_RecordingPoint[Wm] >= VRecording.at(g_RecordingPlaying[Wm]).Recording.size())
|
|
{
|
|
g_RecordingCounter[Wm] = 0;
|
|
g_RecordingPlaying[Wm] = -1;
|
|
g_RecordingStart[Wm] = 0;
|
|
g_RecordingCurrentTime[Wm] = 0;
|
|
DEBUG_LOG(WIIMOTE, "End: %i", Wm);
|
|
return false;
|
|
}
|
|
|
|
// Update accelerometer values
|
|
_x = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).x, 0, Wm);
|
|
_y = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).y, 1, Wm);
|
|
_z = G2Accelerometer(VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).z, 2, Wm);
|
|
// Update IR values
|
|
if(Wm == WM_RECORDING_IR) memcpy(&_IR, VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).IR, IRBytes);
|
|
|
|
if (g_DebugAccelerometer)
|
|
{
|
|
//Console::ClearScreen();
|
|
DEBUG_LOG(WIIMOTE, "Current time: [%i / %i] %f %f",
|
|
g_RecordingPoint[Wm], VRecording.at(g_RecordingPlaying[Wm]).Recording.size(),
|
|
VRecording.at(g_RecordingPlaying[Wm]).Recording.at(g_RecordingPoint[Wm]).Time, g_RecordingCurrentTime[Wm]
|
|
);
|
|
DEBUG_LOG(WIIMOTE, "Accel x, y, z: %03u %03u %03u", _x, _y, _z);
|
|
}
|
|
//DEBUG_LOG(WIIMOTE, "Accel x, y, z: %03u %03u %03u", _x, _y, _z);
|
|
|
|
g_RecordingCounter[Wm]++;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Because the playback is neatly controlled by RecordingPlayAccIR() we use these functions to be able to
|
|
use RecordingPlayAccIR() for both accelerometer and IR recordings */
|
|
bool RecordingPlay(u8 &_x, u8 &_y, u8 &_z, int Wm)
|
|
{
|
|
wm_ir_basic IR;
|
|
return RecordingPlayAccIR(_x, _y, _z, IR, Wm);
|
|
}
|
|
|
|
template<class IRReportType>
|
|
bool RecordingPlayIR(IRReportType &_IR)
|
|
{
|
|
u8 x, y, z;
|
|
return RecordingPlayAccIR(x, y, z, _IR, 2);
|
|
}
|
|
|
|
// Return true if this particual numerical key is pressed
|
|
bool IsNumericalKeyPressed(int _Key)
|
|
{
|
|
#ifdef _WIN32
|
|
// Check which key it is
|
|
std::string TmpKey = StringFromFormat("%i", _Key);
|
|
if(GetAsyncKeyState(TmpKey[0]))
|
|
return true;
|
|
else
|
|
// That numerical key is pressed
|
|
return false;
|
|
#else
|
|
// TODO linux port
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// Check if a switch is pressed
|
|
bool IsSwitchPressed(int _Key)
|
|
{
|
|
#ifdef _WIN32
|
|
// Check if that switch is pressed
|
|
switch (_Key)
|
|
{
|
|
case 0: if (GetAsyncKeyState(VK_SHIFT)) return true;
|
|
case 1: if (GetAsyncKeyState(VK_CONTROL)) return true;
|
|
case 2: if (GetAsyncKeyState(VK_MENU)) return true;
|
|
}
|
|
|
|
// That switch was not pressed
|
|
return false;
|
|
#else
|
|
// TODO linux port
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// Check if we should start the playback of a recording. Once it has been started it can currently
|
|
// not be stopped, it will always run to the end of the recording.
|
|
int RecordingCheckKeys(int WmNuIr)
|
|
{
|
|
#ifdef _WIN32
|
|
//DEBUG_LOG(WIIMOTE, "RecordingCheckKeys: %i", Wiimote);
|
|
|
|
// Check if we have a HotKey match
|
|
bool Match = false;
|
|
int Recording = -1;
|
|
for(int i = 0; i < RECORDING_ROWS; i++)
|
|
{
|
|
// Check all ten numerical keys
|
|
for(int j = 0; j < 10; j++)
|
|
{
|
|
if ((VRecording.at(i).HotKeyWiimote == j && WmNuIr == 0 && IsNumericalKeyPressed(j)
|
|
|| VRecording.at(i).HotKeyNunchuck == j && WmNuIr == 1 && IsNumericalKeyPressed(j)
|
|
|| VRecording.at(i).HotKeyIR == j && WmNuIr == 2 && IsNumericalKeyPressed(j))
|
|
&& (IsSwitchPressed(VRecording.at(i).HotKeySwitch) || VRecording.at(i).HotKeySwitch == 3))
|
|
{
|
|
//DEBUG_LOG(WIIMOTE, "Match: %i %i", i, Key);
|
|
Match = true;
|
|
Recording = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return nothing if we don't have a match
|
|
if (!Match) return -1;
|
|
|
|
// Return the match
|
|
return Recording;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
|
|
// Multi System Input Status Check
|
|
bool IsKey(int Key)
|
|
{
|
|
int Ret = false;
|
|
|
|
if (WiiMapping[g_ID].Source == 1)
|
|
{
|
|
int MapKey = WiiMapping[g_ID].Button[Key];
|
|
|
|
#ifdef _WIN32
|
|
if (MapKey < 256)
|
|
{
|
|
Ret = GetAsyncKeyState(MapKey); // Keyboard (Windows)
|
|
}
|
|
else if (MapKey < 0x1100)
|
|
#elif defined(HAVE_X11) && HAVE_X11
|
|
if (MapKey < 256 || MapKey >= 0xf000)
|
|
{
|
|
char keys[32];
|
|
KeyCode keyCode;
|
|
XQueryKeymap(WMdisplay, keys);
|
|
keyCode = XKeysymToKeycode(WMdisplay, MapKey);
|
|
Ret = (keys[keyCode/8] & (1 << (keyCode%8))); // Keyboard (Linux)
|
|
}
|
|
else if (MapKey < 0x1100)
|
|
#else
|
|
if (MapKey < 0x1100)
|
|
#endif
|
|
{
|
|
Ret = SDL_JoystickGetButton(WiiMapping[g_ID].joy, MapKey - 0x1000); // Pad button
|
|
}
|
|
else // Pad hat
|
|
{
|
|
u8 HatCode, HatKey;
|
|
HatCode = SDL_JoystickGetHat(WiiMapping[g_ID].joy, (MapKey - 0x1100) / 0x0010);
|
|
HatKey = (MapKey - 0x1100) % 0x0010;
|
|
|
|
if (HatCode & HatKey)
|
|
Ret = HatKey;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
if ((Key == EWM_SHAKE && GetAsyncKeyState(VK_MBUTTON))
|
|
|| (Key == EWM_A && GetAsyncKeyState(VK_LBUTTON))
|
|
|| (Key == EWM_B && GetAsyncKeyState(VK_RBUTTON)))
|
|
{
|
|
float x, y;
|
|
GetMousePos(x, y);
|
|
Ret = !(x < 0 || x > 1 || y < 0 || y > 1);
|
|
}
|
|
#endif
|
|
#if defined(HAVE_X11) && HAVE_X11
|
|
if (Key == EWM_SHAKE || Key == EWM_A || Key == EWM_B)
|
|
{
|
|
Window GLWin = *(Window *)g_WiimoteInitialize.pXWindow;
|
|
int root_x, root_y, win_x, win_y;
|
|
Window rootDummy, childWin;
|
|
unsigned int mask;
|
|
XQueryPointer(WMdisplay, GLWin, &rootDummy, &childWin, &root_x, &root_y, &win_x, &win_y, &mask);
|
|
if (((Key == EWM_A) && (mask & Button1Mask))
|
|
|| ((Key == EWM_B) && (mask & Button3Mask))
|
|
|| ((Key == EWM_SHAKE) && (mask & Button3Mask)))
|
|
{
|
|
float x, y;
|
|
GetMousePos(x, y);
|
|
Ret = !(x < 0 || x > 1 || y < 0 || y > 1);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return (Ret) ? true : false;
|
|
}
|
|
|
|
// Wiimote core buttons
|
|
void FillReportInfo(wm_core& _core)
|
|
{
|
|
// Check that Dolphin is in focus
|
|
if (!IsFocus()) return;
|
|
|
|
u32 mask=0;
|
|
if (WiiMapping[g_ID].UDPWM.instance)
|
|
WiiMapping[g_ID].UDPWM.instance->update();
|
|
|
|
if ((WiiMapping[g_ID].UDPWM.instance)&&(WiiMapping[g_ID].UDPWM.enableButtons))
|
|
mask=WiiMapping[g_ID].UDPWM.instance->getButtons();
|
|
|
|
// Allow both mouse buttons and keyboard to press a and b
|
|
_core.a = IsKey(EWM_A)||(mask&UDPWM_BA);
|
|
_core.b = IsKey(EWM_B)||(mask&UDPWM_BB);
|
|
_core.one = IsKey(EWM_ONE)||(mask&UDPWM_B1);
|
|
_core.two = IsKey(EWM_TWO)||(mask&UDPWM_B2);
|
|
_core.plus = IsKey(EWM_P)||(mask&UDPWM_BP);
|
|
_core.minus = IsKey(EWM_M)||(mask&UDPWM_BM);
|
|
_core.home = IsKey(EWM_H)||(mask&UDPWM_BH);
|
|
|
|
/* Sideways controls (for example for Wario Land) if the Wiimote is intended to be held sideways */
|
|
if(WiiMapping[g_ID].bSideways)
|
|
{
|
|
_core.left = IsKey(EWM_D)||(mask&UDPWM_BL);
|
|
_core.up = IsKey(EWM_L)||(mask&UDPWM_BU);
|
|
_core.right = IsKey(EWM_U)||(mask&UDPWM_BR);
|
|
_core.down = IsKey(EWM_R)||(mask&UDPWM_BU);
|
|
}
|
|
else
|
|
{
|
|
_core.left = IsKey(EWM_L)||(mask&UDPWM_BL);
|
|
_core.up = IsKey(EWM_U)||(mask&UDPWM_BU);
|
|
_core.right = IsKey(EWM_R)||(mask&UDPWM_BR);
|
|
_core.down = IsKey(EWM_D)||(mask&UDPWM_BD);
|
|
}
|
|
}
|
|
|
|
void FillReportAcc(wm_accel& _acc)
|
|
{
|
|
// Recorded movements
|
|
// Check for a playback command
|
|
if (g_RecordingPlaying[0] < 0)
|
|
{
|
|
g_RecordingPlaying[0] = RecordingCheckKeys(0);
|
|
}
|
|
else
|
|
{
|
|
// If the recording reached the end or failed somehow we will not return
|
|
if (RecordingPlay(_acc.x, _acc.y, _acc.z, 0))
|
|
return;
|
|
//DEBUG_LOG(WIIMOTE, "X, Y, Z: %u %u %u", _acc.x, _acc.y, _acc.z);
|
|
}
|
|
|
|
// Initial value
|
|
_acc.x = g_wm.cal_zero.x;
|
|
_acc.y = g_wm.cal_zero.y;
|
|
_acc.z = g_wm.cal_zero.z;
|
|
|
|
// Adjust position, also add some noise to prevent disconnection
|
|
if (!WiiMapping[g_ID].bUpright)
|
|
_acc.z += g_wm.cal_g.z + WiiMapping[g_ID].Motion.TiltWM.FakeNoise;
|
|
else // Upright wiimote
|
|
_acc.y -= g_wm.cal_g.y + WiiMapping[g_ID].Motion.TiltWM.FakeNoise;
|
|
|
|
WiiMapping[g_ID].Motion.TiltWM.FakeNoise = -WiiMapping[g_ID].Motion.TiltWM.FakeNoise;
|
|
|
|
if (IsFocus())
|
|
{
|
|
int acc_x = _acc.x;
|
|
int acc_y = _acc.y;
|
|
int acc_z = _acc.z;
|
|
|
|
if (((WiiMapping[g_ID].UDPWM.instance)&&
|
|
(WiiMapping[g_ID].UDPWM.enableButtons)&&
|
|
(WiiMapping[g_ID].UDPWM.instance->getButtons()&UDPWM_SK))
|
|
||(IsKey(EWM_SHAKE))&& !WiiMapping[g_ID].Motion.TiltWM.Shake)
|
|
WiiMapping[g_ID].Motion.TiltWM.Shake = 1;
|
|
|
|
// Step the shake simulation one step
|
|
ShakeToAccelerometer(acc_x, acc_y, acc_z, WiiMapping[g_ID].Motion.TiltWM);
|
|
|
|
// Tilt Wiimote, allow the shake function to interrupt it
|
|
if (!WiiMapping[g_ID].Motion.TiltWM.Shake)
|
|
TiltWiimote(acc_x, acc_y, acc_z);
|
|
|
|
// Boundary check
|
|
if (acc_x > 0xFF) acc_x = 0xFF;
|
|
else if (acc_x < 0x00) acc_x = 0x00;
|
|
if (acc_y > 0xFF) acc_y = 0xFF;
|
|
else if (acc_y < 0x00) acc_y = 0x00;
|
|
if (acc_z > 0xFF) acc_z = 0xFF;
|
|
else if (acc_z < 0x00) acc_z = 0x00;
|
|
|
|
_acc.x = acc_x;
|
|
_acc.y = acc_y;
|
|
_acc.z = acc_z;
|
|
}
|
|
|
|
// Debugging for translating Wiimote to Keyboard (or Gamepad)
|
|
/*
|
|
|
|
// Toogle console display
|
|
if(GetAsyncKeyState('U'))
|
|
{
|
|
if(consoleDisplay < 2)
|
|
consoleDisplay ++;
|
|
else
|
|
consoleDisplay = 0;
|
|
}
|
|
|
|
if(GetAsyncKeyState('5'))
|
|
A-=1;
|
|
else if(GetAsyncKeyState('6'))
|
|
A+=1;
|
|
if(GetAsyncKeyState('7'))
|
|
B-=1;
|
|
else if(GetAsyncKeyState('8'))
|
|
B+=1;
|
|
if(GetAsyncKeyState('9'))
|
|
C-=1;
|
|
else if(GetAsyncKeyState('0'))
|
|
C+=1;
|
|
|
|
else if(GetAsyncKeyState(VK_NUMPAD3))
|
|
d-=1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD6))
|
|
d+=1;
|
|
else if(GetAsyncKeyState(VK_ADD))
|
|
yhistsize-=1;
|
|
else if(GetAsyncKeyState(VK_SUBTRACT))
|
|
yhistsize+=1;
|
|
|
|
|
|
if(GetAsyncKeyState(VK_INSERT))
|
|
AX-=1;
|
|
else if(GetAsyncKeyState(VK_DELETE))
|
|
AX+=1;
|
|
else if(GetAsyncKeyState(VK_HOME))
|
|
AY-=1;
|
|
else if(GetAsyncKeyState(VK_END))
|
|
AY+=1;
|
|
else if(GetAsyncKeyState(VK_SHIFT))
|
|
AZ-=1;
|
|
else if(GetAsyncKeyState(VK_CONTROL))
|
|
AZ+=1;
|
|
|
|
if(GetAsyncKeyState(VK_NUMPAD1))
|
|
X+=1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD2))
|
|
X-=1;
|
|
if(GetAsyncKeyState(VK_NUMPAD4))
|
|
Y+=1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD5))
|
|
Y-=1;
|
|
if(GetAsyncKeyState(VK_NUMPAD7))
|
|
Z+=1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD8))
|
|
Z-=1;
|
|
|
|
//if(consoleDisplay == 0)
|
|
DEBUG_LOG(WIIMOTE, "x: %03i | y: %03i | z: %03i | A:%i B:%i C:%i a:%i b:%i c:%i d:%i X:%i Y:%i Z:%i",
|
|
_acc.x, _acc.y, _acc.z,
|
|
A, B, C,
|
|
a, b, c, d,
|
|
X, Y, Z
|
|
);
|
|
DEBUG_LOG(WIIMOTE, "x: %03i | y: %03i | z: %03i | X:%i Y:%i Z:%i | AX:%i AY:%i AZ:%i ",
|
|
_acc.x, _acc.y, _acc.z,
|
|
X, Y, Z,
|
|
AX, AY, AZ
|
|
);*/
|
|
}
|
|
|
|
// The extended 12 byte (3 byte per object) reporting
|
|
void FillReportIR(wm_ir_extended& _ir0, wm_ir_extended& _ir1)
|
|
{
|
|
// Recorded movements
|
|
// Check for a playback command
|
|
if(g_RecordingPlaying[2] < 0)
|
|
{
|
|
g_RecordingPlaying[2] = RecordingCheckKeys(2);
|
|
}
|
|
else
|
|
{
|
|
//DEBUG_LOG(WIIMOTE, "X, Y, Z: %u %u %u", _acc.x, _acc.y, _acc.z);
|
|
if (RecordingPlayIR(_ir0)) return;
|
|
}
|
|
|
|
/* Fill with 0xff if empty. The real Wiimote seems to use 0xff when it
|
|
doesn't see a certain point, at least from how WiiMoteReal::SendEvent()
|
|
works. */
|
|
memset(&_ir0, 0xff, sizeof(wm_ir_extended));
|
|
memset(&_ir1, 0xff, sizeof(wm_ir_extended));
|
|
|
|
float MouseX, MouseY;
|
|
if ((WiiMapping[g_ID].UDPWM.instance)&&(WiiMapping[g_ID].UDPWM.enableIR))
|
|
WiiMapping[g_ID].UDPWM.instance->getIR(MouseX,MouseY);
|
|
else
|
|
GetMousePos(MouseX, MouseY);
|
|
|
|
// If we are outside the screen leave the values at 0xff
|
|
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
|
|
|
|
// Position calculation
|
|
int y0 = g_Config.iIRTop + g_Config.iIRHeight * MouseY;
|
|
int y1 = y0;
|
|
|
|
// The distance between the x positions are two sensor bar radii
|
|
int x0 = 1023 - g_Config.iIRLeft - g_Config.iIRWidth * MouseX - SENSOR_BAR_WIDTH / 2;
|
|
int x1 = x0 + SENSOR_BAR_WIDTH;
|
|
|
|
RotateIRDot(x0, y0, WiiMapping[g_ID].Motion.TiltWM);
|
|
RotateIRDot(x1, y1, WiiMapping[g_ID].Motion.TiltWM);
|
|
|
|
// Converted to IR data
|
|
_ir0.x = x0 & 0xff; _ir0.xHi = x0 >> 8;
|
|
_ir0.y = y0 & 0xff; _ir0.yHi = y0 >> 8;
|
|
|
|
_ir1.x = x1 & 0xff; _ir1.xHi = x1 >> 8;
|
|
_ir1.y = y1 & 0xff; _ir1.yHi = y1 >> 8;
|
|
|
|
// The size can be between 0 and 15 and is probably not important
|
|
_ir0.size = 10;
|
|
_ir1.size = 10;
|
|
|
|
// Debugging for calibration
|
|
/*
|
|
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_RIGHT))
|
|
Right +=1;
|
|
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_RIGHT))
|
|
Right -=1;
|
|
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_LEFT))
|
|
Left +=1;
|
|
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_LEFT))
|
|
Left -=1;
|
|
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_UP))
|
|
Top += 1;
|
|
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_UP))
|
|
Top -= 1;
|
|
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_DOWN))
|
|
Bottom += 1;
|
|
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_DOWN))
|
|
Bottom -= 1;
|
|
if(!GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_NUMPAD0))
|
|
SensorBarRadius += 1;
|
|
else if(GetAsyncKeyState(VK_CONTROL) && GetAsyncKeyState(VK_NUMPAD0))
|
|
SensorBarRadius -= 1;
|
|
|
|
//Console::ClearScreen();
|
|
//if(consoleDisplay == 1)
|
|
DEBUG_LOG(WIIMOTE, "x0:%03i x1:%03i y0:%03i y1:%03i | T:%i L:%i R:%i B:%i S:%i",
|
|
x0, x1, y0, y1, Top, Left, Right, Bottom, SensorBarRadius
|
|
);*/
|
|
}
|
|
|
|
// The 10 byte reporting used when an extension is connected
|
|
void FillReportIRBasic(wm_ir_basic& _ir0, wm_ir_basic& _ir1)
|
|
{
|
|
// Recorded movements
|
|
// Check for a playback command
|
|
if(g_RecordingPlaying[2] < 0)
|
|
{
|
|
g_RecordingPlaying[2] = RecordingCheckKeys(2);
|
|
}
|
|
// We are playing back a recording, we don't accept any manual input this time
|
|
else
|
|
{
|
|
//DEBUG_LOG(WIIMOTE, "X, Y, Z: %u %u %u", _acc.x, _acc.y, _acc.z);
|
|
if (RecordingPlayIR(_ir0)) return;
|
|
}
|
|
|
|
// Fill with 0xff if empty
|
|
memset(&_ir0, 0xff, sizeof(wm_ir_basic));
|
|
memset(&_ir1, 0xff, sizeof(wm_ir_basic));
|
|
|
|
float MouseX, MouseY;
|
|
if ((WiiMapping[g_ID].UDPWM.instance)&&(WiiMapping[g_ID].UDPWM.enableIR))
|
|
WiiMapping[g_ID].UDPWM.instance->getIR(MouseX,MouseY);
|
|
else
|
|
GetMousePos(MouseX, MouseY);
|
|
|
|
// If we are outside the screen leave the values at 0xff
|
|
if(MouseX > 1 || MouseX < 0 || MouseY > 1 || MouseY < 0) return;
|
|
|
|
int y1 = g_Config.iIRTop + g_Config.iIRHeight * MouseY;
|
|
int y2 = y1;
|
|
|
|
int x1 = 1023 - g_Config.iIRLeft - g_Config.iIRWidth * MouseX - SENSOR_BAR_WIDTH / 2;
|
|
int x2 = x1 + SENSOR_BAR_WIDTH;
|
|
|
|
RotateIRDot(x1, y1, WiiMapping[g_ID].Motion.TiltWM);
|
|
RotateIRDot(x2, y2, WiiMapping[g_ID].Motion.TiltWM);
|
|
|
|
/* As with the extented report we settle with emulating two out of four
|
|
possible objects the only difference is that we don't report any size of
|
|
the tracked object here */
|
|
|
|
_ir0.x1 = x1 & 0xff; _ir0.x1Hi = (x1 >> 8); // we are dealing with 2 bit values here
|
|
_ir0.y1 = y1 & 0xff; _ir0.y1Hi = (y1 >> 8);
|
|
|
|
_ir0.x2 = x2 & 0xff; _ir0.x2Hi = (x2 >> 8);
|
|
_ir0.y2 = y2 & 0xff; _ir0.y2Hi = (y2 >> 8);
|
|
|
|
// Debugging for calibration
|
|
/*
|
|
if(GetAsyncKeyState(VK_NUMPAD1))
|
|
Right +=1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD2))
|
|
Right -=1;
|
|
if(GetAsyncKeyState(VK_NUMPAD4))
|
|
Left +=1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD5))
|
|
Left -=1;
|
|
if(GetAsyncKeyState(VK_NUMPAD7))
|
|
Top += 1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD8))
|
|
Top -= 1;
|
|
if(GetAsyncKeyState(VK_NUMPAD6))
|
|
Bottom += 1;
|
|
else if(GetAsyncKeyState(VK_NUMPAD3))
|
|
Bottom -= 1;
|
|
if(GetAsyncKeyState(VK_INSERT))
|
|
SensorBarRadius += 1;
|
|
else if(GetAsyncKeyState(VK_DELETE))
|
|
SensorBarRadius -= 1;
|
|
|
|
//ClearScreen();
|
|
//if(consoleDisplay == 1)
|
|
|
|
DEBUG_LOG(WIIMOTE, "x1:%03i x2:%03i y1:%03i y2:%03i irx1:%02x y1:%02x x2:%02x y2:%02x | T:%i L:%i R:%i B:%i S:%i",
|
|
x1, x2, y1, y2, _ir0.x1, _ir0.y1, _ir1.x2, _ir1.y2, Top, Left, Right, Bottom, SensorBarRadius
|
|
);
|
|
DEBUG_LOG(WIIMOTE, "");
|
|
DEBUG_LOG(WIIMOTE, "ir0.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir0.y1:%02x y1h:%02x y2:%02x y2h:%02x | ir1.x1:%02x x1h:%02x x2:%02x x2h:%02x | ir1.y1:%02x y1h:%02x y2:%02x y2h:%02x",
|
|
_ir0.x1, _ir0.x1Hi, _ir0.x2, _ir0.x2Hi,
|
|
_ir0.y1, _ir0.y1Hi, _ir0.y2, _ir0.y2Hi,
|
|
_ir1.x1, _ir1.x1Hi, _ir1.x2, _ir1.x2Hi,
|
|
_ir1.y1, _ir1.y1Hi, _ir1.y2, _ir1.y2Hi
|
|
);*/
|
|
// ------------------
|
|
}
|
|
|
|
|
|
/* Generate the 6 byte extension report for the Nunchuck, encrypted. The bytes
|
|
are JX JY AX AY AZ BT. */
|
|
void FillReportExtension(wm_extension& _ext)
|
|
{
|
|
// Recorded movements
|
|
// Check for a playback command
|
|
if(g_RecordingPlaying[1] < 0)
|
|
{
|
|
g_RecordingPlaying[1] = RecordingCheckKeys(1);
|
|
}
|
|
else
|
|
{
|
|
// We should not play back the accelerometer values
|
|
if (RecordingPlay(_ext.ax, _ext.ay, _ext.az, 1))
|
|
return;
|
|
}
|
|
|
|
// The default joystick and button values unless we use them
|
|
_ext.jx = g_nu.jx.center;
|
|
_ext.jy = g_nu.jy.center;
|
|
_ext.bt = 0x03; // 0x03 means no button pressed, the button is zero active
|
|
|
|
// Use the neutral values
|
|
_ext.ax = g_nu.cal_zero.x;
|
|
_ext.ay = g_nu.cal_zero.y;
|
|
_ext.az = g_nu.cal_zero.z + g_nu.cal_g.z;
|
|
|
|
if (IsFocus())
|
|
{
|
|
int acc_x = _ext.ax;
|
|
int acc_y = _ext.ay;
|
|
int acc_z = _ext.az;
|
|
|
|
if (IsKey(ENC_SHAKE) && !WiiMapping[g_ID].Motion.TiltNC.Shake)
|
|
WiiMapping[g_ID].Motion.TiltNC.Shake = 1;
|
|
|
|
// Step the shake simulation one step
|
|
ShakeToAccelerometer(acc_x, acc_y, acc_z, WiiMapping[g_ID].Motion.TiltNC);
|
|
|
|
// Tilt Nunchuck, allow the shake function to interrupt it
|
|
if (!WiiMapping[g_ID].Motion.TiltNC.Shake)
|
|
TiltNunchuck(acc_x, acc_y, acc_z);
|
|
|
|
// Boundary check
|
|
if (acc_x > 0xFF) acc_x = 0xFF;
|
|
else if (acc_x < 0x00) acc_x = 0x00;
|
|
if (acc_y > 0xFF) acc_y = 0xFF;
|
|
else if (acc_y < 0x00) acc_y = 0x00;
|
|
if (acc_z > 0xFF) acc_z = 0xFF;
|
|
else if (acc_z < 0x00) acc_z = 0x00;
|
|
|
|
_ext.ax = acc_x;
|
|
_ext.ay = acc_y;
|
|
_ext.az = acc_z;
|
|
|
|
if ((WiiMapping[g_ID].UDPWM.instance)&&(WiiMapping[g_ID].UDPWM.enableNunchuck))
|
|
{
|
|
float x,y;
|
|
u8 b;
|
|
WiiMapping[g_ID].UDPWM.instance->getNunchuck(x,y,b);
|
|
//NOTICE_LOG(WIIMOTE,"%f %f %x",x,y,b);
|
|
//x
|
|
int factNeg= + g_nu.jx.center - g_nu.jx.min;
|
|
int factPoz= - g_nu.jx.center + g_nu.jx.max;
|
|
if (x==0) _ext.jx=g_nu.jx.center;
|
|
if (x>0) _ext.jx=(int)(x*factPoz+g_nu.jx.center);
|
|
if (x<0) _ext.jx=(int)(x*factNeg+g_nu.jx.center);
|
|
//y
|
|
factNeg= + g_nu.jy.center - g_nu.jy.min;
|
|
factPoz= - g_nu.jy.center + g_nu.jy.max;
|
|
if (y==0) _ext.jy=g_nu.jy.center;
|
|
if (y>0) _ext.jy=(int)(y*factPoz+g_nu.jy.center);
|
|
if (y<0) _ext.jy=(int)(y*factNeg+g_nu.jy.center);
|
|
//buttons
|
|
if(IsKey(ENC_C)||(b&UDPWM_NC)) _ext.bt &= ~0x02;
|
|
if(IsKey(ENC_Z)||(b&UDPWM_NZ)) _ext.bt &= ~0x01;
|
|
} else
|
|
{
|
|
// Update the analog stick
|
|
if (WiiMapping[g_ID].Stick.NC == FROM_KEYBOARD)
|
|
{
|
|
// Set the max values to the current calibration values
|
|
if(IsKey(ENC_L)) // x
|
|
_ext.jx = g_nu.jx.min;
|
|
if(IsKey(ENC_R))
|
|
_ext.jx = g_nu.jx.max;
|
|
|
|
if(IsKey(ENC_D)) // y
|
|
_ext.jy = g_nu.jy.min;
|
|
if(IsKey(ENC_U))
|
|
_ext.jy = g_nu.jy.max;
|
|
|
|
// On a real stick, the initialization value of center is 0x80,
|
|
// but after a first time touch, the center value automatically changes to 0x7F
|
|
if(_ext.jx != g_nu.jx.center)
|
|
g_nu.jx.center = 0x7F;
|
|
if(_ext.jy != g_nu.jy.center)
|
|
g_nu.jy.center = 0x7F;
|
|
}
|
|
else
|
|
{
|
|
// Get adjusted pad state values
|
|
int _Lx = WiiMapping[g_ID].AxisState.Lx;
|
|
int _Ly = WiiMapping[g_ID].AxisState.Ly;
|
|
int _Rx = WiiMapping[g_ID].AxisState.Rx;
|
|
int _Ry = WiiMapping[g_ID].AxisState.Ry;
|
|
|
|
// The Y-axis is inverted
|
|
_Ly = 0xff - _Ly;
|
|
_Ry = 0xff - _Ry;
|
|
|
|
/* This is if we are also using a real Nunchuck that we are sharing the
|
|
calibration with. It's not needed if we are using our default
|
|
values. We adjust the values to the configured range, we even allow
|
|
the center to not be 0x80. */
|
|
if(g_nu.jx.max != 0xff || g_nu.jy.max != 0xff
|
|
|| g_nu.jx.min != 0 || g_nu.jy.min != 0
|
|
|| g_nu.jx.center != 0x80 || g_nu.jy.center != 0x80)
|
|
{
|
|
float Lx = (float)_Lx;
|
|
float Ly = (float)_Ly;
|
|
float Rx = (float)_Rx;
|
|
float Ry = (float)_Ry;
|
|
//float Tl = (float)_Tl;
|
|
//float Tr = (float)_Tr;
|
|
|
|
float XRangePos = (float) (g_nu.jx.max - g_nu.jx.center);
|
|
float XRangeNeg = (float) (g_nu.jx.center - g_nu.jx.min);
|
|
float YRangePos = (float) (g_nu.jy.max - g_nu.jy.center);
|
|
float YRangeNeg = (float) (g_nu.jy.center - g_nu.jy.min);
|
|
if (Lx > 0x80) Lx = Lx * (XRangePos / 128.0);
|
|
if (Lx < 0x80) Lx = Lx * (XRangeNeg / 128.0);
|
|
if (Lx == 0x80) Lx = (float)g_nu.jx.center;
|
|
if (Ly > 0x80) Ly = Ly * (YRangePos / 128.0);
|
|
if (Ly < 0x80) Ly = Ly * (YRangeNeg / 128.0);
|
|
if (Ly == 0x80) Lx = (float)g_nu.jy.center;
|
|
// Boundaries
|
|
_Lx = (int)Lx;
|
|
_Ly = (int)Ly;
|
|
_Rx = (int)Rx;
|
|
_Ry = (int)Ry;
|
|
if (_Lx > 0xff) _Lx = 0xff; if (_Lx < 0) _Lx = 0;
|
|
if (_Rx > 0xff) _Rx = 0xff; if (_Rx < 0) _Rx = 0;
|
|
if (_Ly > 0xff) _Ly = 0xff; if (_Ly < 0) _Ly = 0;
|
|
if (_Ry > 0xff) _Ry = 0xff; if (_Ry < 0) _Ry = 0;
|
|
}
|
|
|
|
if (WiiMapping[g_ID].Stick.NC == FROM_ANALOG1)
|
|
{
|
|
_ext.jx = _Lx;
|
|
_ext.jy = _Ly;
|
|
}
|
|
else // ANALOG2
|
|
{
|
|
_ext.jx = _Rx;
|
|
_ext.jy = _Ry;
|
|
}
|
|
}
|
|
|
|
if(IsKey(ENC_C)) _ext.bt &= ~0x02;
|
|
if(IsKey(ENC_Z)) _ext.bt &= ~0x01;
|
|
}
|
|
}
|
|
|
|
/* Here we encrypt the report */
|
|
|
|
// Create a temporary storage for the data
|
|
u8 Tmp[sizeof(_ext)];
|
|
// Clear the array by copying zeroes to it
|
|
memset(Tmp, 0, sizeof(_ext));
|
|
// Copy the data to it
|
|
memcpy(Tmp, &_ext, sizeof(_ext));
|
|
// Encrypt it
|
|
wiimote_encrypt(&g_ExtKey[g_ID], Tmp, 0x00, sizeof(_ext));
|
|
// Write it back to the struct
|
|
memcpy(&_ext, Tmp, sizeof(_ext));
|
|
}
|
|
|
|
|
|
/* Generate the 6 byte extension report for the Classic Controller, encrypted.
|
|
The bytes are ... */
|
|
void FillReportClassicExtension(wm_classic_extension& _ext)
|
|
{
|
|
/* These are the default neutral values for the analog triggers and sticks */
|
|
u8 Rx = g_ClassicContCalibration.Rx.center, Ry = g_ClassicContCalibration.Ry.center,
|
|
Lx = g_ClassicContCalibration.Lx.center, Ly = g_ClassicContCalibration.Ly.center,
|
|
lT = g_ClassicContCalibration.Tl.neutral, rT = g_ClassicContCalibration.Tl.neutral;
|
|
|
|
_ext.b1.padding = 0x01; // 0x01 means not pressed
|
|
_ext.b1.bRT = 0x01;
|
|
_ext.b1.bP = 0x01;
|
|
_ext.b1.bH = 0x01;
|
|
_ext.b1.bM = 0x01;
|
|
_ext.b1.bLT = 0x01;
|
|
_ext.b1.bdD = 0x01;
|
|
_ext.b1.bdR = 0x01;
|
|
|
|
_ext.b2.bdU = 0x01;
|
|
_ext.b2.bdL = 0x01;
|
|
_ext.b2.bZR = 0x01;
|
|
_ext.b2.bX = 0x01;
|
|
_ext.b2.bA = 0x01;
|
|
_ext.b2.bY = 0x01;
|
|
_ext.b2.bB = 0x01;
|
|
_ext.b2.bZL = 0x01;
|
|
|
|
// Check that Dolphin is in focus
|
|
if (IsFocus())
|
|
{
|
|
/* Left and right analog sticks and analog triggers
|
|
|
|
u8 Lx : 6; // byte 0
|
|
u8 Rx : 2;
|
|
u8 Ly : 6; // byte 1
|
|
u8 Rx2 : 2;
|
|
u8 Ry : 5; // byte 2
|
|
u8 lT : 2;
|
|
u8 Rx3 : 1;
|
|
u8 rT : 5; // byte 3
|
|
u8 lT2 : 3;
|
|
|
|
We use a 200 range (28 to 228) for the left analog stick and a 176 range
|
|
(40 to 216) for the right analog stick to match our calibration values
|
|
in classic_calibration
|
|
*/
|
|
|
|
// Update the left analog stick
|
|
if (WiiMapping[g_ID].Stick.CCL == FROM_KEYBOARD)
|
|
{
|
|
if(IsKey(ECC_Ll)) // Left analog left
|
|
Lx = g_ClassicContCalibration.Lx.min;
|
|
if(IsKey(ECC_Lr)) // right
|
|
Lx = g_ClassicContCalibration.Lx.max;
|
|
if(IsKey(ECC_Lu)) // up
|
|
Ly = g_ClassicContCalibration.Ly.max;
|
|
if(IsKey(ECC_Ld)) // down
|
|
Ly = g_ClassicContCalibration.Ly.min;
|
|
|
|
// On a real stick, the initialization value of center is 0x80,
|
|
// but after a first time touch, the center value automatically changes to 0x7F
|
|
if(Lx != g_ClassicContCalibration.Lx.center)
|
|
g_ClassicContCalibration.Lx.center = 0x7F;
|
|
if(Ly != g_ClassicContCalibration.Ly.center)
|
|
g_ClassicContCalibration.Ly.center = 0x7F;
|
|
}
|
|
else
|
|
{
|
|
// Get adjusted pad state values
|
|
int _Lx = WiiMapping[g_ID].AxisState.Lx;
|
|
int _Ly = WiiMapping[g_ID].AxisState.Ly;
|
|
int _Rx = WiiMapping[g_ID].AxisState.Rx;
|
|
int _Ry = WiiMapping[g_ID].AxisState.Ry;
|
|
|
|
// The Y-axis is inverted
|
|
_Ly = 0xff - _Ly;
|
|
_Ry = 0xff - _Ry;
|
|
|
|
/* This is if we are also using a real Classic Controller that we
|
|
are sharing the calibration with. It's not needed if we are
|
|
using our default values. We adjust the values to the configured
|
|
range.
|
|
|
|
Status: Not added, we are not currently sharing the calibration
|
|
with the real Classic Controller
|
|
*/
|
|
|
|
if (WiiMapping[g_ID].Stick.CCL == FROM_ANALOG1)
|
|
{
|
|
Lx = _Lx;
|
|
Ly = _Ly;
|
|
}
|
|
else // ANALOG2
|
|
{
|
|
Lx = _Rx;
|
|
Ly = _Ry;
|
|
}
|
|
}
|
|
|
|
// Update the right analog stick
|
|
if (WiiMapping[g_ID].Stick.CCR == FROM_KEYBOARD)
|
|
{
|
|
if(IsKey(ECC_Rl)) // Right analog left
|
|
Rx = g_ClassicContCalibration.Rx.min;
|
|
if(IsKey(ECC_Rr)) // right
|
|
Rx = g_ClassicContCalibration.Rx.max;
|
|
if(IsKey(ECC_Ru)) // up
|
|
Ry = g_ClassicContCalibration.Ry.max;
|
|
if(IsKey(ECC_Rd)) // down
|
|
Ry = g_ClassicContCalibration.Ry.min;
|
|
|
|
// On a real stick, the initialization value of center is 0x80,
|
|
// but after a first time touch, the center value automatically changes to 0x7F
|
|
if(Rx != g_ClassicContCalibration.Rx.center)
|
|
g_ClassicContCalibration.Rx.center = 0x7F;
|
|
if(Ry != g_ClassicContCalibration.Ry.center)
|
|
g_ClassicContCalibration.Ry.center = 0x7F;
|
|
}
|
|
else
|
|
{
|
|
// Get adjusted pad state values
|
|
int _Lx = WiiMapping[g_ID].AxisState.Lx;
|
|
int _Ly = WiiMapping[g_ID].AxisState.Ly;
|
|
int _Rx = WiiMapping[g_ID].AxisState.Rx;
|
|
int _Ry = WiiMapping[g_ID].AxisState.Ry;
|
|
|
|
// The Y-axis is inverted
|
|
_Ly = 0xff - _Ly;
|
|
_Ry = 0xff - _Ry;
|
|
|
|
/* This is if we are also using a real Classic Controller that we
|
|
are sharing the calibration with. It's not needed if we are
|
|
using our default values. We adjust the values to the configured
|
|
range.
|
|
|
|
Status: Not added, we are not currently sharing the calibration
|
|
with the real Classic Controller
|
|
*/
|
|
|
|
if (WiiMapping[g_ID].Stick.CCR == FROM_ANALOG1)
|
|
{
|
|
Rx = _Lx;
|
|
Ry = _Ly;
|
|
}
|
|
else // ANALOG2
|
|
{
|
|
Rx = _Rx;
|
|
Ry = _Ry;
|
|
}
|
|
}
|
|
|
|
// Update the left and right analog triggers
|
|
if (WiiMapping[g_ID].Stick.CCT == FROM_KEYBOARD)
|
|
{
|
|
if(IsKey(ECC_Tl)) // analog left trigger
|
|
{ _ext.b1.bLT = 0x00; lT = 0x1f; }
|
|
if(IsKey(ECC_Tr)) // analog right trigger
|
|
{ _ext.b1.bRT = 0x00; rT = 0x1f; }
|
|
}
|
|
else // g_Config.ClassicController.TRIGGER
|
|
{
|
|
// Get adjusted pad state values
|
|
int _Tl = WiiMapping[g_ID].AxisState.Tl;
|
|
int _Tr = WiiMapping[g_ID].AxisState.Tr;
|
|
|
|
/* This is if we are also using a real Classic Controller that we
|
|
are sharing the calibration with. It's not needed if we are
|
|
using our default values. We adjust the values to the configured
|
|
range.
|
|
|
|
Status: Not added, we are not currently sharing the calibration
|
|
with the real Classic Controller
|
|
*/
|
|
|
|
// Check if the trigger is fully pressed, then update the digital
|
|
// trigger values to
|
|
if (_Tl == 0xff) _ext.b1.bLT = 0x00;
|
|
if (_Tr == 0xff) _ext.b1.bRT = 0x00;
|
|
|
|
// These can be copied directly, the bitshift further down fix this
|
|
// value to
|
|
lT = _Tl;
|
|
rT = _Tr;
|
|
}
|
|
|
|
/* D-Pad
|
|
|
|
u8 b1;
|
|
0:
|
|
6: bdD
|
|
7: bdR
|
|
|
|
u8 b2;
|
|
0: bdU
|
|
1: bdL
|
|
*/
|
|
if(IsKey(ECC_Dl)) _ext.b2.bdL = 0x00; // Digital left
|
|
if(IsKey(ECC_Du)) _ext.b2.bdU = 0x00; // Up
|
|
if(IsKey(ECC_Dr)) _ext.b1.bdR = 0x00; // Right
|
|
if(IsKey(ECC_Dd)) _ext.b1.bdD = 0x00; // Down
|
|
|
|
/* Buttons
|
|
u8 b1;
|
|
0:
|
|
6: -
|
|
7: -
|
|
|
|
u8 b2;
|
|
0: -
|
|
1: -
|
|
2: bZr
|
|
3: bX
|
|
4: bA
|
|
5: bY
|
|
6: bB
|
|
7: bZl
|
|
*/
|
|
if(IsKey(ECC_A)) _ext.b2.bA = 0x00;
|
|
if(IsKey(ECC_B)) _ext.b2.bB = 0x00;
|
|
if(IsKey(ECC_Y)) _ext.b2.bY = 0x00;
|
|
if(IsKey(ECC_X)) _ext.b2.bX = 0x00;
|
|
if(IsKey(ECC_P)) _ext.b1.bP = 0x00;
|
|
if(IsKey(ECC_M)) _ext.b1.bM = 0x00;
|
|
if(IsKey(ECC_H)) _ext.b1.bH = 0x00;
|
|
if(IsKey(ECC_Zl)) _ext.b2.bZL = 0x00;
|
|
if(IsKey(ECC_Zr)) _ext.b2.bZR = 0x00;
|
|
|
|
// All buttons pressed
|
|
//if(GetAsyncKeyState('C') && GetAsyncKeyState('Z'))
|
|
// { _ext.b2.bA = 0x01; _ext.b2.bB = 0x01; }
|
|
}
|
|
|
|
// Convert data for reporting
|
|
_ext.Lx = (Lx >> 2);
|
|
_ext.Ly = (Ly >> 2);
|
|
// 5 bit to 1 bit
|
|
_ext.Rx = (Rx >> 3) & 0x01;
|
|
// 5 bit to the next 2 bit
|
|
_ext.Rx2 = ((Rx >> 3) >> 1) & 0x03;
|
|
// 5 bit to the next 2 bit
|
|
_ext.Rx3 = ((Rx >> 3) >> 3) & 0x03;
|
|
_ext.Ry = (Ry >> 3);
|
|
// 5 bit to 3 bit
|
|
_ext.lT = (lT >> 3) & 0x07;
|
|
// 5 bit to the highest two bits
|
|
_ext.lT2 = (lT >> 3) >> 3;
|
|
_ext.rT = (rT >> 3);
|
|
|
|
/* Here we encrypt the report */
|
|
// Create a temporary storage for the data
|
|
u8 Tmp[sizeof(_ext)];
|
|
// Clear the array by copying zeroes to it
|
|
memset(Tmp, 0, sizeof(_ext));
|
|
// Copy the data to it
|
|
memcpy(Tmp, &_ext, sizeof(_ext));
|
|
// Encrypt it
|
|
wiimote_encrypt(&g_ExtKey[g_ID], Tmp, 0x00, sizeof(_ext));
|
|
// Write it back to the struct
|
|
memcpy(&_ext, Tmp, sizeof(_ext));
|
|
}
|
|
|
|
/* Generate the 6 byte extension report for the GH3 Controller, encrypted.
|
|
The bytes are ... */
|
|
void FillReportGuitarHero3Extension(wm_GH3_extension& _ext)
|
|
{
|
|
// u8 TB : 5; // not used in GH3
|
|
// u8 WB : 5;
|
|
u8 SX = g_GH3Calibration.Lx.center, SY = g_GH3Calibration.Ly.center;
|
|
|
|
_ext.pad1 = 3;
|
|
_ext.pad2 = 3;
|
|
_ext.pad3 = 0;
|
|
_ext.pad4 = 0;
|
|
_ext.pad5 = 3;
|
|
_ext.pad6 = 1;
|
|
_ext.pad7 = 1;
|
|
_ext.pad8 = 1;
|
|
_ext.pad9 = 3;
|
|
|
|
_ext.Plus = 1;
|
|
_ext.Minus = 1;
|
|
_ext.StrumDown = 1;
|
|
_ext.StrumUp = 1;
|
|
_ext.Yellow = 1;
|
|
_ext.Green = 1;
|
|
_ext.Blue = 1;
|
|
_ext.Red = 1;
|
|
_ext.Orange = 1;
|
|
|
|
// Check that Dolphin is in focus
|
|
if (IsFocus())
|
|
{
|
|
// Update the left analog stick
|
|
if (WiiMapping[g_ID].Stick.GH == FROM_KEYBOARD)
|
|
{
|
|
if(IsKey(EGH_Al)) // Left analog left
|
|
_ext.SX = g_GH3Calibration.Lx.min;
|
|
if(IsKey(EGH_Ar)) // right
|
|
_ext.SX = g_GH3Calibration.Lx.max;
|
|
if(IsKey(EGH_Au)) // up
|
|
_ext.SY = g_GH3Calibration.Ly.max;
|
|
if(IsKey(EGH_Ad)) // down
|
|
_ext.SY = g_GH3Calibration.Ly.min;
|
|
}
|
|
else
|
|
{
|
|
// Get adjusted pad state values
|
|
int _Lx = WiiMapping[g_ID].AxisState.Lx;
|
|
int _Ly = WiiMapping[g_ID].AxisState.Ly;
|
|
int _Rx = WiiMapping[g_ID].AxisState.Rx;
|
|
int _Ry = WiiMapping[g_ID].AxisState.Ry;
|
|
|
|
// The Y-axis is inverted
|
|
_Ly = 0xff - _Ly;
|
|
_Ry = 0xff - _Ry;
|
|
|
|
if (WiiMapping[g_ID].Stick.GH == FROM_ANALOG1)
|
|
{
|
|
SX = _Lx;
|
|
SY = _Ly;
|
|
}
|
|
else // ANALOG2
|
|
{
|
|
SX = _Rx;
|
|
SX = _Ry;
|
|
}
|
|
}
|
|
|
|
if(IsKey(EGH_Yellow)) _ext.Yellow = 0;
|
|
if(IsKey(EGH_Green)) _ext.Green = 0;
|
|
if(IsKey(EGH_Blue)) _ext.Blue = 0;
|
|
if(IsKey(EGH_Red)) _ext.Red = 0;
|
|
if(IsKey(EGH_Orange)) _ext.Orange = 0;
|
|
if(IsKey(EGH_Plus)) _ext.Plus = 0;
|
|
if(IsKey(EGH_Minus)) _ext.Minus = 0;
|
|
if(IsKey(EGH_StrumUp)) _ext.StrumUp = 0; // Strum Up
|
|
if(IsKey(EGH_StrumDown)) _ext.StrumDown= 0; // Strum Down
|
|
}
|
|
|
|
// Convert data for reporting
|
|
_ext.SX = (SX >> 2);
|
|
_ext.SY = (SY >> 2);
|
|
|
|
/* Here we encrypt the report */
|
|
// Create a temporary storage for the data
|
|
u8 Tmp[sizeof(_ext)];
|
|
// Clear the array by copying zeroes to it
|
|
memset(Tmp, 0, sizeof(_ext));
|
|
// Copy the data to it
|
|
memcpy(Tmp, &_ext, sizeof(_ext));
|
|
// Encrypt it
|
|
wiimote_encrypt(&g_ExtKey[g_ID], Tmp, 0x00, sizeof(_ext));
|
|
// Write it back to the struct
|
|
memcpy(&_ext, Tmp, sizeof(_ext));
|
|
}
|
|
|
|
} // end of namespace
|