dolphin/Source/Core/VideoBackends/Vulkan/VulkanContext.cpp

1027 lines
40 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Vulkan/VulkanContext.h"
#include <algorithm>
#include <array>
#include <cstring>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/VideoCommon.h"
namespace Vulkan
{
std::unique_ptr<VulkanContext> g_vulkan_context;
VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_device)
: m_instance(instance), m_physical_device(physical_device)
{
// Read device physical memory properties, we need it for allocating buffers
vkGetPhysicalDeviceProperties(physical_device, &m_device_properties);
vkGetPhysicalDeviceMemoryProperties(physical_device, &m_device_memory_properties);
// Would any drivers be this silly? I hope not...
m_device_properties.limits.minUniformBufferOffsetAlignment = std::max(
m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.minTexelBufferOffsetAlignment = std::max(
m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max(
m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyRowPitchAlignment = std::max(
m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast<VkDeviceSize>(1));
}
VulkanContext::~VulkanContext()
{
if (m_device != VK_NULL_HANDLE)
vkDestroyDevice(m_device, nullptr);
if (m_debug_report_callback != VK_NULL_HANDLE)
DisableDebugReports();
vkDestroyInstance(m_instance, nullptr);
}
bool VulkanContext::CheckValidationLayerAvailablility()
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkExtensionProperties> extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extension_list.data());
ASSERT(res == VK_SUCCESS);
u32 layer_count = 0;
res = vkEnumerateInstanceLayerProperties(&layer_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkLayerProperties> layer_list(layer_count);
res = vkEnumerateInstanceLayerProperties(&layer_count, layer_list.data());
ASSERT(res == VK_SUCCESS);
// Check for both VK_EXT_debug_report and VK_LAYER_LUNARG_standard_validation
return (std::find_if(extension_list.begin(), extension_list.end(),
[](const auto& it) {
return strcmp(it.extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0;
}) != extension_list.end() &&
std::find_if(layer_list.begin(), layer_list.end(), [](const auto& it) {
return strcmp(it.layerName, "VK_LAYER_KHRONOS_validation") == 0;
}) != layer_list.end());
}
VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report,
bool enable_validation_layer)
{
std::vector<const char*> enabled_extensions;
if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_report))
return VK_NULL_HANDLE;
VkApplicationInfo app_info = {};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pNext = nullptr;
app_info.pApplicationName = "Dolphin Emulator";
app_info.applicationVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.pEngineName = "Dolphin Emulator";
app_info.engineVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.apiVersion = VK_MAKE_VERSION(1, 0, 0);
// Try for Vulkan 1.1 if the loader supports it.
if (vkEnumerateInstanceVersion)
{
u32 supported_api_version = 0;
VkResult res = vkEnumerateInstanceVersion(&supported_api_version);
if (res == VK_SUCCESS && (VK_VERSION_MAJOR(supported_api_version) > 1 ||
VK_VERSION_MINOR(supported_api_version) >= 1))
{
// The device itself may not support 1.1, so we check that before using any 1.1 functionality.
app_info.apiVersion = VK_MAKE_VERSION(1, 1, 0);
}
}
VkInstanceCreateInfo instance_create_info = {};
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_create_info.pNext = nullptr;
instance_create_info.flags = 0;
instance_create_info.pApplicationInfo = &app_info;
instance_create_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
instance_create_info.ppEnabledExtensionNames = enabled_extensions.data();
instance_create_info.enabledLayerCount = 0;
instance_create_info.ppEnabledLayerNames = nullptr;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_KHRONOS_validation"};
instance_create_info.enabledLayerCount = 1;
instance_create_info.ppEnabledLayerNames = layer_names;
}
VkInstance instance;
VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateInstance failed: ");
return nullptr;
}
return instance;
}
bool VulkanContext::SelectInstanceExtensions(std::vector<const char*>* extension_list,
WindowSystemType wstype, bool enable_debug_report)
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: No extensions supported by instance.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count,
available_extension_list.data());
ASSERT(res == VK_SUCCESS);
for (const auto& extension_properties : available_extension_list)
INFO_LOG_FMT(VIDEO, "Available extension: {}", extension_properties.extensionName);
auto AddExtension = [&](const char* name, bool required) {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
INFO_LOG_FMT(VIDEO, "Enabling extension: {}", name);
extension_list->push_back(name);
return true;
}
if (required)
ERROR_LOG_FMT(VIDEO, "Vulkan: Missing required extension {}.", name);
return false;
};
// Common extensions
if (wstype != WindowSystemType::Headless && !AddExtension(VK_KHR_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (wstype == WindowSystemType::Windows &&
!AddExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
if (wstype == WindowSystemType::X11 && !AddExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
if (wstype == WindowSystemType::Android &&
!AddExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_METAL_EXT)
if (wstype == WindowSystemType::MacOS && !AddExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
// VK_EXT_debug_report
if (enable_debug_report && !AddExtension(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, false))
WARN_LOG_FMT(VIDEO, "Vulkan: Debug report requested, but extension is not available.");
AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false);
AddExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false);
if (AddExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, false))
{
g_Config.backend_info.bSupportsSettingObjectNames = true;
}
return true;
}
VulkanContext::GPUList VulkanContext::EnumerateGPUs(VkInstance instance)
{
u32 gpu_count = 0;
VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
GPUList gpus;
gpus.resize(gpu_count);
res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
return gpus;
}
void VulkanContext::PopulateBackendInfo(VideoConfig* config)
{
config->backend_info.api_type = APIType::Vulkan;
config->backend_info.bSupports3DVision = false; // D3D-exclusive.
config->backend_info.bSupportsOversizedViewports = true; // Assumed support.
config->backend_info.bSupportsEarlyZ = true; // Assumed support.
config->backend_info.bSupportsPrimitiveRestart = true; // Assumed support.
config->backend_info.bSupportsBindingLayout = false; // Assumed support.
config->backend_info.bSupportsPaletteConversion = true; // Assumed support.
config->backend_info.bSupportsClipControl = true; // Assumed support.
config->backend_info.bSupportsMultithreading = true; // Assumed support.
config->backend_info.bSupportsComputeShaders = true; // Assumed support.
config->backend_info.bSupportsGPUTextureDecoding = true; // Assumed support.
config->backend_info.bSupportsBitfield = true; // Assumed support.
config->backend_info.bSupportsPartialDepthCopies = true; // Assumed support.
config->backend_info.bSupportsShaderBinaries = true; // Assumed support.
config->backend_info.bSupportsPipelineCacheData = false; // Handled via pipeline caches.
config->backend_info.bSupportsDynamicSamplerIndexing = true; // Assumed support.
config->backend_info.bSupportsPostProcessing = true; // Assumed support.
config->backend_info.bSupportsBackgroundCompiling = true; // Assumed support.
config->backend_info.bSupportsCopyToVram = true; // Assumed support.
config->backend_info.bSupportsReversedDepthRange = true; // Assumed support.
config->backend_info.bSupportsExclusiveFullscreen = false; // Dependent on OS and features.
config->backend_info.bSupportsDualSourceBlend = false; // Dependent on features.
config->backend_info.bSupportsGeometryShaders = false; // Dependent on features.
config->backend_info.bSupportsGSInstancing = false; // Dependent on features.
config->backend_info.bSupportsBBox = false; // Dependent on features.
config->backend_info.bSupportsFragmentStoresAndAtomics = false; // Dependent on features.
config->backend_info.bSupportsSSAA = false; // Dependent on features.
config->backend_info.bSupportsDepthClamp = false; // Dependent on features.
config->backend_info.bSupportsST3CTextures = false; // Dependent on features.
config->backend_info.bSupportsBPTCTextures = false; // Dependent on features.
config->backend_info.bSupportsLogicOp = false; // Dependent on features.
config->backend_info.bSupportsLargePoints = false; // Dependent on features.
config->backend_info.bSupportsFramebufferFetch = false; // Dependent on OS and features.
config->backend_info.bSupportsCoarseDerivatives = true; // Assumed support.
config->backend_info.bSupportsTextureQueryLevels = true; // Assumed support.
config->backend_info.bSupportsLodBiasInSampler = false; // Dependent on OS.
config->backend_info.bSupportsSettingObjectNames = false; // Dependent on features.
}
void VulkanContext::PopulateBackendInfoAdapters(VideoConfig* config, const GPUList& gpu_list)
{
config->backend_info.Adapters.clear();
for (VkPhysicalDevice physical_device : gpu_list)
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(physical_device, &properties);
config->backend_info.Adapters.push_back(properties.deviceName);
}
}
void VulkanContext::PopulateBackendInfoFeatures(VideoConfig* config, VkPhysicalDevice gpu,
const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceFeatures& features)
{
config->backend_info.MaxTextureSize = properties.limits.maxImageDimension2D;
config->backend_info.bUsesLowerLeftOrigin = false;
config->backend_info.bSupportsDualSourceBlend = (features.dualSrcBlend == VK_TRUE);
config->backend_info.bSupportsGeometryShaders = (features.geometryShader == VK_TRUE);
config->backend_info.bSupportsGSInstancing = (features.geometryShader == VK_TRUE);
config->backend_info.bSupportsBBox = config->backend_info.bSupportsFragmentStoresAndAtomics =
(features.fragmentStoresAndAtomics == VK_TRUE);
config->backend_info.bSupportsSSAA = (features.sampleRateShading == VK_TRUE);
config->backend_info.bSupportsLogicOp = (features.logicOp == VK_TRUE);
#ifdef __APPLE__
// Metal doesn't support this.
config->backend_info.bSupportsLodBiasInSampler = false;
#else
config->backend_info.bSupportsLodBiasInSampler = true;
#endif
// Disable geometry shader when shaderTessellationAndGeometryPointSize is not supported.
// Seems this is needed for gl_Layer.
if (!features.shaderTessellationAndGeometryPointSize)
{
config->backend_info.bSupportsGeometryShaders = VK_FALSE;
config->backend_info.bSupportsGSInstancing = VK_FALSE;
}
// Depth clamping implies shaderClipDistance and depthClamp
config->backend_info.bSupportsDepthClamp =
(features.depthClamp == VK_TRUE && features.shaderClipDistance == VK_TRUE);
// textureCompressionBC implies BC1 through BC7, which is a superset of DXT1/3/5, which we need.
const bool supports_bc = features.textureCompressionBC == VK_TRUE;
config->backend_info.bSupportsST3CTextures = supports_bc;
config->backend_info.bSupportsBPTCTextures = supports_bc;
// Some devices don't support point sizes >1 (e.g. Adreno).
// If we can't use a point size above our maximum IR, use triangles instead for EFB pokes.
// This means a 6x increase in the size of the vertices, though.
config->backend_info.bSupportsLargePoints = features.largePoints &&
properties.limits.pointSizeRange[0] <= 1.0f &&
properties.limits.pointSizeRange[1] >= 16;
std::string device_name = properties.deviceName;
u32 vendor_id = properties.vendorID;
// Only Apple family GPUs support framebuffer fetch.
if (vendor_id == 0x106B || device_name.find("Apple") != std::string::npos)
{
config->backend_info.bSupportsFramebufferFetch = true;
}
// Our usage of primitive restart appears to be broken on AMD's binary drivers.
// Seems to be fine on GCN Gen 1-2, unconfirmed on GCN Gen 3, causes driver resets on GCN Gen 4.
if (DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART))
config->backend_info.bSupportsPrimitiveRestart = false;
// Reversed depth range is broken on some drivers, or is broken when used in combination
// with depth clamping. Fall back to inverted depth range for these.
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_REVERSED_DEPTH_RANGE))
config->backend_info.bSupportsReversedDepthRange = false;
}
void VulkanContext::PopulateBackendInfoMultisampleModes(
VideoConfig* config, VkPhysicalDevice gpu, const VkPhysicalDeviceProperties& properties)
{
// Query image support for the EFB texture formats.
VkImageFormatProperties efb_color_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &efb_color_properties);
VkImageFormatProperties efb_depth_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &efb_depth_properties);
// We can only support MSAA if it's supported on our render target formats.
VkSampleCountFlags supported_sample_counts = properties.limits.framebufferColorSampleCounts &
properties.limits.framebufferDepthSampleCounts &
efb_color_properties.sampleCounts &
efb_depth_properties.sampleCounts;
// No AA
config->backend_info.AAModes.clear();
config->backend_info.AAModes.emplace_back(1);
// 2xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_2_BIT)
config->backend_info.AAModes.emplace_back(2);
// 4xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_4_BIT)
config->backend_info.AAModes.emplace_back(4);
// 8xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_8_BIT)
config->backend_info.AAModes.emplace_back(8);
// 16xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_16_BIT)
config->backend_info.AAModes.emplace_back(16);
// 32xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_32_BIT)
config->backend_info.AAModes.emplace_back(32);
// 64xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_64_BIT)
config->backend_info.AAModes.emplace_back(64);
}
std::unique_ptr<VulkanContext> VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu,
VkSurfaceKHR surface,
bool enable_debug_reports,
bool enable_validation_layer)
{
std::unique_ptr<VulkanContext> context = std::make_unique<VulkanContext>(instance, gpu);
// Initialize DriverDetails so that we can check for bugs to disable features if needed.
context->InitDriverDetails();
context->PopulateShaderSubgroupSupport();
// Enable debug reports if the "Host GPU" log category is enabled.
if (enable_debug_reports)
context->EnableDebugReports();
// Attempt to create the device.
if (!context->CreateDevice(surface, enable_validation_layer))
{
// Since we are destroying the instance, we're also responsible for destroying the surface.
if (surface != VK_NULL_HANDLE)
vkDestroySurfaceKHR(instance, surface, nullptr);
return nullptr;
}
return context;
}
bool VulkanContext::SelectDeviceExtensions(bool enable_surface)
{
u32 extension_count = 0;
VkResult res =
vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: No extensions supported by device.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count,
available_extension_list.data());
ASSERT(res == VK_SUCCESS);
for (const auto& extension_properties : available_extension_list)
INFO_LOG_FMT(VIDEO, "Available extension: {}", extension_properties.extensionName);
auto AddExtension = [&](const char* name, bool required) {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
INFO_LOG_FMT(VIDEO, "Enabling extension: {}", name);
m_device_extensions.push_back(name);
return true;
}
if (required)
ERROR_LOG_FMT(VIDEO, "Vulkan: Missing required extension {}.", name);
return false;
};
if (enable_surface && !AddExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true))
return false;
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
// VK_EXT_full_screen_exclusive
if (AddExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, true))
INFO_LOG_FMT(VIDEO, "Using VK_EXT_full_screen_exclusive for exclusive fullscreen.");
#endif
return true;
}
bool VulkanContext::SelectDeviceFeatures()
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(m_physical_device, &properties);
VkPhysicalDeviceFeatures available_features;
vkGetPhysicalDeviceFeatures(m_physical_device, &available_features);
// Not having geometry shaders or wide lines will cause issues with rendering.
if (!available_features.geometryShader && !available_features.wideLines)
WARN_LOG_FMT(VIDEO, "Vulkan: Missing both geometryShader and wideLines features.");
if (!available_features.largePoints)
WARN_LOG_FMT(VIDEO, "Vulkan: Missing large points feature. CPU EFB writes will be slower.");
if (!available_features.occlusionQueryPrecise)
{
WARN_LOG_FMT(VIDEO,
"Vulkan: Missing precise occlusion queries. Perf queries will be inaccurate.");
}
// Enable the features we use.
m_device_features.dualSrcBlend = available_features.dualSrcBlend;
m_device_features.geometryShader = available_features.geometryShader;
m_device_features.samplerAnisotropy = available_features.samplerAnisotropy;
m_device_features.logicOp = available_features.logicOp;
m_device_features.fragmentStoresAndAtomics = available_features.fragmentStoresAndAtomics;
m_device_features.sampleRateShading = available_features.sampleRateShading;
m_device_features.largePoints = available_features.largePoints;
m_device_features.shaderStorageImageMultisample =
available_features.shaderStorageImageMultisample;
m_device_features.shaderTessellationAndGeometryPointSize =
available_features.shaderTessellationAndGeometryPointSize;
m_device_features.occlusionQueryPrecise = available_features.occlusionQueryPrecise;
m_device_features.shaderClipDistance = available_features.shaderClipDistance;
m_device_features.depthClamp = available_features.depthClamp;
m_device_features.textureCompressionBC = available_features.textureCompressionBC;
return true;
}
bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer)
{
u32 queue_family_count;
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr);
if (queue_family_count == 0)
{
ERROR_LOG_FMT(VIDEO, "No queue families found on specified vulkan physical device.");
return false;
}
std::vector<VkQueueFamilyProperties> queue_family_properties(queue_family_count);
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count,
queue_family_properties.data());
INFO_LOG_FMT(VIDEO, "{} vulkan queue families", queue_family_count);
// Find graphics and present queues.
m_graphics_queue_family_index = queue_family_count;
m_present_queue_family_index = queue_family_count;
for (uint32_t i = 0; i < queue_family_count; i++)
{
VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT;
if (graphics_supported)
{
m_graphics_queue_family_index = i;
// Quit now, no need for a present queue.
if (!surface)
{
break;
}
}
if (surface)
{
VkBool32 present_supported;
VkResult res =
vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
return false;
}
if (present_supported)
{
m_present_queue_family_index = i;
}
// Prefer one queue family index that does both graphics and present.
if (graphics_supported && present_supported)
{
break;
}
}
}
if (m_graphics_queue_family_index == queue_family_count)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: Failed to find an acceptable graphics queue.");
return false;
}
if (surface && m_present_queue_family_index == queue_family_count)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: Failed to find an acceptable present queue.");
return false;
}
VkDeviceCreateInfo device_info = {};
device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device_info.pNext = nullptr;
device_info.flags = 0;
static constexpr float queue_priorities[] = {1.0f};
VkDeviceQueueCreateInfo graphics_queue_info = {};
graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
graphics_queue_info.pNext = nullptr;
graphics_queue_info.flags = 0;
graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index;
graphics_queue_info.queueCount = 1;
graphics_queue_info.pQueuePriorities = queue_priorities;
VkDeviceQueueCreateInfo present_queue_info = {};
present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
present_queue_info.pNext = nullptr;
present_queue_info.flags = 0;
present_queue_info.queueFamilyIndex = m_present_queue_family_index;
present_queue_info.queueCount = 1;
present_queue_info.pQueuePriorities = queue_priorities;
std::array<VkDeviceQueueCreateInfo, 2> queue_infos = {{
graphics_queue_info,
present_queue_info,
}};
device_info.queueCreateInfoCount = 1;
if (m_graphics_queue_family_index != m_present_queue_family_index &&
m_present_queue_family_index != queue_family_count)
{
device_info.queueCreateInfoCount = 2;
}
device_info.pQueueCreateInfos = queue_infos.data();
if (!SelectDeviceExtensions(surface != VK_NULL_HANDLE))
return false;
// convert std::string list to a char pointer list which we can feed in
std::vector<const char*> extension_name_pointers;
for (const std::string& name : m_device_extensions)
extension_name_pointers.push_back(name.c_str());
device_info.enabledLayerCount = 0;
device_info.ppEnabledLayerNames = nullptr;
device_info.enabledExtensionCount = static_cast<uint32_t>(extension_name_pointers.size());
device_info.ppEnabledExtensionNames = extension_name_pointers.data();
// Check for required features before creating.
if (!SelectDeviceFeatures())
return false;
device_info.pEnabledFeatures = &m_device_features;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
device_info.enabledLayerCount = 1;
device_info.ppEnabledLayerNames = layer_names;
}
VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDevice failed: ");
return false;
}
// With the device created, we can fill the remaining entry points.
if (!LoadVulkanDeviceFunctions(m_device))
return false;
// Grab the graphics and present queues.
vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue);
if (surface)
{
vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue);
}
return true;
}
static VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object, size_t location,
int32_t messageCode,
const char* pLayerPrefix,
const char* pMessage, void* pUserData)
{
const std::string log_message =
fmt::format("Vulkan debug report: ({}) {}", pLayerPrefix ? pLayerPrefix : "", pMessage);
if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
ERROR_LOG_FMT(HOST_GPU, "{}", log_message);
else if (flags & (VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT))
WARN_LOG_FMT(HOST_GPU, "{}", log_message);
else if (flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT)
INFO_LOG_FMT(HOST_GPU, "{}", log_message);
else
DEBUG_LOG_FMT(HOST_GPU, "{}", log_message);
return VK_FALSE;
}
bool VulkanContext::EnableDebugReports()
{
// Already enabled?
if (m_debug_report_callback != VK_NULL_HANDLE)
return true;
// Check for presence of the functions before calling
if (!vkCreateDebugReportCallbackEXT || !vkDestroyDebugReportCallbackEXT ||
!vkDebugReportMessageEXT)
{
return false;
}
VkDebugReportCallbackCreateInfoEXT callback_info = {
VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, nullptr,
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_INFORMATION_BIT_EXT |
VK_DEBUG_REPORT_DEBUG_BIT_EXT,
DebugReportCallback, nullptr};
VkResult res =
vkCreateDebugReportCallbackEXT(m_instance, &callback_info, nullptr, &m_debug_report_callback);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDebugReportCallbackEXT failed: ");
return false;
}
return true;
}
void VulkanContext::DisableDebugReports()
{
if (m_debug_report_callback != VK_NULL_HANDLE)
{
vkDestroyDebugReportCallbackEXT(m_instance, m_debug_report_callback, nullptr);
m_debug_report_callback = VK_NULL_HANDLE;
}
}
std::optional<u32> VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties,
bool strict, bool* is_coherent)
{
static constexpr u32 ALL_MEMORY_PROPERTY_FLAGS = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
const u32 mask = strict ? ALL_MEMORY_PROPERTY_FLAGS : properties;
for (u32 i = 0; i < VK_MAX_MEMORY_TYPES; i++)
{
if ((bits & (1 << i)) != 0)
{
const VkMemoryPropertyFlags type_flags =
m_device_memory_properties.memoryTypes[i].propertyFlags;
const VkMemoryPropertyFlags supported = type_flags & mask;
if (supported == properties)
{
if (is_coherent)
*is_coherent = (type_flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
return i;
}
}
}
return std::nullopt;
}
u32 VulkanContext::GetUploadMemoryType(u32 bits, bool* is_coherent)
{
static constexpr VkMemoryPropertyFlags COHERENT_FLAGS =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
// Try for coherent memory. Some drivers (looking at you, Adreno) have the cached type before the
// uncached type, so use a strict check first.
std::optional<u32> type_index = GetMemoryType(bits, COHERENT_FLAGS, true, is_coherent);
if (type_index)
return type_index.value();
// Try for coherent memory, with any other bits set.
type_index = GetMemoryType(bits, COHERENT_FLAGS, false, is_coherent);
if (type_index)
{
WARN_LOG_FMT(VIDEO,
"Strict check for upload memory properties failed, this may affect performance");
return type_index.value();
}
// Fall back to non-coherent memory.
WARN_LOG_FMT(
VIDEO,
"Vulkan: Failed to find a coherent memory type for uploads, this will affect performance.");
type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent);
if (type_index)
return type_index.value();
// Shouldn't happen, there should be at least one host-visible heap.
PanicAlertFmt("Unable to get memory type for upload.");
return 0;
}
u32 VulkanContext::GetReadbackMemoryType(u32 bits, bool* is_coherent)
{
std::optional<u32> type_index;
// Mali driver appears to be significantly slower for readbacks when using cached memory.
if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_CACHED_READBACK_MEMORY))
{
type_index = GetMemoryType(
bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, true,
is_coherent);
if (type_index)
return type_index.value();
}
// Optimal config uses cached+coherent.
type_index =
GetMemoryType(bits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
true, is_coherent);
if (type_index)
return type_index.value();
// Otherwise, prefer cached over coherent if we must choose one.
type_index =
GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
false, is_coherent);
if (type_index)
return type_index.value();
WARN_LOG_FMT(VIDEO, "Vulkan: Failed to find a cached memory type for readbacks, this will affect "
"performance.");
type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent);
*is_coherent = false;
if (type_index)
return type_index.value();
// We should have at least one host visible memory type...
PanicAlertFmt("Unable to get memory type for upload.");
return 0;
}
bool VulkanContext::SupportsDeviceExtension(const char* name) const
{
return std::any_of(m_device_extensions.begin(), m_device_extensions.end(),
[name](const std::string& extension) { return extension == name; });
}
void VulkanContext::InitDriverDetails()
{
DriverDetails::Vendor vendor;
DriverDetails::Driver driver;
// String comparisons aren't ideal, but there doesn't seem to be any other way to tell
// which vendor a driver is for. These names are based on the reports submitted to
// vulkan.gpuinfo.org, as of 19/09/2017.
std::string device_name = m_device_properties.deviceName;
u32 vendor_id = m_device_properties.vendorID;
if (vendor_id == 0x10DE)
{
// Currently, there is only the official NV binary driver.
// "NVIDIA" does not appear in the device name.
vendor = DriverDetails::VENDOR_NVIDIA;
driver = DriverDetails::DRIVER_NVIDIA;
}
else if (vendor_id == 0x1002 || vendor_id == 0x1022 ||
device_name.find("AMD") != std::string::npos)
{
// RADV always advertises its name in the device string.
// If not RADV, assume the AMD binary driver.
if (device_name.find("RADV") != std::string::npos)
{
vendor = DriverDetails::VENDOR_MESA;
driver = DriverDetails::DRIVER_R600;
}
else
{
vendor = DriverDetails::VENDOR_ATI;
driver = DriverDetails::DRIVER_ATI;
}
}
else if (vendor_id == 0x8086 || vendor_id == 0x8087 ||
device_name.find("Intel") != std::string::npos)
{
// Apart from the driver version, Intel does not appear to provide a way to
// differentiate between anv and the binary driver (Skylake+). Assume to be
// using anv if we're not running on Windows or macOS.
#if defined(WIN32) || defined(__APPLE__)
vendor = DriverDetails::VENDOR_INTEL;
driver = DriverDetails::DRIVER_INTEL;
#else
vendor = DriverDetails::VENDOR_MESA;
driver = DriverDetails::DRIVER_I965;
#endif
}
else if (vendor_id == 0x5143 || device_name.find("Adreno") != std::string::npos)
{
// Currently only the Qualcomm binary driver exists for Adreno.
vendor = DriverDetails::VENDOR_QUALCOMM;
driver = DriverDetails::DRIVER_QUALCOMM;
}
else if (vendor_id == 0x13B6 || device_name.find("Mali") != std::string::npos)
{
// Currently only the ARM binary driver exists for Mali.
vendor = DriverDetails::VENDOR_ARM;
driver = DriverDetails::DRIVER_ARM;
}
else if (vendor_id == 0x1010 || device_name.find("PowerVR") != std::string::npos)
{
// Currently only the binary driver exists for PowerVR.
vendor = DriverDetails::VENDOR_IMGTEC;
driver = DriverDetails::DRIVER_IMGTEC;
}
else
{
WARN_LOG_FMT(VIDEO, "Unknown Vulkan driver vendor, please report it to us.");
WARN_LOG_FMT(VIDEO, "Vendor ID: {:#X}, Device Name: {}", vendor_id, device_name);
vendor = DriverDetails::VENDOR_UNKNOWN;
driver = DriverDetails::DRIVER_UNKNOWN;
}
#ifdef __APPLE__
// Vulkan on macOS goes through Metal, and is not susceptible to the same bugs
// as the vendor's native Vulkan drivers. We use a different driver fields to
// differentiate MoltenVK.
driver = DriverDetails::DRIVER_PORTABILITY;
#endif
DriverDetails::Init(DriverDetails::API_VULKAN, vendor, driver,
static_cast<double>(m_device_properties.driverVersion),
DriverDetails::Family::UNKNOWN);
}
void VulkanContext::PopulateShaderSubgroupSupport()
{
// Vulkan 1.1 support is required for vkGetPhysicalDeviceProperties2(), but we can't rely on the
// function pointer alone.
if (!vkGetPhysicalDeviceProperties2 || (VK_VERSION_MAJOR(m_device_properties.apiVersion) == 1 &&
VK_VERSION_MINOR(m_device_properties.apiVersion) < 1))
{
return;
}
VkPhysicalDeviceProperties2 device_properties_2 = {};
device_properties_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
VkPhysicalDeviceSubgroupProperties subgroup_properties = {};
subgroup_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
device_properties_2.pNext = &subgroup_properties;
vkGetPhysicalDeviceProperties2(m_physical_device, &device_properties_2);
m_shader_subgroup_size = subgroup_properties.subgroupSize;
// We require basic ops (for gl_SubgroupInvocationID), ballot (for subgroupBallot,
// subgroupBallotFindLSB), and arithmetic (for subgroupMin/subgroupMax).
constexpr VkSubgroupFeatureFlags required_operations = VK_SUBGROUP_FEATURE_BASIC_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
VK_SUBGROUP_FEATURE_BALLOT_BIT;
m_supports_shader_subgroup_operations =
(subgroup_properties.supportedOperations & required_operations) == required_operations &&
subgroup_properties.supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT &&
!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_SUBGROUP_INVOCATION_ID);
}
bool VulkanContext::SupportsExclusiveFullscreen(const WindowSystemInfo& wsi, VkSurfaceKHR surface)
{
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
if (!surface || !vkGetPhysicalDeviceSurfaceCapabilities2KHR ||
!SupportsDeviceExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME))
{
return false;
}
VkPhysicalDeviceSurfaceInfo2KHR si = {};
si.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR;
si.surface = surface;
auto platform_info = GetPlatformExclusiveFullscreenInfo(wsi);
si.pNext = &platform_info;
VkSurfaceCapabilities2KHR caps = {};
caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR;
VkSurfaceCapabilitiesFullScreenExclusiveEXT fullscreen_caps = {};
fullscreen_caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT;
fullscreen_caps.fullScreenExclusiveSupported = VK_TRUE;
caps.pNext = &fullscreen_caps;
VkResult res = vkGetPhysicalDeviceSurfaceCapabilities2KHR(m_physical_device, &si, &caps);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilities2KHR failed:");
return false;
}
return fullscreen_caps.fullScreenExclusiveSupported;
#else
return false;
#endif
}
#ifdef WIN32
VkSurfaceFullScreenExclusiveWin32InfoEXT
VulkanContext::GetPlatformExclusiveFullscreenInfo(const WindowSystemInfo& wsi)
{
VkSurfaceFullScreenExclusiveWin32InfoEXT info = {};
info.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT;
info.hmonitor =
MonitorFromWindow(static_cast<HWND>(wsi.render_surface), MONITOR_DEFAULTTOPRIMARY);
return info;
}
#endif
} // namespace Vulkan