dolphin/Source/Core/VideoCommon/RenderBase.h

167 lines
5.6 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The gpu draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#ifndef _COMMON_RENDERBASE_H_
#define _COMMON_RENDERBASE_H_
#include "VideoCommon.h"
#include "Thread.h"
#include "MathUtil.h"
#include "NativeVertexFormat.h"
#include "FramebufferManagerBase.h"
#include "BPMemory.h"
#include <string>
// TODO: Move these out of here.
extern int frameCount;
extern int OSDChoice;
extern bool bLastFrameDumped;
// Renderer really isn't a very good name for this class - it's more like "Misc".
// The long term goal is to get rid of this class and replace it with others that make
// more sense.
class Renderer
{
public:
Renderer();
virtual ~Renderer();
enum PixelPerfQuery {
PP_ZCOMP_INPUT_ZCOMPLOC,
PP_ZCOMP_OUTPUT_ZCOMPLOC,
PP_ZCOMP_INPUT,
PP_ZCOMP_OUTPUT,
PP_BLEND_INPUT,
PP_EFB_COPY_CLOCKS
};
virtual void SetColorMask() = 0;
virtual void SetBlendMode(bool forceUpdate) = 0;
virtual void SetScissorRect(const TargetRectangle& rc) = 0;
virtual void SetGenerationMode() = 0;
virtual void SetDepthMode() = 0;
virtual void SetLogicOpMode() = 0;
virtual void SetDitherMode() = 0;
virtual void SetLineWidth() = 0;
virtual void SetSamplerState(int stage,int texindex) = 0;
virtual void SetInterlacingMode() = 0;
virtual void ApplyState(bool bUseDstAlpha) = 0;
virtual void RestoreState() = 0;
// Ideal internal resolution - determined by display resolution (automatic scaling) and/or a multiple of the native EFB resolution
static int GetTargetWidth() { return s_target_width; }
static int GetTargetHeight() { return s_target_height; }
// Display resolution
static int GetBackbufferWidth() { return s_backbuffer_width; }
static int GetBackbufferHeight() { return s_backbuffer_height; }
static void SetWindowSize(int width, int height);
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0;
static const TargetRectangle& GetTargetRectangle() { return target_rc; }
static void UpdateDrawRectangle(int backbuffer_width, int backbuffer_height);
// Use this to upscale native EFB coordinates to IDEAL internal resolution
static int EFBToScaledX(int x);
static int EFBToScaledY(int y);
// Floating point versions of the above - only use them if really necessary
static float EFBToScaledXf(float x) { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); }
static float EFBToScaledYf(float y) { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); }
// Random utilities
static void SetScreenshot(const char *filename);
static void DrawDebugText();
virtual void RenderText(const char* pstr, int left, int top, u32 color) = 0;
virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) = 0;
virtual void ReinterpretPixelData(unsigned int convtype) = 0;
static void RenderToXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma = 1.0f);
virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0;
// What's the real difference between these? Too similar names.
virtual void ResetAPIState() = 0;
virtual void RestoreAPIState() = 0;
// Finish up the current frame, print some stats
virtual void Swap(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& rc,float Gamma = 1.0f) = 0;
virtual void UpdateViewport() = 0;
virtual bool SaveScreenshot(const std::string &filename, const TargetRectangle &rc) = 0;
static unsigned int GetPrevPixelFormat() { return prev_efb_format; }
static void StorePixelFormat(unsigned int new_format) { prev_efb_format = new_format; }
protected:
static void CalculateTargetScale(int x, int y, int &scaledX, int &scaledY);
static bool CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height);
static void CheckFifoRecording();
static void RecordVideoMemory();
static volatile bool s_bScreenshot;
static std::mutex s_criticalScreenshot;
static std::string s_sScreenshotName;
#if defined _WIN32 || defined HAVE_LIBAV
bool bAVIDumping;
#else
File::IOFile pFrameDump;
#endif
std::vector<u8> frame_data;
bool bLastFrameDumped;
// The framebuffer size
static int s_target_width;
static int s_target_height;
// TODO: Add functionality to reinit all the render targets when the window is resized.
static int s_backbuffer_width;
static int s_backbuffer_height;
static TargetRectangle target_rc;
// can probably eliminate this static var
static int s_LastEFBScale;
static bool s_skipSwap;
static bool XFBWrited;
private:
static unsigned int prev_efb_format;
static unsigned int efb_scale_numeratorX;
static unsigned int efb_scale_numeratorY;
static unsigned int efb_scale_denominatorX;
static unsigned int efb_scale_denominatorY;
};
extern Renderer *g_renderer;
void UpdateViewport();
#endif // _COMMON_RENDERBASE_H_