dolphin/Source/Core/VideoCommon/FramebufferShaderGen.cpp

695 lines
21 KiB
C++

// Copyright 2019 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/FramebufferShaderGen.h"
#include <string_view>
#include "Common/Logging/Log.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VertexShaderGen.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace FramebufferShaderGen
{
namespace
{
APIType GetAPIType()
{
return g_ActiveConfig.backend_info.api_type;
}
void EmitUniformBufferDeclaration(ShaderCode& code)
{
code.Write("UBO_BINDING(std140, 1) uniform PSBlock\n");
}
void EmitSamplerDeclarations(ShaderCode& code, u32 start = 0, u32 end = 1,
bool multisampled = false)
{
switch (GetAPIType())
{
case APIType::D3D:
case APIType::Metal:
case APIType::OpenGL:
case APIType::Vulkan:
{
const char* array_type = multisampled ? "sampler2DMSArray" : "sampler2DArray";
for (u32 i = start; i < end; i++)
{
code.Write("SAMPLER_BINDING({}) uniform {} samp{};\n", i, array_type, i);
}
}
break;
default:
break;
}
}
void EmitSampleTexture(ShaderCode& code, u32 n, std::string_view coords)
{
switch (GetAPIType())
{
case APIType::D3D:
case APIType::Metal:
case APIType::OpenGL:
case APIType::Vulkan:
code.Write("texture(samp{}, {})", n, coords);
break;
default:
break;
}
}
// Emits a texel fetch/load instruction. Assumes that "coords" is a 4-element vector, with z
// containing the layer, and w containing the mipmap level.
void EmitTextureLoad(ShaderCode& code, u32 n, std::string_view coords)
{
switch (GetAPIType())
{
case APIType::D3D:
case APIType::Metal:
case APIType::OpenGL:
case APIType::Vulkan:
code.Write("texelFetch(samp{}, ({}).xyz, ({}).w)", n, coords, coords);
break;
default:
break;
}
}
void EmitVertexMainDeclaration(ShaderCode& code, u32 num_tex_inputs, u32 num_color_inputs,
bool position_input, u32 num_tex_outputs, u32 num_color_outputs,
std::string_view extra_inputs = {})
{
switch (GetAPIType())
{
case APIType::D3D:
case APIType::Metal:
case APIType::OpenGL:
case APIType::Vulkan:
{
for (u32 i = 0; i < num_tex_inputs; i++)
{
const auto attribute = ShaderAttrib::TexCoord0 + i;
code.Write("ATTRIBUTE_LOCATION({:s}) in float3 rawtex{};\n", attribute, i);
}
for (u32 i = 0; i < num_color_inputs; i++)
{
const auto attribute = ShaderAttrib::Color0 + i;
code.Write("ATTRIBUTE_LOCATION({:s}) in float4 rawcolor{};\n", attribute, i);
}
if (position_input)
code.Write("ATTRIBUTE_LOCATION({:s}) in float4 rawpos;\n", ShaderAttrib::Position);
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
code.Write("VARYING_LOCATION(0) out VertexData {{\n");
for (u32 i = 0; i < num_tex_outputs; i++)
code.Write(" float3 v_tex{};\n", i);
for (u32 i = 0; i < num_color_outputs; i++)
code.Write(" float4 v_col{};\n", i);
code.Write("}};\n");
}
else
{
for (u32 i = 0; i < num_tex_outputs; i++)
code.Write("VARYING_LOCATION({}) out float3 v_tex{};\n", i, i);
for (u32 i = 0; i < num_color_outputs; i++)
code.Write("VARYING_LOCATION({}) out float4 v_col{};\n", num_tex_inputs + i, i);
}
code.Write("#define opos gl_Position\n");
code.Write("{}\n", extra_inputs);
code.Write("void main()\n");
}
break;
default:
break;
}
}
void EmitPixelMainDeclaration(ShaderCode& code, u32 num_tex_inputs, u32 num_color_inputs,
std::string_view output_type = "float4",
std::string_view extra_vars = {}, bool emit_frag_coord = false)
{
switch (GetAPIType())
{
case APIType::D3D:
case APIType::Metal:
case APIType::OpenGL:
case APIType::Vulkan:
{
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
code.Write("VARYING_LOCATION(0) in VertexData {{\n");
for (u32 i = 0; i < num_tex_inputs; i++)
code.Write(" float3 v_tex{};\n", i);
for (u32 i = 0; i < num_color_inputs; i++)
code.Write(" float4 v_col{};\n", i);
code.Write("}};\n");
}
else
{
for (u32 i = 0; i < num_tex_inputs; i++)
code.Write("VARYING_LOCATION({}) in float3 v_tex{};\n", i, i);
for (u32 i = 0; i < num_color_inputs; i++)
code.Write("VARYING_LOCATION({}) in float4 v_col{};\n", num_tex_inputs + i, i);
}
code.Write("FRAGMENT_OUTPUT_LOCATION(0) out {} ocol0;\n", output_type);
code.Write("{}\n", extra_vars);
if (emit_frag_coord)
code.Write("#define frag_coord gl_FragCoord\n");
code.Write("void main()\n");
}
break;
default:
break;
}
}
} // Anonymous namespace
std::string GenerateScreenQuadVertexShader()
{
ShaderCode code;
EmitVertexMainDeclaration(code, 0, 0, false, 1, 0,
"#define id gl_VertexID\n");
code.Write(
"{{\n"
" v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n"
" opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n");
// NDC space is flipped in Vulkan. We also flip in GL so that (0,0) is in the lower-left.
if (GetAPIType() == APIType::Vulkan || GetAPIType() == APIType::OpenGL)
code.Write(" opos.y = -opos.y;\n");
code.Write("}}\n");
return code.GetBuffer();
}
std::string GeneratePassthroughGeometryShader(u32 num_tex, u32 num_colors)
{
ShaderCode code;
if (GetAPIType() == APIType::D3D)
{
code.Write("struct VS_OUTPUT\n"
"{{\n");
for (u32 i = 0; i < num_tex; i++)
code.Write(" float3 tex{} : TEXCOORD{};\n", i, i);
for (u32 i = 0; i < num_colors; i++)
code.Write(" float4 color{} : TEXCOORD{};\n", i, i + num_tex);
code.Write(" float4 position : SV_Position;\n"
"}};\n");
code.Write("struct GS_OUTPUT\n"
"{{");
for (u32 i = 0; i < num_tex; i++)
code.Write(" float3 tex{} : TEXCOORD{};\n", i, i);
for (u32 i = 0; i < num_colors; i++)
code.Write(" float4 color{} : TEXCOORD{};\n", i, i + num_tex);
code.Write(" float4 position : SV_Position;\n"
" uint slice : SV_RenderTargetArrayIndex;\n"
"}};\n\n");
code.Write("[maxvertexcount(6)]\n"
"void main(triangle VS_OUTPUT vso[3], inout TriangleStream<GS_OUTPUT> output)\n"
"{{\n"
" for (uint slice = 0; slice < 2u; slice++)\n"
" {{\n"
" for (int i = 0; i < 3; i++)\n"
" {{\n"
" GS_OUTPUT gso;\n"
" gso.position = vso[i].position;\n");
for (u32 i = 0; i < num_tex; i++)
code.Write(" gso.tex{} = float3(vso[i].tex{}.xy, float(slice));\n", i, i);
for (u32 i = 0; i < num_colors; i++)
code.Write(" gso.color{} = vso[i].color{};\n", i, i);
code.Write(" gso.slice = slice;\n"
" output.Append(gso);\n"
" }}\n"
" output.RestartStrip();\n"
" }}\n"
"}}\n");
}
else if (GetAPIType() == APIType::OpenGL || GetAPIType() == APIType::Vulkan)
{
code.Write("layout(triangles) in;\n"
"layout(triangle_strip, max_vertices = 6) out;\n");
if (num_tex > 0 || num_colors > 0)
{
code.Write("VARYING_LOCATION(0) in VertexData {{\n");
for (u32 i = 0; i < num_tex; i++)
code.Write(" float3 v_tex{};\n", i);
for (u32 i = 0; i < num_colors; i++)
code.Write(" float4 v_col{};\n", i);
code.Write("}} v_in[];\n");
code.Write("VARYING_LOCATION(0) out VertexData {{\n");
for (u32 i = 0; i < num_tex; i++)
code.Write(" float3 v_tex{};\n", i);
for (u32 i = 0; i < num_colors; i++)
code.Write(" float4 v_col{};\n", i);
code.Write("}} v_out;\n");
}
code.Write("\n"
"void main()\n"
"{{\n"
" for (int j = 0; j < 2; j++)\n"
" {{\n"
" gl_Layer = j;\n");
// We have to explicitly unroll this loop otherwise the GL compiler gets cranky.
for (u32 v = 0; v < 3; v++)
{
code.Write(" gl_Position = gl_in[{}].gl_Position;\n", v);
for (u32 i = 0; i < num_tex; i++)
{
code.Write(" v_out.v_tex{} = float3(v_in[{}].v_tex{}.xy, float(j));\n", i, v, i);
}
for (u32 i = 0; i < num_colors; i++)
code.Write(" v_out.v_col{} = v_in[{}].v_col{};\n", i, v, i);
code.Write(" EmitVertex();\n\n");
}
code.Write(" EndPrimitive();\n"
" }}\n"
"}}\n");
}
return code.GetBuffer();
}
std::string GenerateTextureCopyVertexShader()
{
ShaderCode code;
EmitUniformBufferDeclaration(code);
code.Write("{{"
" float2 src_offset;\n"
" float2 src_size;\n"
"}};\n\n");
EmitVertexMainDeclaration(code, 0, 0, false, 1, 0,
"#define id gl_VertexID");
code.Write("{{\n"
" v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n"
" opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n"
" v_tex0 = float3(src_offset + (src_size * v_tex0.xy), 0.0f);\n");
// NDC space is flipped in Vulkan. We also flip in GL so that (0,0) is in the lower-left.
if (GetAPIType() == APIType::Vulkan || GetAPIType() == APIType::OpenGL)
code.Write(" opos.y = -opos.y;\n");
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateTextureCopyPixelShader()
{
ShaderCode code;
EmitSamplerDeclarations(code, 0, 1, false);
EmitPixelMainDeclaration(code, 1, 0);
code.Write("{{\n"
" ocol0 = ");
EmitSampleTexture(code, 0, "v_tex0");
code.Write(";\n"
"}}\n");
return code.GetBuffer();
}
std::string GenerateColorPixelShader()
{
ShaderCode code;
EmitPixelMainDeclaration(code, 0, 1);
code.Write("{{\n"
" ocol0 = v_col0;\n"
"}}\n");
return code.GetBuffer();
}
std::string GenerateResolveColorPixelShader(u32 samples)
{
ShaderCode code;
EmitSamplerDeclarations(code, 0, 1, true);
EmitPixelMainDeclaration(code, 1, 0);
code.Write("{{\n"
" int layer = int(v_tex0.z);\n"
" int3 coords = int3(int2(gl_FragCoord.xy), layer);\n"
" ocol0 = float4(0.0f);\n");
code.Write(" for (int i = 0; i < {}; i++)\n", samples);
code.Write(" ocol0 += texelFetch(samp0, coords, i);\n");
code.Write(" ocol0 /= {}.0f;\n", samples);
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateResolveDepthPixelShader(u32 samples)
{
ShaderCode code;
EmitSamplerDeclarations(code, 0, 1, true);
EmitPixelMainDeclaration(code, 1, 0, "float", "");
code.Write("{{\n"
" int layer = int(v_tex0.z);\n");
code.Write(" int3 coords = int3(int2(gl_FragCoord.xy), layer);\n");
// Take the minimum of all depth samples.
code.Write(" ocol0 = texelFetch(samp0, coords, 0).r;\n");
code.Write(" for (int i = 1; i < {}; i++)\n", samples);
code.Write(" ocol0 = min(ocol0, texelFetch(samp0, coords, i).r);\n");
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateClearVertexShader()
{
ShaderCode code;
EmitUniformBufferDeclaration(code);
code.Write("{{\n"
" float4 clear_color;\n"
" float clear_depth;\n"
"}};\n");
EmitVertexMainDeclaration(code, 0, 0, false, 0, 1,
"#define id gl_VertexID\n");
code.Write(
"{{\n"
" float2 coord = float2(float((id << 1) & 2), float(id & 2));\n"
" opos = float4(coord * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), clear_depth, 1.0f);\n"
" v_col0 = clear_color;\n");
// NDC space is flipped in Vulkan
if (GetAPIType() == APIType::Vulkan)
code.Write(" opos.y = -opos.y;\n");
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateEFBPokeVertexShader()
{
ShaderCode code;
EmitVertexMainDeclaration(code, 0, 1, true, 0, 1);
code.Write("{{\n"
" v_col0 = rawcolor0;\n"
" opos = float4(rawpos.xyz, 1.0f);\n");
if (g_ActiveConfig.backend_info.bSupportsLargePoints)
code.Write(" gl_PointSize = rawpos.w;\n");
// NDC space is flipped in Vulkan.
if (GetAPIType() == APIType::Vulkan)
code.Write(" opos.y = -opos.y;\n");
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateFormatConversionShader(EFBReinterpretType convtype, u32 samples)
{
ShaderCode code;
EmitSamplerDeclarations(code, 0, 1, samples > 1);
EmitPixelMainDeclaration(code, 1, 0, "float4",
"");
code.Write("{{\n"
" int layer = int(v_tex0.z);\n");
code.Write(" int3 coords = int3(int2(gl_FragCoord.xy), layer);\n");
if (samples == 1)
{
// No MSAA at all.
code.Write(" float4 val = texelFetch(samp0, coords, 0);\n");
}
else if (g_ActiveConfig.bSSAA)
{
// Sample shading, shader runs once per sample
code.Write(" float4 val = texelFetch(samp0, coords, gl_SampleID);");
}
else
{
// MSAA without sample shading, average out all samples.
code.Write(" float4 val = float4(0.0f, 0.0f, 0.0f, 0.0f);\n");
code.Write(" for (int i = 0; i < {}; i++)\n", samples);
code.Write(" val += texelFetch(samp0, coords, i);\n");
code.Write(" val /= float({});\n", samples);
}
switch (convtype)
{
case EFBReinterpretType::RGB8ToRGBA6:
code.Write(" int4 src8 = int4(round(val * 255.f));\n"
" int4 dst6;\n"
" dst6.r = src8.r >> 2;\n"
" dst6.g = ((src8.r & 0x3) << 4) | (src8.g >> 4);\n"
" dst6.b = ((src8.g & 0xF) << 2) | (src8.b >> 6);\n"
" dst6.a = src8.b & 0x3F;\n"
" ocol0 = float4(dst6) / 63.f;\n");
break;
case EFBReinterpretType::RGB8ToRGB565:
code.Write(" ocol0 = val;\n");
break;
case EFBReinterpretType::RGBA6ToRGB8:
code.Write(" int4 src6 = int4(round(val * 63.f));\n"
" int4 dst8;\n"
" dst8.r = (src6.r << 2) | (src6.g >> 4);\n"
" dst8.g = ((src6.g & 0xF) << 4) | (src6.b >> 2);\n"
" dst8.b = ((src6.b & 0x3) << 6) | src6.a;\n"
" dst8.a = 255;\n"
" ocol0 = float4(dst8) / 255.f;\n");
break;
case EFBReinterpretType::RGBA6ToRGB565:
code.Write(" ocol0 = val;\n");
break;
case EFBReinterpretType::RGB565ToRGB8:
code.Write(" ocol0 = val;\n");
break;
case EFBReinterpretType::RGB565ToRGBA6:
//
code.Write(" ocol0 = val;\n");
break;
}
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateTextureReinterpretShader(TextureFormat from_format, TextureFormat to_format)
{
ShaderCode code;
EmitSamplerDeclarations(code, 0, 1, false);
EmitPixelMainDeclaration(code, 1, 0, "float4", "", true);
code.Write("{{\n"
" int layer = int(v_tex0.z);\n"
" int4 coords = int4(int2(frag_coord.xy), layer, 0);\n");
// Convert to a 32-bit value encompassing all channels, filling the most significant bits with
// zeroes.
code.Write(" uint raw_value;\n");
switch (from_format)
{
case TextureFormat::I8:
case TextureFormat::C8:
{
code.Write(" float4 temp_value = ");
EmitTextureLoad(code, 0, "coords");
code.Write(";\n"
" raw_value = uint(temp_value.r * 255.0);\n");
}
break;
case TextureFormat::IA8:
{
code.Write(" float4 temp_value = ");
EmitTextureLoad(code, 0, "coords");
code.Write(";\n"
" raw_value = uint(temp_value.r * 255.0) | (uint(temp_value.a * 255.0) << 8);\n");
}
break;
case TextureFormat::I4:
{
code.Write(" float4 temp_value = ");
EmitTextureLoad(code, 0, "coords");
code.Write(";\n"
" raw_value = uint(temp_value.r * 15.0);\n");
}
break;
case TextureFormat::IA4:
{
code.Write(" float4 temp_value = ");
EmitTextureLoad(code, 0, "coords");
code.Write(";\n"
" raw_value = uint(temp_value.r * 15.0) | (uint(temp_value.a * 15.0) << 4);\n");
}
break;
case TextureFormat::RGB565:
{
code.Write(" float4 temp_value = ");
EmitTextureLoad(code, 0, "coords");
code.Write(";\n"
" raw_value = uint(temp_value.b * 31.0) | (uint(temp_value.g * 63.0) << 5) |\n"
" (uint(temp_value.r * 31.0) << 11);\n");
}
break;
case TextureFormat::RGB5A3:
{
code.Write(" float4 temp_value = ");
EmitTextureLoad(code, 0, "coords");
code.Write(";\n");
// 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits
code.Write(
" if (temp_value.a > 0.878f) {{\n"
" raw_value = (uint(temp_value.b * 31.0)) | (uint(temp_value.g * 31.0) << 5) |\n"
" (uint(temp_value.r * 31.0) << 10) | 0x8000u;\n"
" }} else {{\n"
" raw_value = (uint(temp_value.b * 15.0)) | (uint(temp_value.g * 15.0) << 4) |\n"
" (uint(temp_value.r * 15.0) << 8) | (uint(temp_value.a * 7.0) << 12);\n"
" }}\n");
}
break;
default:
WARN_LOG_FMT(VIDEO, "From format {} is not supported", from_format);
return "{}\n";
}
// Now convert it to its new representation.
switch (to_format)
{
case TextureFormat::I8:
case TextureFormat::C8:
{
code.Write(" float orgba = float(raw_value & 0xFFu) / 255.0;\n"
" ocol0 = float4(orgba, orgba, orgba, orgba);\n");
}
break;
case TextureFormat::IA8:
{
code.Write(" float orgb = float(raw_value & 0xFFu) / 255.0;\n"
" ocol0 = float4(orgb, orgb, orgb, float((raw_value >> 8) & 0xFFu) / 255.0);\n");
}
break;
case TextureFormat::IA4:
{
code.Write(" float orgb = float(raw_value & 0xFu) / 15.0;\n"
" ocol0 = float4(orgb, orgb, orgb, float((raw_value >> 4) & 0xFu) / 15.0);\n");
}
break;
case TextureFormat::RGB565:
{
code.Write(" ocol0 = float4(float((raw_value >> 10) & 0x1Fu) / 31.0,\n"
" float((raw_value >> 5) & 0x1Fu) / 31.0,\n"
" float(raw_value & 0x1Fu) / 31.0, 1.0);\n");
}
break;
case TextureFormat::RGB5A3:
{
code.Write(" if ((raw_value & 0x8000u) != 0u) {{\n"
" ocol0 = float4(float((raw_value >> 10) & 0x1Fu) / 31.0,\n"
" float((raw_value >> 5) & 0x1Fu) / 31.0,\n"
" float(raw_value & 0x1Fu) / 31.0, 1.0);\n"
" }} else {{\n"
" ocol0 = float4(float((raw_value >> 8) & 0x0Fu) / 15.0,\n"
" float((raw_value >> 4) & 0x0Fu) / 15.0,\n"
" float(raw_value & 0x0Fu) / 15.0,\n"
" float((raw_value >> 12) & 0x07u) / 7.0);\n"
" }}\n");
}
break;
default:
WARN_LOG_FMT(VIDEO, "To format {} is not supported", to_format);
return "{}\n";
}
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateEFBRestorePixelShader()
{
ShaderCode code;
EmitSamplerDeclarations(code, 0, 2, false);
EmitPixelMainDeclaration(code, 1, 0, "float4", "");
code.Write("{{\n"
" ocol0 = ");
EmitSampleTexture(code, 0, "v_tex0");
code.Write(";\n");
code.Write(" gl_FragDepth = ");
EmitSampleTexture(code, 1, "v_tex0");
code.Write(".r;\n"
"}}\n");
return code.GetBuffer();
}
std::string GenerateImGuiVertexShader()
{
ShaderCode code;
// Uniform buffer contains the viewport size, and we transform in the vertex shader.
EmitUniformBufferDeclaration(code);
code.Write("{{\n"
"float2 u_rcp_viewport_size_mul2;\n"
"}};\n\n");
EmitVertexMainDeclaration(code, 1, 1, true, 1, 1);
code.Write("{{\n"
" v_tex0 = float3(rawtex0.xy, 0.0);\n"
" v_col0 = rawcolor0;\n"
" opos = float4(rawpos.x * u_rcp_viewport_size_mul2.x - 1.0,"
" 1.0 - rawpos.y * u_rcp_viewport_size_mul2.y, 0.0, 1.0);\n");
// NDC space is flipped in Vulkan.
if (GetAPIType() == APIType::Vulkan)
code.Write(" opos.y = -opos.y;\n");
code.Write("}}\n");
return code.GetBuffer();
}
std::string GenerateImGuiPixelShader(bool linear_space_output)
{
ShaderCode code;
EmitSamplerDeclarations(code, 0, 1, false);
EmitPixelMainDeclaration(code, 1, 1);
code.Write("{{\n"
" ocol0 = ");
EmitSampleTexture(code, 0, "float3(v_tex0.xy, 0.0)");
// We approximate to gamma 2.2 instead of sRGB as it barely matters for this case.
// Note that if HDR is enabled, ideally we should multiply by
// the paper white brightness for readability.
if (linear_space_output)
code.Write(" * pow(v_col0, float4(2.2f, 2.2f, 2.2f, 1.0f));\n}}\n");
else
code.Write(" * v_col0;\n}}\n");
return code.GetBuffer();
}
} // namespace FramebufferShaderGen