dolphin/Source/Core/DiscIO/VolumeWii.cpp

666 lines
21 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "DiscIO/VolumeWii.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstring>
#include <future>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <mbedtls/aes.h>
#include <mbedtls/sha1.h>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/Swap.h"
#include "DiscIO/Blob.h"
#include "DiscIO/DiscExtractor.h"
#include "DiscIO/Enums.h"
#include "DiscIO/FileSystemGCWii.h"
#include "DiscIO/Filesystem.h"
#include "DiscIO/Volume.h"
#include "DiscIO/WiiSaveBanner.h"
namespace DiscIO
{
VolumeWii::VolumeWii(std::unique_ptr<BlobReader> reader)
: m_reader(std::move(reader)), m_game_partition(PARTITION_NONE),
m_last_decrypted_block(UINT64_MAX)
{
ASSERT(m_reader);
m_encrypted = m_reader->ReadSwapped<u32>(0x60) == u32(0);
for (u32 partition_group = 0; partition_group < 4; ++partition_group)
{
const std::optional<u32> number_of_partitions =
m_reader->ReadSwapped<u32>(0x40000 + (partition_group * 8));
if (!number_of_partitions)
continue;
const std::optional<u64> partition_table_offset =
ReadSwappedAndShifted(0x40000 + (partition_group * 8) + 4, PARTITION_NONE);
if (!partition_table_offset)
continue;
for (u32 i = 0; i < number_of_partitions; i++)
{
const std::optional<u64> partition_offset =
ReadSwappedAndShifted(*partition_table_offset + (i * 8), PARTITION_NONE);
if (!partition_offset)
continue;
const Partition partition(*partition_offset);
const std::optional<u32> partition_type =
m_reader->ReadSwapped<u32>(*partition_table_offset + (i * 8) + 4);
if (!partition_type)
continue;
// If this is the game partition, set m_game_partition
if (m_game_partition == PARTITION_NONE && *partition_type == 0)
m_game_partition = partition;
auto get_ticket = [this, partition]() -> IOS::ES::TicketReader {
std::vector<u8> ticket_buffer(sizeof(IOS::ES::Ticket));
if (!m_reader->Read(partition.offset, ticket_buffer.size(), ticket_buffer.data()))
return INVALID_TICKET;
return IOS::ES::TicketReader{std::move(ticket_buffer)};
};
auto get_tmd = [this, partition]() -> IOS::ES::TMDReader {
const std::optional<u32> tmd_size = m_reader->ReadSwapped<u32>(partition.offset + 0x2a4);
const std::optional<u64> tmd_address =
ReadSwappedAndShifted(partition.offset + 0x2a8, PARTITION_NONE);
if (!tmd_size || !tmd_address)
return INVALID_TMD;
if (!IOS::ES::IsValidTMDSize(*tmd_size))
{
// This check is normally done by ES in ES_DiVerify, but that would happen too late
// (after allocating the buffer), so we do the check here.
PanicAlert("Invalid TMD size");
return INVALID_TMD;
}
std::vector<u8> tmd_buffer(*tmd_size);
if (!m_reader->Read(partition.offset + *tmd_address, *tmd_size, tmd_buffer.data()))
return INVALID_TMD;
return IOS::ES::TMDReader{std::move(tmd_buffer)};
};
auto get_cert_chain = [this, partition]() -> std::vector<u8> {
const std::optional<u32> size = m_reader->ReadSwapped<u32>(partition.offset + 0x2ac);
const std::optional<u64> address =
ReadSwappedAndShifted(partition.offset + 0x2b0, PARTITION_NONE);
if (!size || !address)
return {};
std::vector<u8> cert_chain(*size);
if (!m_reader->Read(partition.offset + *address, *size, cert_chain.data()))
return {};
return cert_chain;
};
auto get_h3_table = [this, partition]() -> std::vector<u8> {
if (!m_encrypted)
return {};
const std::optional<u64> h3_table_offset =
ReadSwappedAndShifted(partition.offset + 0x2b4, PARTITION_NONE);
if (!h3_table_offset)
return {};
std::vector<u8> h3_table(H3_TABLE_SIZE);
if (!m_reader->Read(partition.offset + *h3_table_offset, H3_TABLE_SIZE, h3_table.data()))
return {};
return h3_table;
};
auto get_key = [this, partition]() -> std::unique_ptr<mbedtls_aes_context> {
const IOS::ES::TicketReader& ticket = *m_partitions[partition].ticket;
if (!ticket.IsValid())
return nullptr;
const std::array<u8, AES_KEY_SIZE> key = ticket.GetTitleKey();
std::unique_ptr<mbedtls_aes_context> aes_context = std::make_unique<mbedtls_aes_context>();
mbedtls_aes_setkey_dec(aes_context.get(), key.data(), 128);
return aes_context;
};
auto get_file_system = [this, partition]() -> std::unique_ptr<FileSystem> {
auto file_system = std::make_unique<FileSystemGCWii>(this, partition);
return file_system->IsValid() ? std::move(file_system) : nullptr;
};
auto get_data_offset = [this, partition]() -> u64 {
return ReadSwappedAndShifted(partition.offset + 0x2b8, PARTITION_NONE).value_or(0);
};
m_partitions.emplace(
partition, PartitionDetails{Common::Lazy<std::unique_ptr<mbedtls_aes_context>>(get_key),
Common::Lazy<IOS::ES::TicketReader>(get_ticket),
Common::Lazy<IOS::ES::TMDReader>(get_tmd),
Common::Lazy<std::vector<u8>>(get_cert_chain),
Common::Lazy<std::vector<u8>>(get_h3_table),
Common::Lazy<std::unique_ptr<FileSystem>>(get_file_system),
Common::Lazy<u64>(get_data_offset), *partition_type});
}
}
}
VolumeWii::~VolumeWii()
{
}
bool VolumeWii::Read(u64 offset, u64 length, u8* buffer, const Partition& partition) const
{
if (partition == PARTITION_NONE)
return m_reader->Read(offset, length, buffer);
auto it = m_partitions.find(partition);
if (it == m_partitions.end())
return false;
const PartitionDetails& partition_details = it->second;
if (m_reader->SupportsReadWiiDecrypted())
{
return m_reader->ReadWiiDecrypted(offset, length, buffer,
partition.offset + *partition_details.data_offset);
}
if (!m_encrypted)
{
return m_reader->Read(partition.offset + *partition_details.data_offset + offset, length,
buffer);
}
mbedtls_aes_context* aes_context = partition_details.key->get();
if (!aes_context)
return false;
std::vector<u8> read_buffer(BLOCK_TOTAL_SIZE);
while (length > 0)
{
// Calculate offsets
u64 block_offset_on_disc = partition.offset + *partition_details.data_offset +
offset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE;
u64 data_offset_in_block = offset % BLOCK_DATA_SIZE;
if (m_last_decrypted_block != block_offset_on_disc)
{
// Read the current block
if (!m_reader->Read(block_offset_on_disc, BLOCK_TOTAL_SIZE, read_buffer.data()))
return false;
// Decrypt the block's data.
// 0x3D0 - 0x3DF in read_buffer will be overwritten,
// but that won't affect anything, because we won't
// use the content of read_buffer anymore after this
mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, BLOCK_DATA_SIZE, &read_buffer[0x3D0],
&read_buffer[BLOCK_HEADER_SIZE], m_last_decrypted_block_data);
m_last_decrypted_block = block_offset_on_disc;
// The only thing we currently use from the 0x000 - 0x3FF part
// of the block is the IV (at 0x3D0), but it also contains SHA-1
// hashes that IOS uses to check that discs aren't tampered with.
// http://wiibrew.org/wiki/Wii_Disc#Encrypted
}
// Copy the decrypted data
u64 copy_size = std::min(length, BLOCK_DATA_SIZE - data_offset_in_block);
memcpy(buffer, &m_last_decrypted_block_data[data_offset_in_block],
static_cast<size_t>(copy_size));
// Update offsets
length -= copy_size;
buffer += copy_size;
offset += copy_size;
}
return true;
}
bool VolumeWii::IsEncryptedAndHashed() const
{
return m_encrypted;
}
std::vector<Partition> VolumeWii::GetPartitions() const
{
std::vector<Partition> partitions;
for (const auto& pair : m_partitions)
partitions.push_back(pair.first);
return partitions;
}
Partition VolumeWii::GetGamePartition() const
{
return m_game_partition;
}
std::optional<u32> VolumeWii::GetPartitionType(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? it->second.type : std::optional<u32>();
}
std::optional<u64> VolumeWii::GetTitleID(const Partition& partition) const
{
const IOS::ES::TicketReader& ticket = GetTicket(partition);
if (!ticket.IsValid())
return {};
return ticket.GetTitleId();
}
const IOS::ES::TicketReader& VolumeWii::GetTicket(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? *it->second.ticket : INVALID_TICKET;
}
const IOS::ES::TMDReader& VolumeWii::GetTMD(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? *it->second.tmd : INVALID_TMD;
}
const std::vector<u8>& VolumeWii::GetCertificateChain(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? *it->second.cert_chain : INVALID_CERT_CHAIN;
}
const FileSystem* VolumeWii::GetFileSystem(const Partition& partition) const
{
auto it = m_partitions.find(partition);
return it != m_partitions.end() ? it->second.file_system->get() : nullptr;
}
u64 VolumeWii::EncryptedPartitionOffsetToRawOffset(u64 offset, const Partition& partition,
u64 partition_data_offset)
{
if (partition == PARTITION_NONE)
return offset;
return partition.offset + partition_data_offset + (offset / BLOCK_DATA_SIZE * BLOCK_TOTAL_SIZE) +
(offset % BLOCK_DATA_SIZE);
}
u64 VolumeWii::PartitionOffsetToRawOffset(u64 offset, const Partition& partition) const
{
auto it = m_partitions.find(partition);
if (it == m_partitions.end())
return offset;
const u64 data_offset = *it->second.data_offset;
if (!m_encrypted)
return partition.offset + data_offset + offset;
return EncryptedPartitionOffsetToRawOffset(offset, partition, data_offset);
}
std::string VolumeWii::GetGameID(const Partition& partition) const
{
char id[6];
if (!Read(0, sizeof(id), reinterpret_cast<u8*>(id), partition))
return std::string();
return DecodeString(id);
}
std::string VolumeWii::GetGameTDBID(const Partition& partition) const
{
// Don't return an ID for Datel discs
if (m_game_partition == PARTITION_NONE)
return "";
return GetGameID(partition);
}
Region VolumeWii::GetRegion() const
{
const std::optional<u32> region_code = m_reader->ReadSwapped<u32>(0x4E000);
if (!region_code)
return Region::Unknown;
const Region region = static_cast<Region>(*region_code);
return region <= Region::NTSC_K ? region : Region::Unknown;
}
Country VolumeWii::GetCountry(const Partition& partition) const
{
// The 0 that we use as a default value is mapped to Country::Unknown and Region::Unknown
const u8 country_byte = ReadSwapped<u8>(3, partition).value_or(0);
const Region region = GetRegion();
const std::optional<u16> revision = GetRevision();
if (CountryCodeToRegion(country_byte, Platform::WiiDisc, region, revision) != region)
return TypicalCountryForRegion(region);
return CountryCodeToCountry(country_byte, Platform::WiiDisc, region, revision);
}
std::string VolumeWii::GetMakerID(const Partition& partition) const
{
char maker_id[2];
if (!Read(0x4, sizeof(maker_id), reinterpret_cast<u8*>(&maker_id), partition))
return std::string();
return DecodeString(maker_id);
}
std::optional<u16> VolumeWii::GetRevision(const Partition& partition) const
{
std::optional<u8> revision = ReadSwapped<u8>(7, partition);
return revision ? *revision : std::optional<u16>();
}
std::string VolumeWii::GetInternalName(const Partition& partition) const
{
char name_buffer[0x60];
if (Read(0x20, sizeof(name_buffer), reinterpret_cast<u8*>(&name_buffer), partition))
return DecodeString(name_buffer);
return "";
}
std::map<Language, std::string> VolumeWii::GetLongNames() const
{
std::vector<char16_t> names(NAMES_TOTAL_CHARS);
names.resize(ReadFile(*this, GetGamePartition(), "opening.bnr",
reinterpret_cast<u8*>(names.data()), NAMES_TOTAL_BYTES, 0x5C));
return ReadWiiNames(names);
}
std::vector<u32> VolumeWii::GetBanner(u32* width, u32* height) const
{
*width = 0;
*height = 0;
const std::optional<u64> title_id = GetTitleID(GetGamePartition());
if (!title_id)
return std::vector<u32>();
return WiiSaveBanner(*title_id).GetBanner(width, height);
}
std::string VolumeWii::GetApploaderDate(const Partition& partition) const
{
char date[16];
if (!Read(0x2440, sizeof(date), reinterpret_cast<u8*>(&date), partition))
return std::string();
return DecodeString(date);
}
Platform VolumeWii::GetVolumeType() const
{
return Platform::WiiDisc;
}
std::optional<u8> VolumeWii::GetDiscNumber(const Partition& partition) const
{
return ReadSwapped<u8>(6, partition);
}
BlobType VolumeWii::GetBlobType() const
{
return m_reader->GetBlobType();
}
u64 VolumeWii::GetSize() const
{
return m_reader->GetDataSize();
}
bool VolumeWii::IsSizeAccurate() const
{
return m_reader->IsDataSizeAccurate();
}
u64 VolumeWii::GetRawSize() const
{
return m_reader->GetRawSize();
}
bool VolumeWii::CheckH3TableIntegrity(const Partition& partition) const
{
auto it = m_partitions.find(partition);
if (it == m_partitions.end())
return false;
const PartitionDetails& partition_details = it->second;
const std::vector<u8>& h3_table = *partition_details.h3_table;
if (h3_table.size() != H3_TABLE_SIZE)
return false;
const IOS::ES::TMDReader& tmd = *partition_details.tmd;
if (!tmd.IsValid())
return false;
const std::vector<IOS::ES::Content> contents = tmd.GetContents();
if (contents.size() != 1)
return false;
std::array<u8, 20> h3_table_sha1;
mbedtls_sha1_ret(h3_table.data(), h3_table.size(), h3_table_sha1.data());
return h3_table_sha1 == contents[0].sha1;
}
bool VolumeWii::CheckBlockIntegrity(u64 block_index, const std::vector<u8>& encrypted_data,
const Partition& partition) const
{
if (encrypted_data.size() != BLOCK_TOTAL_SIZE)
return false;
auto it = m_partitions.find(partition);
if (it == m_partitions.end())
return false;
const PartitionDetails& partition_details = it->second;
if (block_index / BLOCKS_PER_GROUP * SHA1_SIZE >= partition_details.h3_table->size())
return false;
mbedtls_aes_context* aes_context = partition_details.key->get();
if (!aes_context)
return false;
HashBlock hashes;
u8 iv[16] = {0};
mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, sizeof(HashBlock), iv,
encrypted_data.data(), reinterpret_cast<u8*>(&hashes));
u8 cluster_data[BLOCK_DATA_SIZE];
std::memcpy(iv, encrypted_data.data() + 0x3D0, 16);
mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, sizeof(cluster_data), iv,
encrypted_data.data() + sizeof(HashBlock), cluster_data);
for (u32 hash_index = 0; hash_index < 31; ++hash_index)
{
u8 h0_hash[SHA1_SIZE];
mbedtls_sha1_ret(cluster_data + hash_index * 0x400, 0x400, h0_hash);
if (memcmp(h0_hash, hashes.h0[hash_index], SHA1_SIZE))
return false;
}
u8 h1_hash[SHA1_SIZE];
mbedtls_sha1_ret(reinterpret_cast<u8*>(hashes.h0), sizeof(hashes.h0), h1_hash);
if (memcmp(h1_hash, hashes.h1[block_index % 8], SHA1_SIZE))
return false;
u8 h2_hash[SHA1_SIZE];
mbedtls_sha1_ret(reinterpret_cast<u8*>(hashes.h1), sizeof(hashes.h1), h2_hash);
if (memcmp(h2_hash, hashes.h2[block_index / 8 % 8], SHA1_SIZE))
return false;
u8 h3_hash[SHA1_SIZE];
mbedtls_sha1_ret(reinterpret_cast<u8*>(hashes.h2), sizeof(hashes.h2), h3_hash);
if (memcmp(h3_hash, partition_details.h3_table->data() + block_index / 64 * SHA1_SIZE, SHA1_SIZE))
return false;
return true;
}
bool VolumeWii::CheckBlockIntegrity(u64 block_index, const Partition& partition) const
{
auto it = m_partitions.find(partition);
if (it == m_partitions.end())
return false;
const PartitionDetails& partition_details = it->second;
const u64 cluster_offset =
partition.offset + *partition_details.data_offset + block_index * BLOCK_TOTAL_SIZE;
std::vector<u8> cluster(BLOCK_TOTAL_SIZE);
if (!m_reader->Read(cluster_offset, cluster.size(), cluster.data()))
return false;
return CheckBlockIntegrity(block_index, cluster, partition);
}
bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
u64 partition_data_decrypted_size,
const std::array<u8, AES_KEY_SIZE>& key, BlobReader* blob,
std::array<u8, GROUP_TOTAL_SIZE>* out)
{
std::vector<std::array<u8, BLOCK_DATA_SIZE>> unencrypted_data(BLOCKS_PER_GROUP);
std::vector<HashBlock> unencrypted_hashes(BLOCKS_PER_GROUP);
std::array<std::future<void>, BLOCKS_PER_GROUP> hash_futures;
bool error_occurred = false;
for (size_t i = 0; i < BLOCKS_PER_GROUP; ++i)
{
if (!error_occurred)
{
if (offset + (i + 1) * BLOCK_DATA_SIZE <= partition_data_decrypted_size)
{
if (!blob->ReadWiiDecrypted(offset + i * BLOCK_DATA_SIZE, BLOCK_DATA_SIZE,
unencrypted_data[i].data(), partition_data_offset))
{
error_occurred = true;
}
}
else
{
unencrypted_data[i].fill(0);
}
}
hash_futures[i] = std::async(std::launch::async, [&unencrypted_data, &unencrypted_hashes,
&hash_futures, error_occurred, i]() {
const size_t h1_base = Common::AlignDown(i, 8);
if (!error_occurred)
{
// H0 hashes
for (size_t j = 0; j < 31; ++j)
{
mbedtls_sha1_ret(unencrypted_data[i].data() + j * 0x400, 0x400,
unencrypted_hashes[i].h0[j]);
}
// H0 padding
std::memset(unencrypted_hashes[i].padding_0, 0, sizeof(HashBlock::padding_0));
// H1 hash
mbedtls_sha1_ret(reinterpret_cast<u8*>(unencrypted_hashes[i].h0), sizeof(HashBlock::h0),
unencrypted_hashes[h1_base].h1[i - h1_base]);
}
if (i % 8 == 7)
{
for (size_t j = 0; j < 7; ++j)
hash_futures[h1_base + j].get();
if (!error_occurred)
{
// H1 padding
std::memset(unencrypted_hashes[h1_base].padding_1, 0, sizeof(HashBlock::padding_1));
// H1 copies
for (size_t j = 1; j < 8; ++j)
{
std::memcpy(unencrypted_hashes[h1_base + j].h1, unencrypted_hashes[h1_base].h1,
sizeof(HashBlock::h1));
}
// H2 hash
mbedtls_sha1_ret(reinterpret_cast<u8*>(unencrypted_hashes[i].h1), sizeof(HashBlock::h1),
unencrypted_hashes[0].h2[h1_base / 8]);
}
if (i == BLOCKS_PER_GROUP - 1)
{
for (size_t j = 0; j < 7; ++j)
hash_futures[j * 8 + 7].get();
if (!error_occurred)
{
// H2 padding
std::memset(unencrypted_hashes[0].padding_2, 0, sizeof(HashBlock::padding_2));
// H2 copies
for (size_t j = 1; j < BLOCKS_PER_GROUP; ++j)
{
std::memcpy(unencrypted_hashes[j].h2, unencrypted_hashes[0].h2,
sizeof(HashBlock::h2));
}
}
}
}
});
}
// Wait for all the async tasks to finish
hash_futures.back().get();
if (error_occurred)
return false;
const unsigned int threads =
std::min(BLOCKS_PER_GROUP, std::max<unsigned int>(1, std::thread::hardware_concurrency()));
std::vector<std::future<void>> encryption_futures(threads);
mbedtls_aes_context aes_context;
mbedtls_aes_setkey_enc(&aes_context, key.data(), 128);
for (size_t i = 0; i < threads; ++i)
{
encryption_futures[i] = std::async(
std::launch::async,
[&unencrypted_data, &unencrypted_hashes, &aes_context, &out](size_t start, size_t end) {
for (size_t i = start; i < end; ++i)
{
u8* out_ptr = out->data() + i * BLOCK_TOTAL_SIZE;
u8 iv[16] = {};
mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_HEADER_SIZE, iv,
reinterpret_cast<u8*>(&unencrypted_hashes[i]), out_ptr);
std::memcpy(iv, out_ptr + 0x3D0, sizeof(iv));
mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_DATA_SIZE, iv,
unencrypted_data[i].data(), out_ptr + BLOCK_HEADER_SIZE);
}
},
i * BLOCKS_PER_GROUP / threads, (i + 1) * BLOCKS_PER_GROUP / threads);
}
for (std::future<void>& future : encryption_futures)
future.get();
return true;
}
} // namespace DiscIO