539 lines
12 KiB
C
539 lines
12 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file tuklib_integer.h
|
|
/// \brief Various integer and bit operations
|
|
///
|
|
/// This file provides macros or functions to do some basic integer and bit
|
|
/// operations.
|
|
///
|
|
/// Endianness related integer operations (XX = 16, 32, or 64; Y = b or l):
|
|
/// - Byte swapping: bswapXX(num)
|
|
/// - Byte order conversions to/from native: convXXYe(num)
|
|
/// - Aligned reads: readXXYe(ptr)
|
|
/// - Aligned writes: writeXXYe(ptr, num)
|
|
/// - Unaligned reads (16/32-bit only): unaligned_readXXYe(ptr)
|
|
/// - Unaligned writes (16/32-bit only): unaligned_writeXXYe(ptr, num)
|
|
///
|
|
/// Since they can macros, the arguments should have no side effects since
|
|
/// they may be evaluated more than once.
|
|
///
|
|
/// \todo PowerPC and possibly some other architectures support
|
|
/// byte swapping load and store instructions. This file
|
|
/// doesn't take advantage of those instructions.
|
|
///
|
|
/// Bit scan operations for non-zero 32-bit integers:
|
|
/// - Bit scan reverse (find highest non-zero bit): bsr32(num)
|
|
/// - Count leading zeros: clz32(num)
|
|
/// - Count trailing zeros: ctz32(num)
|
|
/// - Bit scan forward (simply an alias for ctz32()): bsf32(num)
|
|
///
|
|
/// The above bit scan operations return 0-31. If num is zero,
|
|
/// the result is undefined.
|
|
//
|
|
// Authors: Lasse Collin
|
|
// Joachim Henke
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TUKLIB_INTEGER_H
|
|
#define TUKLIB_INTEGER_H
|
|
|
|
#include "tuklib_common.h"
|
|
|
|
|
|
////////////////////////////////////////
|
|
// Operating system specific features //
|
|
////////////////////////////////////////
|
|
|
|
#if defined(HAVE_BYTESWAP_H)
|
|
// glibc, uClibc, dietlibc
|
|
# include <byteswap.h>
|
|
# ifdef HAVE_BSWAP_16
|
|
# define bswap16(num) bswap_16(num)
|
|
# endif
|
|
# ifdef HAVE_BSWAP_32
|
|
# define bswap32(num) bswap_32(num)
|
|
# endif
|
|
# ifdef HAVE_BSWAP_64
|
|
# define bswap64(num) bswap_64(num)
|
|
# endif
|
|
|
|
#elif defined(HAVE_SYS_ENDIAN_H)
|
|
// *BSDs and Darwin
|
|
# include <sys/endian.h>
|
|
|
|
#elif defined(HAVE_SYS_BYTEORDER_H)
|
|
// Solaris
|
|
# include <sys/byteorder.h>
|
|
# ifdef BSWAP_16
|
|
# define bswap16(num) BSWAP_16(num)
|
|
# endif
|
|
# ifdef BSWAP_32
|
|
# define bswap32(num) BSWAP_32(num)
|
|
# endif
|
|
# ifdef BSWAP_64
|
|
# define bswap64(num) BSWAP_64(num)
|
|
# endif
|
|
# ifdef BE_16
|
|
# define conv16be(num) BE_16(num)
|
|
# endif
|
|
# ifdef BE_32
|
|
# define conv32be(num) BE_32(num)
|
|
# endif
|
|
# ifdef BE_64
|
|
# define conv64be(num) BE_64(num)
|
|
# endif
|
|
# ifdef LE_16
|
|
# define conv16le(num) LE_16(num)
|
|
# endif
|
|
# ifdef LE_32
|
|
# define conv32le(num) LE_32(num)
|
|
# endif
|
|
# ifdef LE_64
|
|
# define conv64le(num) LE_64(num)
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#include <Windows.h>
|
|
#endif
|
|
|
|
|
|
////////////////////////////////
|
|
// Compiler-specific features //
|
|
////////////////////////////////
|
|
|
|
// Newer Intel C compilers require immintrin.h for _bit_scan_reverse()
|
|
// and such functions.
|
|
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1500)
|
|
# include <immintrin.h>
|
|
#endif
|
|
|
|
|
|
///////////////////
|
|
// Byte swapping //
|
|
///////////////////
|
|
|
|
#ifndef bswap16
|
|
# define bswap16(num) \
|
|
(((uint16_t)(num) << 8) | ((uint16_t)(num) >> 8))
|
|
#endif
|
|
|
|
#ifndef bswap32
|
|
# define bswap32(num) \
|
|
( (((uint32_t)(num) << 24) ) \
|
|
| (((uint32_t)(num) << 8) & UINT32_C(0x00FF0000)) \
|
|
| (((uint32_t)(num) >> 8) & UINT32_C(0x0000FF00)) \
|
|
| (((uint32_t)(num) >> 24) ) )
|
|
#endif
|
|
|
|
#ifndef bswap64
|
|
# define bswap64(num) \
|
|
( (((uint64_t)(num) << 56) ) \
|
|
| (((uint64_t)(num) << 40) & UINT64_C(0x00FF000000000000)) \
|
|
| (((uint64_t)(num) << 24) & UINT64_C(0x0000FF0000000000)) \
|
|
| (((uint64_t)(num) << 8) & UINT64_C(0x000000FF00000000)) \
|
|
| (((uint64_t)(num) >> 8) & UINT64_C(0x00000000FF000000)) \
|
|
| (((uint64_t)(num) >> 24) & UINT64_C(0x0000000000FF0000)) \
|
|
| (((uint64_t)(num) >> 40) & UINT64_C(0x000000000000FF00)) \
|
|
| (((uint64_t)(num) >> 56) ) )
|
|
#endif
|
|
|
|
// Define conversion macros using the basic byte swapping macros.
|
|
#ifdef WORDS_BIGENDIAN
|
|
# ifndef conv16be
|
|
# define conv16be(num) ((uint16_t)(num))
|
|
# endif
|
|
# ifndef conv32be
|
|
# define conv32be(num) ((uint32_t)(num))
|
|
# endif
|
|
# ifndef conv64be
|
|
# define conv64be(num) ((uint64_t)(num))
|
|
# endif
|
|
# ifndef conv16le
|
|
# define conv16le(num) bswap16(num)
|
|
# endif
|
|
# ifndef conv32le
|
|
# define conv32le(num) bswap32(num)
|
|
# endif
|
|
# ifndef conv64le
|
|
# define conv64le(num) bswap64(num)
|
|
# endif
|
|
#else
|
|
# ifndef conv16be
|
|
# define conv16be(num) bswap16(num)
|
|
# endif
|
|
# ifndef conv32be
|
|
# define conv32be(num) bswap32(num)
|
|
# endif
|
|
# ifndef conv64be
|
|
# define conv64be(num) bswap64(num)
|
|
# endif
|
|
# ifndef conv16le
|
|
# define conv16le(num) ((uint16_t)(num))
|
|
# endif
|
|
# ifndef conv32le
|
|
# define conv32le(num) ((uint32_t)(num))
|
|
# endif
|
|
# ifndef conv64le
|
|
# define conv64le(num) ((uint64_t)(num))
|
|
# endif
|
|
#endif
|
|
|
|
|
|
//////////////////////////////
|
|
// Aligned reads and writes //
|
|
//////////////////////////////
|
|
|
|
static inline uint16_t
|
|
read16be(const uint8_t *buf)
|
|
{
|
|
uint16_t num = *(const uint16_t *)buf;
|
|
return conv16be(num);
|
|
}
|
|
|
|
|
|
static inline uint16_t
|
|
read16le(const uint8_t *buf)
|
|
{
|
|
uint16_t num = *(const uint16_t *)buf;
|
|
return conv16le(num);
|
|
}
|
|
|
|
|
|
static inline uint32_t
|
|
read32be(const uint8_t *buf)
|
|
{
|
|
uint32_t num = *(const uint32_t *)buf;
|
|
return conv32be(num);
|
|
}
|
|
|
|
|
|
static inline uint32_t
|
|
read32le(const uint8_t *buf)
|
|
{
|
|
uint32_t num = *(const uint32_t *)buf;
|
|
return conv32le(num);
|
|
}
|
|
|
|
|
|
static inline uint64_t
|
|
read64be(const uint8_t *buf)
|
|
{
|
|
uint64_t num = *(const uint64_t *)buf;
|
|
return conv64be(num);
|
|
}
|
|
|
|
|
|
static inline uint64_t
|
|
read64le(const uint8_t *buf)
|
|
{
|
|
uint64_t num = *(const uint64_t *)buf;
|
|
return conv64le(num);
|
|
}
|
|
|
|
|
|
// NOTE: Possible byte swapping must be done in a macro to allow GCC
|
|
// to optimize byte swapping of constants when using glibc's or *BSD's
|
|
// byte swapping macros. The actual write is done in an inline function
|
|
// to make type checking of the buf pointer possible similarly to readXXYe()
|
|
// functions.
|
|
|
|
#define write16be(buf, num) write16ne((buf), conv16be(num))
|
|
#define write16le(buf, num) write16ne((buf), conv16le(num))
|
|
#define write32be(buf, num) write32ne((buf), conv32be(num))
|
|
#define write32le(buf, num) write32ne((buf), conv32le(num))
|
|
#define write64be(buf, num) write64ne((buf), conv64be(num))
|
|
#define write64le(buf, num) write64ne((buf), conv64le(num))
|
|
|
|
|
|
static inline void
|
|
write16ne(uint8_t *buf, uint16_t num)
|
|
{
|
|
*(uint16_t *)buf = num;
|
|
return;
|
|
}
|
|
|
|
|
|
static inline void
|
|
write32ne(uint8_t *buf, uint32_t num)
|
|
{
|
|
*(uint32_t *)buf = num;
|
|
return;
|
|
}
|
|
|
|
|
|
static inline void
|
|
write64ne(uint8_t *buf, uint64_t num)
|
|
{
|
|
*(uint64_t *)buf = num;
|
|
return;
|
|
}
|
|
|
|
|
|
////////////////////////////////
|
|
// Unaligned reads and writes //
|
|
////////////////////////////////
|
|
|
|
// NOTE: TUKLIB_FAST_UNALIGNED_ACCESS indicates only support for 16-bit and
|
|
// 32-bit unaligned integer loads and stores. It's possible that 64-bit
|
|
// unaligned access doesn't work or is slower than byte-by-byte access.
|
|
// Since unaligned 64-bit is probably not needed as often as 16-bit or
|
|
// 32-bit, we simply don't support 64-bit unaligned access for now.
|
|
#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
|
|
# define unaligned_read16be read16be
|
|
# define unaligned_read16le read16le
|
|
# define unaligned_read32be read32be
|
|
# define unaligned_read32le read32le
|
|
# define unaligned_write16be write16be
|
|
# define unaligned_write16le write16le
|
|
# define unaligned_write32be write32be
|
|
# define unaligned_write32le write32le
|
|
|
|
#else
|
|
|
|
static inline uint16_t
|
|
unaligned_read16be(const uint8_t *buf)
|
|
{
|
|
uint16_t num = ((uint16_t)buf[0] << 8) | (uint16_t)buf[1];
|
|
return num;
|
|
}
|
|
|
|
|
|
static inline uint16_t
|
|
unaligned_read16le(const uint8_t *buf)
|
|
{
|
|
uint16_t num = ((uint16_t)buf[0]) | ((uint16_t)buf[1] << 8);
|
|
return num;
|
|
}
|
|
|
|
|
|
static inline uint32_t
|
|
unaligned_read32be(const uint8_t *buf)
|
|
{
|
|
uint32_t num = (uint32_t)buf[0] << 24;
|
|
num |= (uint32_t)buf[1] << 16;
|
|
num |= (uint32_t)buf[2] << 8;
|
|
num |= (uint32_t)buf[3];
|
|
return num;
|
|
}
|
|
|
|
|
|
static inline uint32_t
|
|
unaligned_read32le(const uint8_t *buf)
|
|
{
|
|
uint32_t num = (uint32_t)buf[0];
|
|
num |= (uint32_t)buf[1] << 8;
|
|
num |= (uint32_t)buf[2] << 16;
|
|
num |= (uint32_t)buf[3] << 24;
|
|
return num;
|
|
}
|
|
|
|
|
|
static inline void
|
|
unaligned_write16be(uint8_t *buf, uint16_t num)
|
|
{
|
|
buf[0] = (uint8_t)(num >> 8);
|
|
buf[1] = (uint8_t)num;
|
|
return;
|
|
}
|
|
|
|
|
|
static inline void
|
|
unaligned_write16le(uint8_t *buf, uint16_t num)
|
|
{
|
|
buf[0] = (uint8_t)num;
|
|
buf[1] = (uint8_t)(num >> 8);
|
|
return;
|
|
}
|
|
|
|
|
|
static inline void
|
|
unaligned_write32be(uint8_t *buf, uint32_t num)
|
|
{
|
|
buf[0] = (uint8_t)(num >> 24);
|
|
buf[1] = (uint8_t)(num >> 16);
|
|
buf[2] = (uint8_t)(num >> 8);
|
|
buf[3] = (uint8_t)num;
|
|
return;
|
|
}
|
|
|
|
|
|
static inline void
|
|
unaligned_write32le(uint8_t *buf, uint32_t num)
|
|
{
|
|
buf[0] = (uint8_t)num;
|
|
buf[1] = (uint8_t)(num >> 8);
|
|
buf[2] = (uint8_t)(num >> 16);
|
|
buf[3] = (uint8_t)(num >> 24);
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
static inline uint32_t
|
|
bsr32(uint32_t n)
|
|
{
|
|
// Check for ICC first, since it tends to define __GNUC__ too.
|
|
#if defined(__INTEL_COMPILER)
|
|
return _bit_scan_reverse(n);
|
|
|
|
#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
|
|
// GCC >= 3.4 has __builtin_clz(), which gives good results on
|
|
// multiple architectures. On x86, __builtin_clz() ^ 31U becomes
|
|
// either plain BSR (so the XOR gets optimized away) or LZCNT and
|
|
// XOR (if -march indicates that SSE4a instructions are supported).
|
|
return __builtin_clz(n) ^ 31U;
|
|
|
|
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
|
uint32_t i;
|
|
__asm__("bsrl %1, %0" : "=r" (i) : "rm" (n));
|
|
return i;
|
|
|
|
#elif defined(_MSC_VER) && _MSC_VER >= 1400
|
|
// MSVC isn't supported by tuklib, but since this code exists,
|
|
// it doesn't hurt to have it here anyway.
|
|
uint32_t i;
|
|
_BitScanReverse((DWORD *)&i, n);
|
|
return i;
|
|
|
|
#else
|
|
uint32_t i = 31;
|
|
|
|
if ((n & UINT32_C(0xFFFF0000)) == 0) {
|
|
n <<= 16;
|
|
i = 15;
|
|
}
|
|
|
|
if ((n & UINT32_C(0xFF000000)) == 0) {
|
|
n <<= 8;
|
|
i -= 8;
|
|
}
|
|
|
|
if ((n & UINT32_C(0xF0000000)) == 0) {
|
|
n <<= 4;
|
|
i -= 4;
|
|
}
|
|
|
|
if ((n & UINT32_C(0xC0000000)) == 0) {
|
|
n <<= 2;
|
|
i -= 2;
|
|
}
|
|
|
|
if ((n & UINT32_C(0x80000000)) == 0)
|
|
--i;
|
|
|
|
return i;
|
|
#endif
|
|
}
|
|
|
|
|
|
static inline uint32_t
|
|
clz32(uint32_t n)
|
|
{
|
|
#if defined(__INTEL_COMPILER)
|
|
return _bit_scan_reverse(n) ^ 31U;
|
|
|
|
#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
|
|
return __builtin_clz(n);
|
|
|
|
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
|
uint32_t i;
|
|
__asm__("bsrl %1, %0\n\t"
|
|
"xorl $31, %0"
|
|
: "=r" (i) : "rm" (n));
|
|
return i;
|
|
|
|
#elif defined(_MSC_VER) && _MSC_VER >= 1400
|
|
uint32_t i;
|
|
_BitScanReverse((DWORD *)&i, n);
|
|
return i ^ 31U;
|
|
|
|
#else
|
|
uint32_t i = 0;
|
|
|
|
if ((n & UINT32_C(0xFFFF0000)) == 0) {
|
|
n <<= 16;
|
|
i = 16;
|
|
}
|
|
|
|
if ((n & UINT32_C(0xFF000000)) == 0) {
|
|
n <<= 8;
|
|
i += 8;
|
|
}
|
|
|
|
if ((n & UINT32_C(0xF0000000)) == 0) {
|
|
n <<= 4;
|
|
i += 4;
|
|
}
|
|
|
|
if ((n & UINT32_C(0xC0000000)) == 0) {
|
|
n <<= 2;
|
|
i += 2;
|
|
}
|
|
|
|
if ((n & UINT32_C(0x80000000)) == 0)
|
|
++i;
|
|
|
|
return i;
|
|
#endif
|
|
}
|
|
|
|
|
|
static inline uint32_t
|
|
ctz32(uint32_t n)
|
|
{
|
|
#if defined(__INTEL_COMPILER)
|
|
return _bit_scan_forward(n);
|
|
|
|
#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX >= UINT32_MAX
|
|
return __builtin_ctz(n);
|
|
|
|
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
|
|
uint32_t i;
|
|
__asm__("bsfl %1, %0" : "=r" (i) : "rm" (n));
|
|
return i;
|
|
|
|
#elif defined(_MSC_VER) && _MSC_VER >= 1400
|
|
uint32_t i;
|
|
_BitScanForward((DWORD *)&i, n);
|
|
return i;
|
|
|
|
#else
|
|
uint32_t i = 0;
|
|
|
|
if ((n & UINT32_C(0x0000FFFF)) == 0) {
|
|
n >>= 16;
|
|
i = 16;
|
|
}
|
|
|
|
if ((n & UINT32_C(0x000000FF)) == 0) {
|
|
n >>= 8;
|
|
i += 8;
|
|
}
|
|
|
|
if ((n & UINT32_C(0x0000000F)) == 0) {
|
|
n >>= 4;
|
|
i += 4;
|
|
}
|
|
|
|
if ((n & UINT32_C(0x00000003)) == 0) {
|
|
n >>= 2;
|
|
i += 2;
|
|
}
|
|
|
|
if ((n & UINT32_C(0x00000001)) == 0)
|
|
++i;
|
|
|
|
return i;
|
|
#endif
|
|
}
|
|
|
|
#define bsf32 ctz32
|
|
|
|
#endif
|