dolphin/Source/Core/VideoCommon/VertexLoaderManager.cpp

391 lines
13 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/VertexLoaderManager.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/EnumMap.h"
#include "Common/Logging/Log.h"
#include "Core/DolphinAnalytics.h"
#include "Core/HW/Memmap.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/XFMemory.h"
namespace VertexLoaderManager
{
// Used by zfreeze
std::array<u32, 3> position_matrix_index_cache;
// 3 vertices, 4 floats each to allow SIMD overwrite
alignas(sizeof(std::array<float, 4>)) std::array<std::array<float, 4>, 3> position_cache;
alignas(sizeof(std::array<float, 4>)) std::array<float, 4> tangent_cache;
alignas(sizeof(std::array<float, 4>)) std::array<float, 4> binormal_cache;
static NativeVertexFormatMap s_native_vertex_map;
static NativeVertexFormat* s_current_vtx_fmt;
u32 g_current_components;
typedef std::unordered_map<VertexLoaderUID, std::unique_ptr<VertexLoaderBase>> VertexLoaderMap;
static std::mutex s_vertex_loader_map_lock;
static VertexLoaderMap s_vertex_loader_map;
// TODO - change into array of pointers. Keep a map of all seen so far.
Common::EnumMap<u8*, CPArray::TexCoord7> cached_arraybases;
BitSet8 g_main_vat_dirty;
BitSet8 g_preprocess_vat_dirty;
bool g_bases_dirty; // Main only
u8 g_current_vat; // Main only
std::array<VertexLoaderBase*, CP_NUM_VAT_REG> g_main_vertex_loaders;
std::array<VertexLoaderBase*, CP_NUM_VAT_REG> g_preprocess_vertex_loaders;
void Init()
{
MarkAllDirty();
for (auto& map_entry : g_main_vertex_loaders)
map_entry = nullptr;
for (auto& map_entry : g_preprocess_vertex_loaders)
map_entry = nullptr;
SETSTAT(g_stats.num_vertex_loaders, 0);
}
void Clear()
{
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
s_vertex_loader_map.clear();
s_native_vertex_map.clear();
}
void UpdateVertexArrayPointers()
{
// Anything to update?
if (!g_bases_dirty)
return;
// Some games such as Burnout 2 can put invalid addresses into
// the array base registers. (see issue 8591)
// But the vertex arrays with invalid addresses aren't actually enabled.
// Note: Only array bases 0 through 11 are used by the Vertex loaders.
// 12 through 15 are used for loading data into xfmem.
// We also only update the array base if the vertex description states we are going to use it.
if (IsIndexed(g_main_cp_state.vtx_desc.low.Position))
cached_arraybases[CPArray::Position] =
Memory::GetPointer(g_main_cp_state.array_bases[CPArray::Position]);
if (IsIndexed(g_main_cp_state.vtx_desc.low.Normal))
cached_arraybases[CPArray::Normal] =
Memory::GetPointer(g_main_cp_state.array_bases[CPArray::Normal]);
for (u8 i = 0; i < g_main_cp_state.vtx_desc.low.Color.Size(); i++)
{
if (IsIndexed(g_main_cp_state.vtx_desc.low.Color[i]))
cached_arraybases[CPArray::Color0 + i] =
Memory::GetPointer(g_main_cp_state.array_bases[CPArray::Color0 + i]);
}
for (u8 i = 0; i < g_main_cp_state.vtx_desc.high.TexCoord.Size(); i++)
{
if (IsIndexed(g_main_cp_state.vtx_desc.high.TexCoord[i]))
cached_arraybases[CPArray::TexCoord0 + i] =
Memory::GetPointer(g_main_cp_state.array_bases[CPArray::TexCoord0 + i]);
}
g_bases_dirty = false;
}
namespace
{
struct entry
{
std::string text;
u64 num_verts;
bool operator<(const entry& other) const { return num_verts > other.num_verts; }
};
} // namespace
void MarkAllDirty()
{
g_main_vat_dirty = BitSet8::AllTrue(8);
g_preprocess_vat_dirty = BitSet8::AllTrue(8);
}
NativeVertexFormat* GetOrCreateMatchingFormat(const PortableVertexDeclaration& decl)
{
auto iter = s_native_vertex_map.find(decl);
if (iter == s_native_vertex_map.end())
{
std::unique_ptr<NativeVertexFormat> fmt = g_renderer->CreateNativeVertexFormat(decl);
auto ipair = s_native_vertex_map.emplace(decl, std::move(fmt));
iter = ipair.first;
}
return iter->second.get();
}
NativeVertexFormat* GetUberVertexFormat(const PortableVertexDeclaration& decl)
{
// The padding in the structs can cause the memcmp() in the map to create duplicates.
// Avoid this by initializing the padding to zero.
PortableVertexDeclaration new_decl;
std::memset(&new_decl, 0, sizeof(new_decl));
new_decl.stride = decl.stride;
auto MakeDummyAttribute = [](AttributeFormat& attr, ComponentFormat type, int components,
bool integer) {
attr.type = type;
attr.components = components;
attr.offset = 0;
attr.enable = true;
attr.integer = integer;
};
auto CopyAttribute = [](AttributeFormat& attr, const AttributeFormat& src) {
attr.type = src.type;
attr.components = src.components;
attr.offset = src.offset;
attr.enable = src.enable;
attr.integer = src.integer;
};
if (decl.position.enable)
CopyAttribute(new_decl.position, decl.position);
else
MakeDummyAttribute(new_decl.position, ComponentFormat::Float, 1, false);
for (size_t i = 0; i < std::size(new_decl.normals); i++)
{
if (decl.normals[i].enable)
CopyAttribute(new_decl.normals[i], decl.normals[i]);
else
MakeDummyAttribute(new_decl.normals[i], ComponentFormat::Float, 1, false);
}
for (size_t i = 0; i < std::size(new_decl.colors); i++)
{
if (decl.colors[i].enable)
CopyAttribute(new_decl.colors[i], decl.colors[i]);
else
MakeDummyAttribute(new_decl.colors[i], ComponentFormat::UByte, 4, false);
}
for (size_t i = 0; i < std::size(new_decl.texcoords); i++)
{
if (decl.texcoords[i].enable)
CopyAttribute(new_decl.texcoords[i], decl.texcoords[i]);
else
MakeDummyAttribute(new_decl.texcoords[i], ComponentFormat::Float, 1, false);
}
if (decl.posmtx.enable)
CopyAttribute(new_decl.posmtx, decl.posmtx);
else
MakeDummyAttribute(new_decl.posmtx, ComponentFormat::UByte, 1, true);
return GetOrCreateMatchingFormat(new_decl);
}
static VertexLoaderBase* RefreshLoader(int vtx_attr_group, bool preprocess = false)
{
CPState* state = preprocess ? &g_preprocess_cp_state : &g_main_cp_state;
BitSet8& attr_dirty = preprocess ? g_preprocess_vat_dirty : g_main_vat_dirty;
auto& vertex_loaders = preprocess ? g_main_vertex_loaders : g_preprocess_vertex_loaders;
g_current_vat = vtx_attr_group;
VertexLoaderBase* loader;
if (attr_dirty[vtx_attr_group])
{
// We are not allowed to create a native vertex format on preprocessing as this is on the wrong
// thread
bool check_for_native_format = !preprocess;
VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid);
if (iter != s_vertex_loader_map.end())
{
loader = iter->second.get();
check_for_native_format &= !loader->m_native_vertex_format;
}
else
{
s_vertex_loader_map[uid] =
VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
loader = s_vertex_loader_map[uid].get();
INCSTAT(g_stats.num_vertex_loaders);
}
if (check_for_native_format)
{
// search for a cached native vertex format
const PortableVertexDeclaration& format = loader->m_native_vtx_decl;
std::unique_ptr<NativeVertexFormat>& native = s_native_vertex_map[format];
if (!native)
native = g_renderer->CreateNativeVertexFormat(format);
loader->m_native_vertex_format = native.get();
}
vertex_loaders[vtx_attr_group] = loader;
attr_dirty[vtx_attr_group] = false;
}
else
{
loader = vertex_loaders[vtx_attr_group];
}
// Lookup pointers for any vertex arrays.
if (!preprocess)
UpdateVertexArrayPointers();
return loader;
}
static void CheckCPConfiguration(int vtx_attr_group)
{
// Validate that the XF input configuration matches the CP configuration
u32 num_cp_colors = std::count_if(
g_main_cp_state.vtx_desc.low.Color.begin(), g_main_cp_state.vtx_desc.low.Color.end(),
[](auto format) { return format != VertexComponentFormat::NotPresent; });
u32 num_cp_tex_coords = std::count_if(
g_main_cp_state.vtx_desc.high.TexCoord.begin(), g_main_cp_state.vtx_desc.high.TexCoord.end(),
[](auto format) { return format != VertexComponentFormat::NotPresent; });
u32 num_cp_normals;
if (g_main_cp_state.vtx_desc.low.Normal == VertexComponentFormat::NotPresent)
num_cp_normals = 0;
else if (g_main_cp_state.vtx_attr[vtx_attr_group].g0.NormalElements == NormalComponentCount::NTB)
num_cp_normals = 3;
else
num_cp_normals = 1;
std::optional<u32> num_xf_normals;
switch (xfmem.invtxspec.numnormals)
{
case NormalCount::None:
num_xf_normals = 0;
break;
case NormalCount::Normal:
num_xf_normals = 1;
break;
case NormalCount::NormalTangentBinormal:
num_xf_normals = 3;
break;
default:
PanicAlertFmt("xfmem.invtxspec.numnormals is invalid: {}", xfmem.invtxspec.numnormals);
break;
}
if (num_cp_colors != xfmem.invtxspec.numcolors || num_cp_normals != num_xf_normals ||
num_cp_tex_coords != xfmem.invtxspec.numtextures)
{
PanicAlertFmt("Mismatched configuration between CP and XF stages - {}/{} colors, {}/{} "
"normals, {}/{} texture coordinates. Please report on the issue tracker.\n\n"
"VCD: {:08x} {:08x}\nVAT {}: {:08x} {:08x} {:08x}\nXF vertex spec: {:08x}",
num_cp_colors, xfmem.invtxspec.numcolors, num_cp_normals,
num_xf_normals.has_value() ? fmt::to_string(num_xf_normals.value()) : "invalid",
num_cp_tex_coords, xfmem.invtxspec.numtextures, g_main_cp_state.vtx_desc.low.Hex,
g_main_cp_state.vtx_desc.high.Hex, vtx_attr_group,
g_main_cp_state.vtx_attr[vtx_attr_group].g0.Hex,
g_main_cp_state.vtx_attr[vtx_attr_group].g1.Hex,
g_main_cp_state.vtx_attr[vtx_attr_group].g2.Hex, xfmem.invtxspec.hex);
// Analytics reporting so we can discover which games have this problem, that way when we
// eventually simulate the behavior we have test cases for it.
if (num_cp_colors != xfmem.invtxspec.numcolors)
{
DolphinAnalytics::Instance().ReportGameQuirk(
GameQuirk::MISMATCHED_GPU_COLORS_BETWEEN_CP_AND_XF);
}
if (num_cp_normals != num_xf_normals)
{
DolphinAnalytics::Instance().ReportGameQuirk(
GameQuirk::MISMATCHED_GPU_NORMALS_BETWEEN_CP_AND_XF);
}
if (num_cp_tex_coords != xfmem.invtxspec.numtextures)
{
DolphinAnalytics::Instance().ReportGameQuirk(
GameQuirk::MISMATCHED_GPU_TEX_COORDS_BETWEEN_CP_AND_XF);
}
// Don't bail out, though; we can still render something successfully
// (real hardware seems to hang in this case, though)
}
if (g_main_cp_state.matrix_index_a.Hex != xfmem.MatrixIndexA.Hex ||
g_main_cp_state.matrix_index_b.Hex != xfmem.MatrixIndexB.Hex)
{
WARN_LOG_FMT(VIDEO,
"Mismatched matrix index configuration between CP and XF stages - "
"index A: {:08x}/{:08x}, index B {:08x}/{:08x}.",
g_main_cp_state.matrix_index_a.Hex, xfmem.MatrixIndexA.Hex,
g_main_cp_state.matrix_index_b.Hex, xfmem.MatrixIndexB.Hex);
DolphinAnalytics::Instance().ReportGameQuirk(
GameQuirk::MISMATCHED_GPU_MATRIX_INDICES_BETWEEN_CP_AND_XF);
}
}
int RunVertices(int vtx_attr_group, OpcodeDecoder::Primitive primitive, int count, DataReader src,
bool is_preprocess)
{
if (count == 0)
return 0;
ASSERT(count > 0);
VertexLoaderBase* loader = RefreshLoader(vtx_attr_group, is_preprocess);
int size = count * loader->m_vertex_size;
if ((int)src.size() < size)
return -1;
if (is_preprocess)
return size;
CheckCPConfiguration(vtx_attr_group);
// If the native vertex format changed, force a flush.
if (loader->m_native_vertex_format != s_current_vtx_fmt ||
loader->m_native_components != g_current_components)
{
g_vertex_manager->Flush();
}
s_current_vtx_fmt = loader->m_native_vertex_format;
g_current_components = loader->m_native_components;
VertexShaderManager::SetVertexFormat(loader->m_native_components);
// if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads.
// They still need to go through vertex loading, because we need to calculate a zfreeze refrence
// slope.
bool cullall = (bpmem.genMode.cullmode == CullMode::All &&
primitive < OpcodeDecoder::Primitive::GX_DRAW_LINES);
DataReader dst = g_vertex_manager->PrepareForAdditionalData(
primitive, count, loader->m_native_vtx_decl.stride, cullall);
count = loader->RunVertices(src, dst, count);
g_vertex_manager->AddIndices(primitive, count);
g_vertex_manager->FlushData(count, loader->m_native_vtx_decl.stride);
ADDSTAT(g_stats.this_frame.num_prims, count);
INCSTAT(g_stats.this_frame.num_primitive_joins);
return size;
}
NativeVertexFormat* GetCurrentVertexFormat()
{
return s_current_vtx_fmt;
}
} // namespace VertexLoaderManager