dolphin/Source/Core/DiscIO/RiivolutionPatcher.cpp

638 lines
22 KiB
C++

// Copyright 2021 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "DiscIO/RiivolutionPatcher.h"
#include <algorithm>
#include <locale>
#include <string>
#include <string_view>
#include <vector>
#include <fmt/format.h>
#include "Common/FileUtil.h"
#include "Common/IOFile.h"
#include "Common/StringUtil.h"
#include "Core/HLE/HLE.h"
#include "Core/HW/Memmap.h"
#include "Core/IOS/FS/FileSystem.h"
#include "Core/PowerPC/MMU.h"
#include "Core/System.h"
#include "DiscIO/DirectoryBlob.h"
#include "DiscIO/RiivolutionParser.h"
namespace DiscIO::Riivolution
{
FileDataLoader::~FileDataLoader() = default;
FileDataLoaderHostFS::FileDataLoaderHostFS(std::string sd_root, const std::string& xml_path,
std::string_view patch_root)
: m_sd_root(std::move(sd_root))
{
// Riivolution treats 'external' file paths as follows:
// - If it starts with a '/', it's an absolute path, ie. relative to the SD card root.
// - Otherwise:
// - If the 'root' parameter of the current patch is not set or is empty, the path is relative
// to the folder the XML file is in.
// - If the 'root' parameter of the current patch starts with a '/', the path is relative to
// that folder on the SD card, starting at the SD card root.
// - If the 'root' parameter of the current patch starts without a '/', the path is relative to
// that folder on the SD card, starting at the folder the XML file is in.
// The following initialization should properly replicate this behavior.
// First set m_patch_root to the folder the parsed XML file is in.
SplitPath(xml_path, &m_patch_root, nullptr, nullptr);
// Then try to resolve the given patch_root as if it was a file path, and on success replace the
// m_patch_root with it.
if (!patch_root.empty())
{
auto r = MakeAbsoluteFromRelative(patch_root);
if (r)
m_patch_root = std::move(*r);
}
}
std::optional<std::string>
FileDataLoaderHostFS::MakeAbsoluteFromRelative(std::string_view external_relative_path)
{
#ifdef _WIN32
// Riivolution treats a backslash as just a standard filename character, but we can't replicate
// this properly on Windows. So if a file contains a backslash, immediately error out.
if (external_relative_path.find("\\") != std::string_view::npos)
return std::nullopt;
#endif
std::string result = StringBeginsWith(external_relative_path, "/") ? m_sd_root : m_patch_root;
std::string_view work = external_relative_path;
// Strip away all leading and trailing path separators.
while (StringBeginsWith(work, "/"))
work.remove_prefix(1);
while (StringEndsWith(work, "/"))
work.remove_suffix(1);
size_t depth = 0;
while (true)
{
if (work.empty())
break;
// Extract a single path element.
size_t separator_position = work.find('/');
std::string_view element = work.substr(0, separator_position);
if (element == ".")
{
// This is a harmless element, doesn't change any state.
}
else if (element == "..")
{
// We're going up a level.
// If this isn't possible someone is trying to exit the root directory, prevent that.
if (depth == 0)
return std::nullopt;
--depth;
// Remove the last path element from the result string.
// This must have been previously attached in the branch below (otherwise depth would have
// been 0), so there's no need to check whether the string is empty or anything like that.
while (result.back() != '/')
result.pop_back();
result.pop_back();
}
else if (std::all_of(element.begin(), element.end(), [](char c) { return c == '.'; }))
{
// This is a triple, quadruple, etc. dot.
// Some file systems treat this as several 'up' path traversals, but Riivolution does not.
// If someone tries this just error out, it wouldn't work sensibly in Riivolution anyway.
return std::nullopt;
}
else
{
// We're going down a level.
++depth;
// Append path element to result string.
result += '/';
result += element;
}
// If this was the last path element, we're done.
if (separator_position == std::string_view::npos)
break;
// Remove element from work string.
work = work.substr(separator_position + 1);
// Remove any potential extra path separators.
while (StringBeginsWith(work, "/"))
work = work.substr(1);
}
return result;
}
std::optional<u64>
FileDataLoaderHostFS::GetExternalFileSize(std::string_view external_relative_path)
{
auto path = MakeAbsoluteFromRelative(external_relative_path);
if (!path)
return std::nullopt;
::File::FileInfo f(*path);
if (!f.IsFile())
return std::nullopt;
return f.GetSize();
}
std::vector<u8> FileDataLoaderHostFS::GetFileContents(std::string_view external_relative_path)
{
auto path = MakeAbsoluteFromRelative(external_relative_path);
if (!path)
return {};
::File::IOFile f(*path, "rb");
if (!f)
return {};
const u64 length = f.GetSize();
std::vector<u8> value;
value.resize(length);
if (!f.ReadBytes(value.data(), length))
return {};
return value;
}
std::vector<FileDataLoader::Node>
FileDataLoaderHostFS::GetFolderContents(std::string_view external_relative_path)
{
auto path = MakeAbsoluteFromRelative(external_relative_path);
if (!path)
return {};
::File::FSTEntry external_files = ::File::ScanDirectoryTree(*path, false);
std::vector<FileDataLoader::Node> nodes;
nodes.reserve(external_files.children.size());
for (auto& file : external_files.children)
nodes.emplace_back(FileDataLoader::Node{std::move(file.virtualName), file.isDirectory});
return nodes;
}
BuilderContentSource
FileDataLoaderHostFS::MakeContentSource(std::string_view external_relative_path,
u64 external_offset, u64 external_size, u64 disc_offset)
{
auto path = MakeAbsoluteFromRelative(external_relative_path);
if (!path)
return BuilderContentSource{disc_offset, external_size, ContentFixedByte{0}};
return BuilderContentSource{disc_offset, external_size,
ContentFile{std::move(*path), external_offset}};
}
std::optional<std::string>
FileDataLoaderHostFS::ResolveSavegameRedirectPath(std::string_view external_relative_path)
{
return MakeAbsoluteFromRelative(external_relative_path);
}
// 'before' and 'after' should be two copies of the same source
// 'split_at' needs to be between the start and end of the source, may not match either boundary
static void SplitAt(BuilderContentSource* before, BuilderContentSource* after, u64 split_at)
{
const u64 start = before->m_offset;
const u64 size = before->m_size;
const u64 end = start + size;
// The source before the split point just needs its length reduced.
before->m_size = split_at - start;
// The source after the split needs its length reduced and its start point adjusted.
after->m_offset += before->m_size;
after->m_size = end - split_at;
if (std::holds_alternative<ContentFile>(after->m_source))
std::get<ContentFile>(after->m_source).m_offset += before->m_size;
else if (std::holds_alternative<const u8*>(after->m_source))
std::get<const u8*>(after->m_source) += before->m_size;
else if (std::holds_alternative<ContentPartition>(after->m_source))
std::get<ContentPartition>(after->m_source).m_offset += before->m_size;
else if (std::holds_alternative<ContentVolume>(after->m_source))
std::get<ContentVolume>(after->m_source).m_offset += before->m_size;
}
static void ApplyPatchToFile(const Patch& patch, DiscIO::FSTBuilderNode* file_node,
std::string_view external_filename, u64 file_patch_offset,
u64 raw_external_file_offset, u64 file_patch_length, bool resize)
{
const auto f = patch.m_file_data_loader->GetExternalFileSize(external_filename);
if (!f)
return;
auto& content = std::get<std::vector<BuilderContentSource>>(file_node->m_content);
const u64 raw_external_filesize = *f;
const u64 external_file_offset = std::min(raw_external_file_offset, raw_external_filesize);
const u64 external_filesize = raw_external_filesize - external_file_offset;
const u64 patch_start = file_patch_offset;
const u64 patch_size = file_patch_length == 0 ? external_filesize : file_patch_length;
const u64 patch_end = patch_start + patch_size;
const u64 target_filesize = resize ? patch_end : std::max(file_node->m_size, patch_end);
size_t insert_where = 0;
if (patch_start >= file_node->m_size)
{
// If the patch is at or past the end of the existing file no existing content needs to be
// touched, just extend the file.
if (patch_start > file_node->m_size)
{
// Insert an padding area between the old file and the patch data.
content.emplace_back(BuilderContentSource{file_node->m_size, patch_start - file_node->m_size,
ContentFixedByte{0}});
}
insert_where = content.size();
}
else
{
// Patch is at the start or somewhere in the middle of the existing file. At least one source
// needs to be modified or removed, and a new source with the patch data inserted instead.
// To make this easier, we first split up existing sources at the patch start and patch end
// offsets, then discard all overlapping sources and insert the patch sources there.
for (size_t i = 0; i < content.size(); ++i)
{
const u64 source_start = content[i].m_offset;
const u64 source_end = source_start + content[i].m_size;
if (patch_start > source_start && patch_start < source_end)
{
content.insert(content.begin() + i + 1, content[i]);
SplitAt(&content[i], &content[i + 1], patch_start);
continue;
}
if (patch_end > source_start && patch_end < source_end)
{
content.insert(content.begin() + i + 1, content[i]);
SplitAt(&content[i], &content[i + 1], patch_end);
}
}
// Now discard the overlapping areas and remember where they were so we can insert there.
for (size_t i = 0; i < content.size(); ++i)
{
if (patch_start == content[i].m_offset)
{
insert_where = i;
while (i < content.size() && patch_end >= content[i].m_offset + content[i].m_size)
++i;
content.erase(content.begin() + insert_where, content.begin() + i);
break;
}
}
}
// Insert the actual patch data.
if (patch_size > 0 && external_filesize > 0)
{
BuilderContentSource source = patch.m_file_data_loader->MakeContentSource(
external_filename, external_file_offset, std::min(patch_size, external_filesize),
patch_start);
content.emplace(content.begin() + insert_where, std::move(source));
++insert_where;
}
// Pad with zeroes if the patch file is smaller than the patch size.
if (external_filesize < patch_size)
{
BuilderContentSource padding{patch_start + external_filesize, patch_size - external_filesize,
ContentFixedByte{0}};
content.emplace(content.begin() + insert_where, std::move(padding));
}
// Update the filesize of the file.
file_node->m_size = target_filesize;
// Drop any source past the new end of the file -- this can happen on file truncation.
while (!content.empty() && content.back().m_offset >= target_filesize)
content.pop_back();
}
static void ApplyPatchToFile(const Patch& patch, const File& file_patch,
DiscIO::FSTBuilderNode* file_node)
{
// The last two bits of the offset seem to be ignored by actual Riivolution.
ApplyPatchToFile(patch, file_node, file_patch.m_external, file_patch.m_offset & ~u64(3),
file_patch.m_fileoffset, file_patch.m_length, file_patch.m_resize);
}
static bool CaseInsensitiveEquals(std::string_view a, std::string_view b)
{
if (a.size() != b.size())
return false;
return std::equal(a.begin(), a.end(), b.begin(),
[](char ca, char cb) { return Common::ToLower(ca) == Common::ToLower(cb); });
}
static FSTBuilderNode* FindFileNodeInFST(std::string_view path, std::vector<FSTBuilderNode>* fst,
bool create_if_not_exists)
{
const size_t path_separator = path.find('/');
const bool is_file = path_separator == std::string_view::npos;
const std::string_view name = is_file ? path : path.substr(0, path_separator);
const auto it = std::find_if(fst->begin(), fst->end(), [&](const FSTBuilderNode& node) {
return CaseInsensitiveEquals(node.m_filename, name);
});
if (it == fst->end())
{
if (!create_if_not_exists)
return nullptr;
if (is_file)
{
return &fst->emplace_back(
DiscIO::FSTBuilderNode{std::string(name), 0, std::vector<BuilderContentSource>()});
}
auto& new_folder = fst->emplace_back(
DiscIO::FSTBuilderNode{std::string(name), 0, std::vector<FSTBuilderNode>()});
return FindFileNodeInFST(path.substr(path_separator + 1),
&std::get<std::vector<FSTBuilderNode>>(new_folder.m_content), true);
}
const bool is_existing_node_file = it->IsFile();
if (is_file != is_existing_node_file)
return nullptr;
if (is_file)
return &*it;
return FindFileNodeInFST(path.substr(path_separator + 1),
&std::get<std::vector<FSTBuilderNode>>(it->m_content),
create_if_not_exists);
}
static DiscIO::FSTBuilderNode* FindFilenameNodeInFST(std::string_view filename,
std::vector<FSTBuilderNode>& fst)
{
for (FSTBuilderNode& node : fst)
{
if (node.IsFolder())
{
DiscIO::FSTBuilderNode* result = FindFilenameNodeInFST(filename, node.GetFolderContent());
if (result)
return result;
}
else if (CaseInsensitiveEquals(node.m_filename, filename))
{
return &node;
}
}
return nullptr;
}
static void ApplyFilePatchToFST(const Patch& patch, const File& file,
std::vector<DiscIO::FSTBuilderNode>* fst,
DiscIO::FSTBuilderNode* dol_node)
{
if (!file.m_disc.empty() && file.m_disc[0] == '/')
{
// If the disc path starts with a / then we should patch that specific disc path.
DiscIO::FSTBuilderNode* node =
FindFileNodeInFST(std::string_view(file.m_disc).substr(1), fst, file.m_create);
if (node)
ApplyPatchToFile(patch, file, node);
}
else if (dol_node && CaseInsensitiveEquals(file.m_disc, "main.dol"))
{
// Special case: If the filename is "main.dol", we want to patch the main executable.
ApplyPatchToFile(patch, file, dol_node);
}
else
{
// Otherwise we want to patch the first file in the FST that matches that filename.
DiscIO::FSTBuilderNode* node = FindFilenameNodeInFST(file.m_disc, *fst);
if (node)
ApplyPatchToFile(patch, file, node);
}
}
static void ApplyFolderPatchToFST(const Patch& patch, const Folder& folder,
std::vector<DiscIO::FSTBuilderNode>* fst,
DiscIO::FSTBuilderNode* dol_node, std::string_view disc_path,
std::string_view external_path)
{
const auto external_files = patch.m_file_data_loader->GetFolderContents(external_path);
for (const auto& child : external_files)
{
const auto combine_paths = [](std::string_view a, std::string_view b) {
if (a.empty())
return std::string(b);
if (b.empty())
return std::string(a);
if (StringEndsWith(a, "/"))
a.remove_suffix(1);
if (StringBeginsWith(b, "/"))
b.remove_prefix(1);
return fmt::format("{}/{}", a, b);
};
std::string child_disc_path = combine_paths(disc_path, child.m_filename);
std::string child_external_path = combine_paths(external_path, child.m_filename);
if (child.m_is_directory)
{
if (folder.m_recursive)
ApplyFolderPatchToFST(patch, folder, fst, dol_node, child_disc_path, child_external_path);
}
else
{
File file;
file.m_disc = std::move(child_disc_path);
file.m_external = std::move(child_external_path);
file.m_resize = folder.m_resize;
file.m_create = folder.m_create;
file.m_length = folder.m_length;
ApplyFilePatchToFST(patch, file, fst, dol_node);
}
}
}
static void ApplyFolderPatchToFST(const Patch& patch, const Folder& folder,
std::vector<DiscIO::FSTBuilderNode>* fst,
DiscIO::FSTBuilderNode* dol_node)
{
ApplyFolderPatchToFST(patch, folder, fst, dol_node, folder.m_disc, folder.m_external);
}
void ApplyPatchesToFiles(const std::vector<Patch>& patches, PatchIndex index,
std::vector<DiscIO::FSTBuilderNode>* fst, DiscIO::FSTBuilderNode* dol_node)
{
for (const auto& patch : patches)
{
const auto& file_patches =
index == PatchIndex::DolphinSysFiles ? patch.m_sys_file_patches : patch.m_file_patches;
const auto& folder_patches =
index == PatchIndex::DolphinSysFiles ? patch.m_sys_folder_patches : patch.m_folder_patches;
for (const auto& file : file_patches)
ApplyFilePatchToFST(patch, file, fst, dol_node);
for (const auto& folder : folder_patches)
ApplyFolderPatchToFST(patch, folder, fst, dol_node);
}
}
static bool MemoryMatchesAt(u32 offset, const std::vector<u8>& value)
{
for (u32 i = 0; i < value.size(); ++i)
{
auto result = PowerPC::HostTryReadU8(offset + i);
if (!result || result->value != value[i])
return false;
}
return true;
}
static void ApplyMemoryPatch(u32 offset, const std::vector<u8>& value,
const std::vector<u8>& original)
{
if (value.empty())
return;
if (!original.empty() && !MemoryMatchesAt(offset, original))
return;
const u32 size = static_cast<u32>(value.size());
for (u32 i = 0; i < size; ++i)
PowerPC::HostTryWriteU8(value[i], offset + i);
const u32 overlapping_hook_count = HLE::UnpatchRange(offset, offset + size);
if (overlapping_hook_count != 0)
{
WARN_LOG_FMT(OSHLE, "Riivolution memory patch overlaps {} HLE hook(s) at {:08x} (size: {})",
overlapping_hook_count, offset, value.size());
}
}
static std::vector<u8> GetMemoryPatchValue(const Patch& patch, const Memory& memory_patch)
{
if (!memory_patch.m_valuefile.empty())
return patch.m_file_data_loader->GetFileContents(memory_patch.m_valuefile);
return memory_patch.m_value;
}
static void ApplyMemoryPatch(const Patch& patch, const Memory& memory_patch)
{
if (memory_patch.m_offset == 0)
return;
ApplyMemoryPatch(memory_patch.m_offset | 0x80000000, GetMemoryPatchValue(patch, memory_patch),
memory_patch.m_original);
}
static void ApplySearchMemoryPatch(const Patch& patch, const Memory& memory_patch, u32 ram_start,
u32 length)
{
if (memory_patch.m_original.empty() || memory_patch.m_align == 0)
return;
const u32 stride = memory_patch.m_align;
for (u32 i = 0; i < length - (stride - 1); i += stride)
{
const u32 address = ram_start + i;
if (MemoryMatchesAt(address, memory_patch.m_original))
{
ApplyMemoryPatch(address, GetMemoryPatchValue(patch, memory_patch), {});
break;
}
}
}
static void ApplyOcarinaMemoryPatch(const Patch& patch, const Memory& memory_patch, u32 ram_start,
u32 length)
{
if (memory_patch.m_offset == 0)
return;
const std::vector<u8> value = GetMemoryPatchValue(patch, memory_patch);
if (value.empty())
return;
for (u32 i = 0; i < length; i += 4)
{
// first find the pattern
const u32 address = ram_start + i;
if (MemoryMatchesAt(address, value))
{
for (; i < length; i += 4)
{
// from the pattern find the next blr instruction
const u32 blr_address = ram_start + i;
auto blr = PowerPC::HostTryReadU32(blr_address);
if (blr && blr->value == 0x4e800020)
{
// and replace it with a jump to the given offset
const u32 target = memory_patch.m_offset | 0x80000000;
const u32 jmp = ((target - blr_address) & 0x03fffffc) | 0x48000000;
PowerPC::HostTryWriteU32(jmp, blr_address);
const u32 overlapping_hook_count = HLE::UnpatchRange(blr_address, blr_address + 4);
if (overlapping_hook_count != 0)
{
WARN_LOG_FMT(OSHLE, "Riivolution ocarina patch overlaps HLE hook at {}", blr_address);
}
return;
}
}
return;
}
}
}
void ApplyGeneralMemoryPatches(const std::vector<Patch>& patches)
{
auto& system = Core::System::GetInstance();
auto& system_memory = system.GetMemory();
for (const auto& patch : patches)
{
for (const auto& memory : patch.m_memory_patches)
{
if (memory.m_ocarina)
continue;
if (memory.m_search)
ApplySearchMemoryPatch(patch, memory, 0x80000000, system_memory.GetRamSize());
else
ApplyMemoryPatch(patch, memory);
}
}
}
void ApplyApploaderMemoryPatches(const std::vector<Patch>& patches, u32 ram_address, u32 ram_length)
{
for (const auto& patch : patches)
{
for (const auto& memory : patch.m_memory_patches)
{
if (!memory.m_ocarina && !memory.m_search)
continue;
if (memory.m_ocarina)
ApplyOcarinaMemoryPatch(patch, memory, ram_address, ram_length);
else
ApplySearchMemoryPatch(patch, memory, ram_address, ram_length);
}
}
}
std::optional<SavegameRedirect>
ExtractSavegameRedirect(const std::vector<Patch>& riivolution_patches)
{
for (const auto& patch : riivolution_patches)
{
if (!patch.m_savegame_patches.empty())
{
const auto& save_patch = patch.m_savegame_patches[0];
auto resolved = patch.m_file_data_loader->ResolveSavegameRedirectPath(save_patch.m_external);
if (resolved)
return SavegameRedirect{std::move(*resolved), save_patch.m_clone};
return std::nullopt;
}
}
return std::nullopt;
}
} // namespace DiscIO::Riivolution