dolphin/Source/Core/VideoCommon/VertexManagerBase.cpp

652 lines
22 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/VertexManagerBase.h"
#include <array>
#include <cmath>
#include <memory>
#include "Common/BitSet.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Core/ConfigManager.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/GeometryShaderManager.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/SamplerCommon.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
std::unique_ptr<VertexManagerBase> g_vertex_manager;
// GX primitive -> RenderState primitive, no primitive restart
constexpr std::array<PrimitiveType, 8> primitive_from_gx{{
PrimitiveType::Triangles, // GX_DRAW_QUADS
PrimitiveType::Triangles, // GX_DRAW_QUADS_2
PrimitiveType::Triangles, // GX_DRAW_TRIANGLES
PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_STRIP
PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_FAN
PrimitiveType::Lines, // GX_DRAW_LINES
PrimitiveType::Lines, // GX_DRAW_LINE_STRIP
PrimitiveType::Points, // GX_DRAW_POINTS
}};
// GX primitive -> RenderState primitive, using primitive restart
constexpr std::array<PrimitiveType, 8> primitive_from_gx_pr{{
PrimitiveType::TriangleStrip, // GX_DRAW_QUADS
PrimitiveType::TriangleStrip, // GX_DRAW_QUADS_2
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLES
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_STRIP
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_FAN
PrimitiveType::Lines, // GX_DRAW_LINES
PrimitiveType::Lines, // GX_DRAW_LINE_STRIP
PrimitiveType::Points, // GX_DRAW_POINTS
}};
// Due to the BT.601 standard which the GameCube is based on being a compromise
// between PAL and NTSC, neither standard gets square pixels. They are each off
// by ~9% in opposite directions.
// Just in case any game decides to take this into account, we do both these
// tests with a large amount of slop.
static bool AspectIs4_3(float width, float height)
{
float aspect = fabsf(width / height);
return fabsf(aspect - 4.0f / 3.0f) < 4.0f / 3.0f * 0.11; // within 11% of 4:3
}
static bool AspectIs16_9(float width, float height)
{
float aspect = fabsf(width / height);
return fabsf(aspect - 16.0f / 9.0f) < 16.0f / 9.0f * 0.11; // within 11% of 16:9
}
VertexManagerBase::VertexManagerBase()
{
}
VertexManagerBase::~VertexManagerBase()
{
}
u32 VertexManagerBase::GetRemainingSize() const
{
return static_cast<u32>(m_end_buffer_pointer - m_cur_buffer_pointer);
}
DataReader VertexManagerBase::PrepareForAdditionalData(int primitive, u32 count, u32 stride,
bool cullall)
{
// The SSE vertex loader can write up to 4 bytes past the end
u32 const needed_vertex_bytes = count * stride + 4;
// We can't merge different kinds of primitives, so we have to flush here
PrimitiveType new_primitive_type = g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ?
primitive_from_gx_pr[primitive] :
primitive_from_gx[primitive];
if (m_current_primitive_type != new_primitive_type)
{
Flush();
// Have to update the rasterization state for point/line cull modes.
m_current_primitive_type = new_primitive_type;
SetRasterizationStateChanged();
}
// Check for size in buffer, if the buffer gets full, call Flush()
if (!m_is_flushed &&
(count > IndexGenerator::GetRemainingIndices() || count > GetRemainingIndices(primitive) ||
needed_vertex_bytes > GetRemainingSize()))
{
Flush();
if (count > IndexGenerator::GetRemainingIndices())
ERROR_LOG(VIDEO, "Too little remaining index values. Use 32-bit or reset them on flush.");
if (count > GetRemainingIndices(primitive))
ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all indices! "
"Increase MAXIBUFFERSIZE or we need primitive breaking after all.");
if (needed_vertex_bytes > GetRemainingSize())
ERROR_LOG(VIDEO, "VertexManager: Buffer not large enough for all vertices! "
"Increase MAXVBUFFERSIZE or we need primitive breaking after all.");
}
m_cull_all = cullall;
// need to alloc new buffer
if (m_is_flushed)
{
g_vertex_manager->ResetBuffer(stride, cullall);
m_is_flushed = false;
}
return DataReader(m_cur_buffer_pointer, m_end_buffer_pointer);
}
void VertexManagerBase::FlushData(u32 count, u32 stride)
{
m_cur_buffer_pointer += count * stride;
}
u32 VertexManagerBase::GetRemainingIndices(int primitive)
{
u32 index_len = MAXIBUFFERSIZE - IndexGenerator::GetIndexLen();
if (g_Config.backend_info.bSupportsPrimitiveRestart)
{
switch (primitive)
{
case OpcodeDecoder::GX_DRAW_QUADS:
case OpcodeDecoder::GX_DRAW_QUADS_2:
return index_len / 5 * 4;
case OpcodeDecoder::GX_DRAW_TRIANGLES:
return index_len / 4 * 3;
case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP:
return index_len / 1 - 1;
case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN:
return index_len / 6 * 4 + 1;
case OpcodeDecoder::GX_DRAW_LINES:
return index_len;
case OpcodeDecoder::GX_DRAW_LINE_STRIP:
return index_len / 2 + 1;
case OpcodeDecoder::GX_DRAW_POINTS:
return index_len;
default:
return 0;
}
}
else
{
switch (primitive)
{
case OpcodeDecoder::GX_DRAW_QUADS:
case OpcodeDecoder::GX_DRAW_QUADS_2:
return index_len / 6 * 4;
case OpcodeDecoder::GX_DRAW_TRIANGLES:
return index_len;
case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP:
return index_len / 3 + 2;
case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN:
return index_len / 3 + 2;
case OpcodeDecoder::GX_DRAW_LINES:
return index_len;
case OpcodeDecoder::GX_DRAW_LINE_STRIP:
return index_len / 2 + 1;
case OpcodeDecoder::GX_DRAW_POINTS:
return index_len;
default:
return 0;
}
}
}
std::pair<size_t, size_t> VertexManagerBase::ResetFlushAspectRatioCount()
{
std::pair<size_t, size_t> val = std::make_pair(m_flush_count_4_3, m_flush_count_anamorphic);
m_flush_count_4_3 = 0;
m_flush_count_anamorphic = 0;
return val;
}
void VertexManagerBase::UploadUtilityVertices(const void* vertices, u32 vertex_stride,
u32 num_vertices, const u16* indices, u32 num_indices,
u32* out_base_vertex, u32* out_base_index)
{
// The GX vertex list should be flushed before any utility draws occur.
ASSERT(m_is_flushed);
// Copy into the buffers usually used for GX drawing.
ResetBuffer(std::max(vertex_stride, 1u), false);
if (vertices)
{
const u32 copy_size = vertex_stride * num_vertices;
ASSERT((m_cur_buffer_pointer + copy_size) <= m_end_buffer_pointer);
std::memcpy(m_cur_buffer_pointer, vertices, copy_size);
m_cur_buffer_pointer += copy_size;
}
if (indices)
IndexGenerator::AddExternalIndices(indices, num_indices, num_vertices);
CommitBuffer(num_vertices, vertex_stride, num_indices, out_base_vertex, out_base_index);
}
static void SetSamplerState(u32 index, float custom_tex_scale, bool custom_tex,
bool has_arbitrary_mips)
{
const FourTexUnits& tex = bpmem.tex[index / 4];
const TexMode0& tm0 = tex.texMode0[index % 4];
SamplerState state = {};
state.Generate(bpmem, index);
// Force texture filtering config option.
if (g_ActiveConfig.bForceFiltering)
{
state.min_filter = SamplerState::Filter::Linear;
state.mag_filter = SamplerState::Filter::Linear;
state.mipmap_filter = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ?
SamplerState::Filter::Linear :
SamplerState::Filter::Point;
}
// Custom textures may have a greater number of mips
if (custom_tex)
state.max_lod = 255;
// Anisotropic filtering option.
if (g_ActiveConfig.iMaxAnisotropy != 0 && !SamplerCommon::IsBpTexMode0PointFiltering(tm0))
{
// https://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt
// For predictable results on all hardware/drivers, only use one of:
// GL_LINEAR + GL_LINEAR (No Mipmaps [Bilinear])
// GL_LINEAR + GL_LINEAR_MIPMAP_LINEAR (w/ Mipmaps [Trilinear])
// Letting the game set other combinations will have varying arbitrary results;
// possibly being interpreted as equal to bilinear/trilinear, implicitly
// disabling anisotropy, or changing the anisotropic algorithm employed.
state.min_filter = SamplerState::Filter::Linear;
state.mag_filter = SamplerState::Filter::Linear;
if (SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0))
state.mipmap_filter = SamplerState::Filter::Linear;
state.anisotropic_filtering = 1;
}
else
{
state.anisotropic_filtering = 0;
}
if (has_arbitrary_mips && SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0))
{
// Apply a secondary bias calculated from the IR scale to pull inwards mipmaps
// that have arbitrary contents, eg. are used for fog effects where the
// distance they kick in at is important to preserve at any resolution.
// Correct this with the upscaling factor of custom textures.
s64 lod_offset = std::log2(g_renderer->GetEFBScale() / custom_tex_scale) * 256.f;
state.lod_bias = MathUtil::Clamp<s64>(state.lod_bias + lod_offset, -32768, 32767);
// Anisotropic also pushes mips farther away so it cannot be used either
state.anisotropic_filtering = 0;
}
g_renderer->SetSamplerState(index, state);
}
void VertexManagerBase::Flush()
{
if (m_is_flushed)
return;
// loading a state will invalidate BP, so check for it
g_video_backend->CheckInvalidState();
#if defined(_DEBUG) || defined(DEBUGFAST)
PRIM_LOG("frame%d:\n texgen=%u, numchan=%u, dualtex=%u, ztex=%u, cole=%u, alpe=%u, ze=%u",
g_ActiveConfig.iSaveTargetId, xfmem.numTexGen.numTexGens, xfmem.numChan.numColorChans,
xfmem.dualTexTrans.enabled, bpmem.ztex2.op.Value(), bpmem.blendmode.colorupdate.Value(),
bpmem.blendmode.alphaupdate.Value(), bpmem.zmode.updateenable.Value());
for (u32 i = 0; i < xfmem.numChan.numColorChans; ++i)
{
LitChannel* ch = &xfmem.color[i];
PRIM_LOG("colchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i,
ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(),
ch->diffusefunc.Value(), ch->attnfunc.Value());
ch = &xfmem.alpha[i];
PRIM_LOG("alpchan%u: matsrc=%u, light=0x%x, ambsrc=%u, diffunc=%u, attfunc=%u", i,
ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(),
ch->diffusefunc.Value(), ch->attnfunc.Value());
}
for (u32 i = 0; i < xfmem.numTexGen.numTexGens; ++i)
{
TexMtxInfo tinfo = xfmem.texMtxInfo[i];
if (tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP)
tinfo.hex &= 0x7ff;
if (tinfo.texgentype != XF_TEXGEN_REGULAR)
tinfo.projection = 0;
PRIM_LOG("txgen%u: proj=%u, input=%u, gentype=%u, srcrow=%u, embsrc=%u, emblght=%u, "
"postmtx=%u, postnorm=%u",
i, tinfo.projection.Value(), tinfo.inputform.Value(), tinfo.texgentype.Value(),
tinfo.sourcerow.Value(), tinfo.embosssourceshift.Value(),
tinfo.embosslightshift.Value(), xfmem.postMtxInfo[i].index.Value(),
xfmem.postMtxInfo[i].normalize.Value());
}
PRIM_LOG("pixel: tev=%u, ind=%u, texgen=%u, dstalpha=%u, alphatest=0x%x",
bpmem.genMode.numtevstages.Value() + 1, bpmem.genMode.numindstages.Value(),
bpmem.genMode.numtexgens.Value(), bpmem.dstalpha.enable.Value(),
(bpmem.alpha_test.hex >> 16) & 0xff);
#endif
// If the primitave is marked CullAll. All we need to do is update the vertex constants and
// calculate the zfreeze refrence slope
if (!m_cull_all)
{
BitSet32 usedtextures;
for (u32 i = 0; i < bpmem.genMode.numtevstages + 1u; ++i)
if (bpmem.tevorders[i / 2].getEnable(i & 1))
usedtextures[bpmem.tevorders[i / 2].getTexMap(i & 1)] = true;
if (bpmem.genMode.numindstages > 0)
for (unsigned int i = 0; i < bpmem.genMode.numtevstages + 1u; ++i)
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages)
usedtextures[bpmem.tevindref.getTexMap(bpmem.tevind[i].bt)] = true;
for (unsigned int i : usedtextures)
{
const auto* tentry = g_texture_cache->Load(i);
if (tentry)
{
float custom_tex_scale = tentry->GetWidth() / float(tentry->native_width);
SetSamplerState(i, custom_tex_scale, tentry->is_custom_tex, tentry->has_arbitrary_mips);
PixelShaderManager::SetTexDims(i, tentry->native_width, tentry->native_height);
}
else
{
ERROR_LOG(VIDEO, "error loading texture");
}
}
g_texture_cache->BindTextures();
}
// set global vertex constants
VertexShaderManager::SetConstants();
// Track some stats used elsewhere by the anamorphic widescreen heuristic.
if (!SConfig::GetInstance().bWii)
{
float* rawProjection = xfmem.projection.rawProjection;
bool viewport_is_4_3 = AspectIs4_3(xfmem.viewport.wd, xfmem.viewport.ht);
if (AspectIs16_9(rawProjection[2], rawProjection[0]) && viewport_is_4_3)
{
// Projection is 16:9 and viewport is 4:3, we are rendering an anamorphic
// widescreen picture.
m_flush_count_anamorphic++;
}
else if (AspectIs4_3(rawProjection[2], rawProjection[0]) && viewport_is_4_3)
{
// Projection and viewports are both 4:3, we are rendering a normal image.
m_flush_count_4_3++;
}
}
// Calculate ZSlope for zfreeze
if (!bpmem.genMode.zfreeze)
{
// Must be done after VertexShaderManager::SetConstants()
CalculateZSlope(VertexLoaderManager::GetCurrentVertexFormat());
}
else if (m_zslope.dirty && !m_cull_all) // or apply any dirty ZSlopes
{
PixelShaderManager::SetZSlope(m_zslope.dfdx, m_zslope.dfdy, m_zslope.f0);
m_zslope.dirty = false;
}
if (!m_cull_all)
{
// Update and upload constants. Note for the Vulkan backend, this must occur before the
// vertex/index buffer is committed, otherwise the data will be associated with the
// previous command buffer, instead of the one with the draw if there is an overflow.
GeometryShaderManager::SetConstants();
PixelShaderManager::SetConstants();
UploadConstants();
// Now the vertices can be flushed to the GPU.
const u32 num_indices = IndexGenerator::GetIndexLen();
u32 base_vertex, base_index;
CommitBuffer(IndexGenerator::GetNumVerts(),
VertexLoaderManager::GetCurrentVertexFormat()->GetVertexStride(), num_indices,
&base_vertex, &base_index);
// Update the pipeline, or compile one if needed.
UpdatePipelineConfig();
UpdatePipelineObject();
if (m_current_pipeline_object)
{
g_renderer->SetPipeline(m_current_pipeline_object);
if (PerfQueryBase::ShouldEmulate())
g_perf_query->EnableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP);
DrawCurrentBatch(base_index, num_indices, base_vertex);
INCSTAT(stats.thisFrame.numDrawCalls);
if (PerfQueryBase::ShouldEmulate())
g_perf_query->DisableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP);
}
}
GFX_DEBUGGER_PAUSE_AT(NEXT_FLUSH, true);
if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens)
ERROR_LOG(VIDEO,
"xf.numtexgens (%d) does not match bp.numtexgens (%d). Error in command stream.",
xfmem.numTexGen.numTexGens, bpmem.genMode.numtexgens.Value());
m_is_flushed = true;
m_cull_all = false;
}
void VertexManagerBase::DoState(PointerWrap& p)
{
p.Do(m_zslope);
}
void VertexManagerBase::CalculateZSlope(NativeVertexFormat* format)
{
float out[12];
float viewOffset[2] = {xfmem.viewport.xOrig - bpmem.scissorOffset.x * 2,
xfmem.viewport.yOrig - bpmem.scissorOffset.y * 2};
if (m_current_primitive_type != PrimitiveType::Triangles &&
m_current_primitive_type != PrimitiveType::TriangleStrip)
{
return;
}
// Global matrix ID.
u32 mtxIdx = g_main_cp_state.matrix_index_a.PosNormalMtxIdx;
const PortableVertexDeclaration vert_decl = format->GetVertexDeclaration();
// Make sure the buffer contains at least 3 vertices.
if ((m_cur_buffer_pointer - m_base_buffer_pointer) < (vert_decl.stride * 3))
return;
// Lookup vertices of the last rendered triangle and software-transform them
// This allows us to determine the depth slope, which will be used if z-freeze
// is enabled in the following flush.
for (unsigned int i = 0; i < 3; ++i)
{
// If this vertex format has per-vertex position matrix IDs, look it up.
if (vert_decl.posmtx.enable)
mtxIdx = VertexLoaderManager::position_matrix_index[3 - i];
if (vert_decl.position.components == 2)
VertexLoaderManager::position_cache[2 - i][2] = 0;
VertexShaderManager::TransformToClipSpace(&VertexLoaderManager::position_cache[2 - i][0],
&out[i * 4], mtxIdx);
// Transform to Screenspace
float inv_w = 1.0f / out[3 + i * 4];
out[0 + i * 4] = out[0 + i * 4] * inv_w * xfmem.viewport.wd + viewOffset[0];
out[1 + i * 4] = out[1 + i * 4] * inv_w * xfmem.viewport.ht + viewOffset[1];
out[2 + i * 4] = out[2 + i * 4] * inv_w * xfmem.viewport.zRange + xfmem.viewport.farZ;
}
float dx31 = out[8] - out[0];
float dx12 = out[0] - out[4];
float dy12 = out[1] - out[5];
float dy31 = out[9] - out[1];
float DF31 = out[10] - out[2];
float DF21 = out[6] - out[2];
float a = DF31 * -dy12 - DF21 * dy31;
float b = dx31 * DF21 + dx12 * DF31;
float c = -dx12 * dy31 - dx31 * -dy12;
// Sometimes we process de-generate triangles. Stop any divide by zeros
if (c == 0)
return;
m_zslope.dfdx = -a / c;
m_zslope.dfdy = -b / c;
m_zslope.f0 = out[2] - (out[0] * m_zslope.dfdx + out[1] * m_zslope.dfdy);
m_zslope.dirty = true;
}
void VertexManagerBase::UpdatePipelineConfig()
{
NativeVertexFormat* vertex_format = VertexLoaderManager::GetCurrentVertexFormat();
if (vertex_format != m_current_pipeline_config.vertex_format)
{
m_current_pipeline_config.vertex_format = vertex_format;
m_current_uber_pipeline_config.vertex_format =
VertexLoaderManager::GetUberVertexFormat(vertex_format->GetVertexDeclaration());
m_pipeline_config_changed = true;
}
VertexShaderUid vs_uid = GetVertexShaderUid();
if (vs_uid != m_current_pipeline_config.vs_uid)
{
m_current_pipeline_config.vs_uid = vs_uid;
m_current_uber_pipeline_config.vs_uid = UberShader::GetVertexShaderUid();
m_pipeline_config_changed = true;
}
PixelShaderUid ps_uid = GetPixelShaderUid();
if (ps_uid != m_current_pipeline_config.ps_uid)
{
m_current_pipeline_config.ps_uid = ps_uid;
m_current_uber_pipeline_config.ps_uid = UberShader::GetPixelShaderUid();
m_pipeline_config_changed = true;
}
GeometryShaderUid gs_uid = GetGeometryShaderUid(GetCurrentPrimitiveType());
if (gs_uid != m_current_pipeline_config.gs_uid)
{
m_current_pipeline_config.gs_uid = gs_uid;
m_current_uber_pipeline_config.gs_uid = gs_uid;
m_pipeline_config_changed = true;
}
if (m_rasterization_state_changed)
{
m_rasterization_state_changed = false;
RasterizationState new_rs = {};
new_rs.Generate(bpmem, m_current_primitive_type);
if (new_rs != m_current_pipeline_config.rasterization_state)
{
m_current_pipeline_config.rasterization_state = new_rs;
m_current_uber_pipeline_config.rasterization_state = new_rs;
m_pipeline_config_changed = true;
}
}
if (m_depth_state_changed)
{
m_depth_state_changed = false;
DepthState new_ds = {};
new_ds.Generate(bpmem);
if (new_ds != m_current_pipeline_config.depth_state)
{
m_current_pipeline_config.depth_state = new_ds;
m_current_uber_pipeline_config.depth_state = new_ds;
m_pipeline_config_changed = true;
}
}
if (m_blending_state_changed)
{
m_blending_state_changed = false;
BlendingState new_bs = {};
new_bs.Generate(bpmem);
if (new_bs != m_current_pipeline_config.blending_state)
{
m_current_pipeline_config.blending_state = new_bs;
m_current_uber_pipeline_config.blending_state = new_bs;
m_pipeline_config_changed = true;
}
}
}
void VertexManagerBase::UpdatePipelineObject()
{
if (!m_pipeline_config_changed)
return;
m_current_pipeline_object = nullptr;
m_pipeline_config_changed = false;
switch (g_ActiveConfig.iShaderCompilationMode)
{
case ShaderCompilationMode::Synchronous:
{
// Ubershaders disabled? Block and compile the specialized shader.
m_current_pipeline_object = g_shader_cache->GetPipelineForUid(m_current_pipeline_config);
}
break;
case ShaderCompilationMode::SynchronousUberShaders:
{
// Exclusive ubershader mode, always use ubershaders.
m_current_pipeline_object =
g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config);
}
break;
case ShaderCompilationMode::AsynchronousUberShaders:
case ShaderCompilationMode::AsynchronousSkipRendering:
{
// Can we background compile shaders? If so, get the pipeline asynchronously.
auto res = g_shader_cache->GetPipelineForUidAsync(m_current_pipeline_config);
if (res)
{
// Specialized shaders are ready, prefer these.
m_current_pipeline_object = *res;
return;
}
if (g_ActiveConfig.iShaderCompilationMode == ShaderCompilationMode::AsynchronousUberShaders)
{
// Specialized shaders not ready, use the ubershaders.
m_current_pipeline_object =
g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config);
}
else
{
// Ensure we try again next draw. Otherwise, if no registers change between frames, the
// object will never be drawn, even when the shader is ready.
m_pipeline_config_changed = true;
}
}
break;
}
}