dolphin/Source/Core/Common/Crypto/AES.cpp

429 lines
12 KiB
C++

// Copyright 2017 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <memory>
#include <mbedtls/aes.h>
#include "Common/Assert.h"
#include "Common/BitUtils.h"
#include "Common/CPUDetect.h"
#include "Common/Crypto/AES.h"
#ifdef _MSC_VER
#include <intrin.h>
#else
#if defined(_M_X86_64)
#include <x86intrin.h>
#elif defined(_M_ARM_64)
#include <arm_acle.h>
#include <arm_neon.h>
#endif
#endif
#ifdef _MSC_VER
#define ATTRIBUTE_TARGET(x)
#else
#define ATTRIBUTE_TARGET(x) [[gnu::target(x)]]
#endif
namespace Common::AES
{
// For x64 and arm64, it's very unlikely a user's cpu does not support the accelerated version,
// fallback is just in case.
template <Mode AesMode>
class ContextGeneric final : public Context
{
public:
ContextGeneric(const u8* key)
{
mbedtls_aes_init(&ctx);
if constexpr (AesMode == Mode::Encrypt)
ASSERT(!mbedtls_aes_setkey_enc(&ctx, key, 128));
else
ASSERT(!mbedtls_aes_setkey_dec(&ctx, key, 128));
}
virtual bool Crypt(const u8* iv, u8* iv_out, const u8* buf_in, u8* buf_out,
size_t len) const override
{
std::array<u8, BLOCK_SIZE> iv_tmp{};
if (iv)
std::memcpy(&iv_tmp[0], iv, BLOCK_SIZE);
constexpr int mode = (AesMode == Mode::Encrypt) ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT;
if (mbedtls_aes_crypt_cbc(const_cast<mbedtls_aes_context*>(&ctx), mode, len, &iv_tmp[0], buf_in,
buf_out))
return false;
if (iv_out)
std::memcpy(iv_out, &iv_tmp[0], BLOCK_SIZE);
return true;
}
private:
mbedtls_aes_context ctx{};
};
#if defined(_M_X86_64)
// Note that (for instructions with same data width) the actual instructions emitted vary depending
// on compiler and flags. The naming is somewhat confusing, because VAES cpuid flag was added after
// VAES(VEX.128):
// clang-format off
// instructions | cpuid flag | #define
// AES(128) | AES | -
// VAES(VEX.128) | AES & AVX | __AVX__
// VAES(VEX.256) | VAES | -
// VAES(EVEX.128) | VAES & AVX512VL | __AVX512VL__
// VAES(EVEX.256) | VAES & AVX512VL | __AVX512VL__
// VAES(EVEX.512) | VAES & AVX512F | __AVX512F__
// clang-format on
template <Mode AesMode>
class ContextAESNI final : public Context
{
static inline __m128i Aes128KeygenAssistFinish(__m128i key, __m128i kga)
{
__m128i tmp = _mm_shuffle_epi32(kga, _MM_SHUFFLE(3, 3, 3, 3));
tmp = _mm_xor_si128(tmp, key);
key = _mm_slli_si128(key, 4);
tmp = _mm_xor_si128(tmp, key);
key = _mm_slli_si128(key, 4);
tmp = _mm_xor_si128(tmp, key);
key = _mm_slli_si128(key, 4);
tmp = _mm_xor_si128(tmp, key);
return tmp;
}
template <size_t RoundIdx>
ATTRIBUTE_TARGET("aes")
inline constexpr void StoreRoundKey(__m128i rk)
{
if constexpr (AesMode == Mode::Encrypt)
round_keys[RoundIdx] = rk;
else
{
constexpr size_t idx = NUM_ROUND_KEYS - RoundIdx - 1;
if constexpr (idx == 0 || idx == NUM_ROUND_KEYS - 1)
round_keys[idx] = rk;
else
round_keys[idx] = _mm_aesimc_si128(rk);
}
}
template <size_t RoundIdx, int Rcon>
ATTRIBUTE_TARGET("aes")
inline constexpr __m128i Aes128Keygen(__m128i rk)
{
rk = Aes128KeygenAssistFinish(rk, _mm_aeskeygenassist_si128(rk, Rcon));
StoreRoundKey<RoundIdx>(rk);
return rk;
}
public:
ContextAESNI(const u8* key)
{
__m128i rk = _mm_loadu_si128((const __m128i*)key);
StoreRoundKey<0>(rk);
rk = Aes128Keygen<1, 0x01>(rk);
rk = Aes128Keygen<2, 0x02>(rk);
rk = Aes128Keygen<3, 0x04>(rk);
rk = Aes128Keygen<4, 0x08>(rk);
rk = Aes128Keygen<5, 0x10>(rk);
rk = Aes128Keygen<6, 0x20>(rk);
rk = Aes128Keygen<7, 0x40>(rk);
rk = Aes128Keygen<8, 0x80>(rk);
rk = Aes128Keygen<9, 0x1b>(rk);
Aes128Keygen<10, 0x36>(rk);
}
ATTRIBUTE_TARGET("aes")
inline void CryptBlock(__m128i* iv, const u8* buf_in, u8* buf_out) const
{
__m128i block = _mm_loadu_si128((const __m128i*)buf_in);
if constexpr (AesMode == Mode::Encrypt)
{
block = _mm_xor_si128(_mm_xor_si128(block, *iv), round_keys[0]);
for (size_t i = 1; i < Nr; ++i)
block = _mm_aesenc_si128(block, round_keys[i]);
block = _mm_aesenclast_si128(block, round_keys[Nr]);
*iv = block;
}
else
{
__m128i iv_next = block;
block = _mm_xor_si128(block, round_keys[0]);
for (size_t i = 1; i < Nr; ++i)
block = _mm_aesdec_si128(block, round_keys[i]);
block = _mm_aesdeclast_si128(block, round_keys[Nr]);
block = _mm_xor_si128(block, *iv);
*iv = iv_next;
}
_mm_storeu_si128((__m128i*)buf_out, block);
}
// Takes advantage of instruction pipelining to parallelize.
template <size_t NumBlocks>
ATTRIBUTE_TARGET("aes")
inline void DecryptPipelined(__m128i* iv, const u8* buf_in, u8* buf_out) const
{
constexpr size_t Depth = NumBlocks;
__m128i block[Depth];
for (size_t d = 0; d < Depth; d++)
block[d] = _mm_loadu_si128(&((const __m128i*)buf_in)[d]);
__m128i iv_next[1 + Depth];
iv_next[0] = *iv;
for (size_t d = 0; d < Depth; d++)
iv_next[1 + d] = block[d];
for (size_t d = 0; d < Depth; d++)
block[d] = _mm_xor_si128(block[d], round_keys[0]);
// The main speedup is here
for (size_t i = 1; i < Nr; ++i)
for (size_t d = 0; d < Depth; d++)
block[d] = _mm_aesdec_si128(block[d], round_keys[i]);
for (size_t d = 0; d < Depth; d++)
block[d] = _mm_aesdeclast_si128(block[d], round_keys[Nr]);
for (size_t d = 0; d < Depth; d++)
block[d] = _mm_xor_si128(block[d], iv_next[d]);
*iv = iv_next[1 + Depth - 1];
for (size_t d = 0; d < Depth; d++)
_mm_storeu_si128(&((__m128i*)buf_out)[d], block[d]);
}
virtual bool Crypt(const u8* iv, u8* iv_out, const u8* buf_in, u8* buf_out,
size_t len) const override
{
if (len % BLOCK_SIZE)
return false;
__m128i iv_block = iv ? _mm_loadu_si128((const __m128i*)iv) : _mm_setzero_si128();
if constexpr (AesMode == Mode::Decrypt)
{
// On amd zen2...(benchmark, not real-world):
// With AES(128) instructions, BLOCK_DEPTH results in following speedup vs. non-pipelined: 4:
// 18%, 8: 22%, 9: 26%, 10-15: 31%. 16: 8% (register exhaustion). With VAES(VEX.128), 10 gives
// 36% speedup vs. its corresponding baseline. VAES(VEX.128) is ~4% faster than AES(128). The
// result is similar on zen3.
// Zen3 in general is 20% faster than zen2 in aes, and VAES(VEX.256) is 35% faster than
// zen3/VAES(VEX.128).
// It seems like VAES(VEX.256) should be faster?
// TODO Choose value at runtime based on some criteria?
constexpr size_t BLOCK_DEPTH = 10;
constexpr size_t CHUNK_LEN = BLOCK_DEPTH * BLOCK_SIZE;
while (len >= CHUNK_LEN)
{
DecryptPipelined<BLOCK_DEPTH>(&iv_block, buf_in, buf_out);
buf_in += CHUNK_LEN;
buf_out += CHUNK_LEN;
len -= CHUNK_LEN;
}
}
len /= BLOCK_SIZE;
while (len--)
{
CryptBlock(&iv_block, buf_in, buf_out);
buf_in += BLOCK_SIZE;
buf_out += BLOCK_SIZE;
}
if (iv_out)
_mm_storeu_si128((__m128i*)iv_out, iv_block);
return true;
}
private:
std::array<__m128i, NUM_ROUND_KEYS> round_keys;
};
#endif
#if defined(_M_ARM_64)
template <Mode AesMode>
class ContextNeon final : public Context
{
public:
template <size_t RoundIdx>
inline constexpr void StoreRoundKey(const u32* rk)
{
const uint8x16_t rk_block = vreinterpretq_u8_u32(vld1q_u32(rk));
if constexpr (AesMode == Mode::Encrypt)
round_keys[RoundIdx] = rk_block;
else
{
constexpr size_t idx = NUM_ROUND_KEYS - RoundIdx - 1;
if constexpr (idx == 0 || idx == NUM_ROUND_KEYS - 1)
round_keys[idx] = rk_block;
else
round_keys[idx] = vaesimcq_u8(rk_block);
}
}
ContextNeon(const u8* key)
{
constexpr u8 rcon[]{0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
std::array<u32, Nb * NUM_ROUND_KEYS> rk{};
// This uses a nice trick I've seen in wolfssl (not sure original author),
// which uses vaeseq_u8 to assist keygen.
// vaeseq_u8: op1 = SubBytes(ShiftRows(AddRoundKey(op1, op2)))
// given RotWord == ShiftRows for row 1 (rol(x,8))
// Probably not super fast (moves to/from vector regs constantly), but it is nice and simple.
std::memcpy(&rk[0], key, KEY_SIZE);
StoreRoundKey<0>(&rk[0]);
for (size_t i = 0; i < rk.size() - Nk; i += Nk)
{
const uint8x16_t enc = vaeseq_u8(vreinterpretq_u8_u32(vmovq_n_u32(rk[i + 3])), vmovq_n_u8(0));
const u32 temp = vgetq_lane_u32(vreinterpretq_u32_u8(enc), 0);
rk[i + 4] = rk[i + 0] ^ Common::RotateRight(temp, 8) ^ rcon[i / Nk];
rk[i + 5] = rk[i + 4] ^ rk[i + 1];
rk[i + 6] = rk[i + 5] ^ rk[i + 2];
rk[i + 7] = rk[i + 6] ^ rk[i + 3];
// clang-format off
// Not great
const size_t rki = 1 + i / Nk;
switch (rki)
{
case 1: StoreRoundKey< 1>(&rk[Nk * rki]); break;
case 2: StoreRoundKey< 2>(&rk[Nk * rki]); break;
case 3: StoreRoundKey< 3>(&rk[Nk * rki]); break;
case 4: StoreRoundKey< 4>(&rk[Nk * rki]); break;
case 5: StoreRoundKey< 5>(&rk[Nk * rki]); break;
case 6: StoreRoundKey< 6>(&rk[Nk * rki]); break;
case 7: StoreRoundKey< 7>(&rk[Nk * rki]); break;
case 8: StoreRoundKey< 8>(&rk[Nk * rki]); break;
case 9: StoreRoundKey< 9>(&rk[Nk * rki]); break;
case 10: StoreRoundKey<10>(&rk[Nk * rki]); break;
}
// clang-format on
}
}
inline void CryptBlock(uint8x16_t* iv, const u8* buf_in, u8* buf_out) const
{
uint8x16_t block = vld1q_u8(buf_in);
if constexpr (AesMode == Mode::Encrypt)
{
block = veorq_u8(block, *iv);
for (size_t i = 0; i < Nr - 1; ++i)
block = vaesmcq_u8(vaeseq_u8(block, round_keys[i]));
block = vaeseq_u8(block, round_keys[Nr - 1]);
block = veorq_u8(block, round_keys[Nr]);
*iv = block;
}
else
{
uint8x16_t iv_next = block;
for (size_t i = 0; i < Nr - 1; ++i)
block = vaesimcq_u8(vaesdq_u8(block, round_keys[i]));
block = vaesdq_u8(block, round_keys[Nr - 1]);
block = veorq_u8(block, round_keys[Nr]);
block = veorq_u8(block, *iv);
*iv = iv_next;
}
vst1q_u8(buf_out, block);
}
virtual bool Crypt(const u8* iv, u8* iv_out, const u8* buf_in, u8* buf_out,
size_t len) const override
{
if (len % BLOCK_SIZE)
return false;
uint8x16_t iv_block = iv ? vld1q_u8(iv) : vmovq_n_u8(0);
len /= BLOCK_SIZE;
while (len--)
{
CryptBlock(&iv_block, buf_in, buf_out);
buf_in += BLOCK_SIZE;
buf_out += BLOCK_SIZE;
}
if (iv_out)
vst1q_u8(iv_out, iv_block);
return true;
}
private:
std::array<uint8x16_t, NUM_ROUND_KEYS> round_keys;
};
#endif
template <Mode AesMode>
std::unique_ptr<Context> CreateContext(const u8* key)
{
if (cpu_info.bAES)
{
#if defined(_M_X86_64)
#if defined(__AVX__)
// If compiler enables AVX, the intrinsics will generate VAES(VEX.128) instructions.
// In the future we may want to compile the code twice and explicitly override the compiler
// flags. There doesn't seem to be much performance difference between AES(128) and
// VAES(VEX.128) at the moment, though.
if (cpu_info.bAVX)
#endif
return std::make_unique<ContextAESNI<AesMode>>(key);
#elif defined(_M_ARM_64)
return std::make_unique<ContextNeon<AesMode>>(key);
#endif
}
return std::make_unique<ContextGeneric<AesMode>>(key);
}
std::unique_ptr<Context> CreateContextEncrypt(const u8* key)
{
return CreateContext<Mode::Encrypt>(key);
}
std::unique_ptr<Context> CreateContextDecrypt(const u8* key)
{
return CreateContext<Mode::Decrypt>(key);
}
// OFB encryption and decryption are the exact same. We don't encrypt though.
void CryptOFB(const u8* key, const u8* iv, u8* iv_out, const u8* buf_in, u8* buf_out, size_t size)
{
mbedtls_aes_context aes_ctx;
size_t iv_offset = 0;
std::array<u8, 16> iv_tmp{};
if (iv)
std::memcpy(&iv_tmp[0], iv, 16);
ASSERT(!mbedtls_aes_setkey_enc(&aes_ctx, key, 128));
mbedtls_aes_crypt_ofb(&aes_ctx, size, &iv_offset, &iv_tmp[0], buf_in, buf_out);
if (iv_out)
std::memcpy(iv_out, &iv_tmp[0], 16);
}
} // namespace Common::AES