dolphin/Source/Core/AudioCommon/PulseAudioStream.cpp

254 lines
7.3 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cstring>
#include "AudioCommon/DPL2Decoder.h"
#include "AudioCommon/PulseAudioStream.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/Thread.h"
#include "Core/ConfigManager.h"
namespace
{
const size_t BUFFER_SAMPLES = 512; // ~10 ms - needs to be at least 240 for surround
}
PulseAudio::PulseAudio() : m_thread(), m_run_thread()
{
}
bool PulseAudio::Start()
{
m_stereo = !SConfig::GetInstance().bDPL2Decoder;
m_channels = m_stereo ? 2 : 5; // will tell PA we use a Stereo or 5.0 channel setup
NOTICE_LOG(AUDIO, "PulseAudio backend using %d channels", m_channels);
m_run_thread.Set();
m_thread = std::thread(&PulseAudio::SoundLoop, this);
// Initialize DPL2 parameters
DPL2Reset();
return true;
}
void PulseAudio::Stop()
{
m_run_thread.Clear();
m_thread.join();
}
void PulseAudio::Update()
{
// don't need to do anything here.
}
// Called on audio thread.
void PulseAudio::SoundLoop()
{
Common::SetCurrentThreadName("Audio thread - pulse");
if (PulseInit())
{
while (m_run_thread.IsSet() && m_pa_connected == 1 && m_pa_error >= 0)
m_pa_error = pa_mainloop_iterate(m_pa_ml, 1, nullptr);
if (m_pa_error < 0)
ERROR_LOG(AUDIO, "PulseAudio error: %s", pa_strerror(m_pa_error));
PulseShutdown();
}
}
bool PulseAudio::PulseInit()
{
m_pa_error = 0;
m_pa_connected = 0;
// create pulseaudio main loop and context
// also register the async state callback which is called when the connection to the pa server has
// changed
m_pa_ml = pa_mainloop_new();
m_pa_mlapi = pa_mainloop_get_api(m_pa_ml);
m_pa_ctx = pa_context_new(m_pa_mlapi, "dolphin-emu");
m_pa_error = pa_context_connect(m_pa_ctx, nullptr, PA_CONTEXT_NOFLAGS, nullptr);
pa_context_set_state_callback(m_pa_ctx, StateCallback, this);
// wait until we're connected to the pulseaudio server
while (m_pa_connected == 0 && m_pa_error >= 0)
m_pa_error = pa_mainloop_iterate(m_pa_ml, 1, nullptr);
if (m_pa_connected == 2 || m_pa_error < 0)
{
ERROR_LOG(AUDIO, "PulseAudio failed to initialize: %s", pa_strerror(m_pa_error));
return false;
}
// create a new audio stream with our sample format
// also connect the callbacks for this stream
pa_sample_spec ss;
pa_channel_map channel_map;
pa_channel_map* channel_map_p = nullptr; // auto channel map
if (m_stereo)
{
ss.format = PA_SAMPLE_S16LE;
m_bytespersample = sizeof(s16);
}
else
{
// surround is remixed in floats, use a float PA buffer to save another conversion
ss.format = PA_SAMPLE_FLOAT32NE;
m_bytespersample = sizeof(float);
channel_map_p = &channel_map; // explicit channel map:
channel_map.channels = 5;
channel_map.map[0] = PA_CHANNEL_POSITION_FRONT_LEFT;
channel_map.map[1] = PA_CHANNEL_POSITION_FRONT_RIGHT;
channel_map.map[2] = PA_CHANNEL_POSITION_FRONT_CENTER;
channel_map.map[3] = PA_CHANNEL_POSITION_REAR_LEFT;
channel_map.map[4] = PA_CHANNEL_POSITION_REAR_RIGHT;
}
ss.channels = m_channels;
ss.rate = m_mixer->GetSampleRate();
assert(pa_sample_spec_valid(&ss));
m_pa_s = pa_stream_new(m_pa_ctx, "Playback", &ss, channel_map_p);
pa_stream_set_write_callback(m_pa_s, WriteCallback, this);
pa_stream_set_underflow_callback(m_pa_s, UnderflowCallback, this);
// connect this audio stream to the default audio playback
// limit buffersize to reduce latency
m_pa_ba.fragsize = -1;
m_pa_ba.maxlength = -1; // max buffer, so also max latency
m_pa_ba.minreq = -1; // don't read every byte, try to group them _a bit_
m_pa_ba.prebuf = -1; // start as early as possible
m_pa_ba.tlength =
BUFFER_SAMPLES * m_channels *
m_bytespersample; // designed latency, only change this flag for low latency output
pa_stream_flags flags = pa_stream_flags(PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_ADJUST_LATENCY |
PA_STREAM_AUTO_TIMING_UPDATE);
m_pa_error = pa_stream_connect_playback(m_pa_s, nullptr, &m_pa_ba, flags, nullptr, nullptr);
if (m_pa_error < 0)
{
ERROR_LOG(AUDIO, "PulseAudio failed to initialize: %s", pa_strerror(m_pa_error));
return false;
}
INFO_LOG(AUDIO, "Pulse successfully initialized");
return true;
}
void PulseAudio::PulseShutdown()
{
pa_context_disconnect(m_pa_ctx);
pa_context_unref(m_pa_ctx);
pa_mainloop_free(m_pa_ml);
}
void PulseAudio::StateCallback(pa_context* c)
{
pa_context_state_t state = pa_context_get_state(c);
switch (state)
{
case PA_CONTEXT_FAILED:
case PA_CONTEXT_TERMINATED:
m_pa_connected = 2;
break;
case PA_CONTEXT_READY:
m_pa_connected = 1;
break;
default:
break;
}
}
// on underflow, increase pulseaudio latency in ~10ms steps
void PulseAudio::UnderflowCallback(pa_stream* s)
{
m_pa_ba.tlength += BUFFER_SAMPLES * m_channels * m_bytespersample;
pa_operation* op = pa_stream_set_buffer_attr(s, &m_pa_ba, nullptr, nullptr);
pa_operation_unref(op);
WARN_LOG(AUDIO, "pulseaudio underflow, new latency: %d bytes", m_pa_ba.tlength);
}
void PulseAudio::WriteCallback(pa_stream* s, size_t length)
{
int bytes_per_frame = m_channels * m_bytespersample;
int frames = (length / bytes_per_frame);
size_t trunc_length = frames * bytes_per_frame;
// fetch dst buffer directly from pulseaudio, so no memcpy is needed
void* buffer;
m_pa_error = pa_stream_begin_write(s, &buffer, &trunc_length);
if (!buffer || m_pa_error < 0)
return; // error will be printed from main loop
if (m_stereo)
{
// use the raw s16 stereo mix
m_mixer->Mix((s16*)buffer, frames);
}
else
{
// get a floating point mix
s16 s16buffer_stereo[frames * 2];
m_mixer->Mix(s16buffer_stereo, frames); // implicitly mixes to 16-bit stereo
float floatbuffer_stereo[frames * 2];
// s16 to float
for (int i = 0; i < frames * 2; ++i)
{
floatbuffer_stereo[i] = s16buffer_stereo[i] / float(1 << 15);
}
if (m_channels == 5) // Extract dpl2/5.0 Surround
{
float floatbuffer_6chan[frames * 6];
// DPL2Decode output: LEFTFRONT, RIGHTFRONT, CENTREFRONT, (sub), LEFTREAR, RIGHTREAR
DPL2Decode(floatbuffer_stereo, frames, floatbuffer_6chan);
// Discard the subwoofer channel - DPL2Decode generates a pretty
// good 5.0 but not a good 5.1 output.
const int dpl2_to_5chan[] = {0, 1, 2, 4, 5};
for (int i = 0; i < frames; ++i)
{
for (int j = 0; j < m_channels; ++j)
{
((float*)buffer)[m_channels * i + j] = floatbuffer_6chan[6 * i + dpl2_to_5chan[j]];
}
}
}
else
{
ERROR_LOG(AUDIO, "Unsupported number of PA channels requested: %d", (int)m_channels);
return;
}
}
m_pa_error = pa_stream_write(s, buffer, trunc_length, nullptr, 0, PA_SEEK_RELATIVE);
}
// Callbacks that forward to internal methods (required because PulseAudio is a C API).
void PulseAudio::StateCallback(pa_context* c, void* userdata)
{
PulseAudio* p = (PulseAudio*)userdata;
p->StateCallback(c);
}
void PulseAudio::UnderflowCallback(pa_stream* s, void* userdata)
{
PulseAudio* p = (PulseAudio*)userdata;
p->UnderflowCallback(s);
}
void PulseAudio::WriteCallback(pa_stream* s, size_t length, void* userdata)
{
PulseAudio* p = (PulseAudio*)userdata;
p->WriteCallback(s, length);
}