dolphin/Source/Core/DiscIO/DirectoryBlob.cpp

828 lines
27 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "DiscIO/DirectoryBlob.h"
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstring>
#include <locale>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <variant>
#include <vector>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonPaths.h"
#include "Common/CommonTypes.h"
#include "Common/File.h"
#include "Common/FileUtil.h"
#include "Common/Logging/Log.h"
#include "Common/StringUtil.h"
#include "Common/Swap.h"
#include "Core/Boot/DolReader.h"
#include "DiscIO/Blob.h"
#include "DiscIO/VolumeWii.h"
namespace DiscIO
{
// Reads as many bytes as the vector fits (or less, if the file is smaller).
// Returns the number of bytes read.
static size_t ReadFileToVector(const std::string& path, std::vector<u8>* vector);
static void PadToAddress(u64 start_address, u64* address, u64* length, u8** buffer);
static void Write32(u32 data, u32 offset, std::vector<u8>* buffer);
static u32 ComputeNameSize(const File::FSTEntry& parent_entry);
static std::string ASCIIToUppercase(std::string str);
static void ConvertUTF8NamesToSHIFTJIS(File::FSTEntry* parent_entry);
enum class PartitionType : u32
{
Game = 0,
Update = 1,
Channel = 2,
// There are more types used by Super Smash Bros. Brawl, but they don't have special names
};
// 0xFF is an arbitrarily picked value. Note that we can't use 0x00, because that means NTSC-J
constexpr u32 INVALID_REGION = 0xFF;
constexpr u8 ENTRY_SIZE = 0x0c;
constexpr u8 FILE_ENTRY = 0;
constexpr u8 DIRECTORY_ENTRY = 1;
DiscContent::DiscContent(u64 offset, u64 size, const std::string& path)
: m_offset(offset), m_size(size), m_content_source(path)
{
}
DiscContent::DiscContent(u64 offset, u64 size, const u8* data)
: m_offset(offset), m_size(size), m_content_source(data)
{
}
DiscContent::DiscContent(u64 offset) : m_offset(offset)
{
}
u64 DiscContent::GetOffset() const
{
return m_offset;
}
u64 DiscContent::GetEndOffset() const
{
return m_offset + m_size;
}
u64 DiscContent::GetSize() const
{
return m_size;
}
bool DiscContent::Read(u64* offset, u64* length, u8** buffer) const
{
if (m_size == 0)
return true;
DEBUG_ASSERT(*offset >= m_offset);
const u64 offset_in_content = *offset - m_offset;
if (offset_in_content < m_size)
{
const u64 bytes_to_read = std::min(m_size - offset_in_content, *length);
if (std::holds_alternative<std::string>(m_content_source))
{
File::IOFile file(std::get<std::string>(m_content_source), "rb");
file.Seek(offset_in_content, SEEK_SET);
if (!file.ReadBytes(*buffer, bytes_to_read))
return false;
}
else
{
const u8* const content_pointer = std::get<const u8*>(m_content_source) + offset_in_content;
std::copy(content_pointer, content_pointer + bytes_to_read, *buffer);
}
*length -= bytes_to_read;
*buffer += bytes_to_read;
*offset += bytes_to_read;
}
return true;
}
void DiscContentContainer::Add(u64 offset, u64 size, const std::string& path)
{
if (size != 0)
m_contents.emplace(offset, size, path);
}
void DiscContentContainer::Add(u64 offset, u64 size, const u8* data)
{
if (size != 0)
m_contents.emplace(offset, size, data);
}
u64 DiscContentContainer::CheckSizeAndAdd(u64 offset, const std::string& path)
{
const u64 size = File::GetSize(path);
Add(offset, size, path);
return size;
}
u64 DiscContentContainer::CheckSizeAndAdd(u64 offset, u64 max_size, const std::string& path)
{
const u64 size = std::min(File::GetSize(path), max_size);
Add(offset, size, path);
return size;
}
bool DiscContentContainer::Read(u64 offset, u64 length, u8* buffer) const
{
// Determine which DiscContent the offset refers to
std::set<DiscContent>::const_iterator it = m_contents.upper_bound(DiscContent(offset));
while (it != m_contents.end() && length > 0)
{
// Zero fill to start of DiscContent data
PadToAddress(it->GetOffset(), &offset, &length, &buffer);
if (!it->Read(&offset, &length, &buffer))
return false;
++it;
DEBUG_ASSERT(it == m_contents.end() || it->GetOffset() >= offset);
}
// Zero fill if we went beyond the last DiscContent
std::fill_n(buffer, static_cast<size_t>(length), 0);
return true;
}
static std::optional<PartitionType> ParsePartitionDirectoryName(const std::string& name)
{
if (name.size() < 2)
return {};
if (!strcasecmp(name.c_str(), "DATA"))
return PartitionType::Game;
if (!strcasecmp(name.c_str(), "UPDATE"))
return PartitionType::Update;
if (!strcasecmp(name.c_str(), "CHANNEL"))
return PartitionType::Channel;
if (name[0] == 'P' || name[0] == 'p')
{
// e.g. "P-HA8E" (normally only used for Super Smash Bros. Brawl's VC partitions)
if (name[1] == '-' && name.size() == 6)
{
const u32 result = Common::swap32(reinterpret_cast<const u8*>(name.data() + 2));
return static_cast<PartitionType>(result);
}
// e.g. "P0"
if (std::all_of(name.cbegin() + 1, name.cend(), [](char c) { return c >= '0' && c <= '9'; }))
{
u32 result;
if (TryParse(name.substr(1), &result))
return static_cast<PartitionType>(result);
}
}
return {};
}
static bool IsDirectorySeparator(char c)
{
return c == '/'
#ifdef _WIN32
|| c == '\\'
#endif
;
}
static bool PathCharactersEqual(char a, char b)
{
return a == b || (IsDirectorySeparator(a) && IsDirectorySeparator(b));
}
static bool PathEndsWith(const std::string& path, const std::string& suffix)
{
if (suffix.size() > path.size())
return false;
std::string::const_iterator path_iterator = path.cend() - suffix.size();
std::string::const_iterator suffix_iterator = suffix.cbegin();
while (path_iterator != path.cend())
{
if (!PathCharactersEqual(*path_iterator, *suffix_iterator))
return false;
path_iterator++;
suffix_iterator++;
}
return true;
}
static bool IsValidDirectoryBlob(const std::string& dol_path, std::string* partition_root,
std::string* true_root = nullptr)
{
if (!PathEndsWith(dol_path, "/sys/main.dol"))
return false;
const size_t chars_to_remove = std::string("sys/main.dol").size();
*partition_root = dol_path.substr(0, dol_path.size() - chars_to_remove);
if (File::GetSize(*partition_root + "sys/boot.bin") < 0x20)
return false;
#ifdef _WIN32
constexpr const char* dir_separator = "/\\";
#else
constexpr char dir_separator = '/';
#endif
if (true_root)
{
*true_root =
dol_path.substr(0, dol_path.find_last_of(dir_separator, partition_root->size() - 2) + 1);
}
return true;
}
static bool ExistsAndIsValidDirectoryBlob(const std::string& dol_path)
{
std::string partition_root;
return File::Exists(dol_path) && IsValidDirectoryBlob(dol_path, &partition_root);
}
static bool IsInFilesDirectory(const std::string& path)
{
size_t files_pos = std::string::npos;
while (true)
{
files_pos = path.rfind("files", files_pos);
if (files_pos == std::string::npos)
return false;
const size_t slash_before_pos = files_pos - 1;
const size_t slash_after_pos = files_pos + 5;
if ((files_pos == 0 || IsDirectorySeparator(path[slash_before_pos])) &&
(slash_after_pos == path.size() || (IsDirectorySeparator(path[slash_after_pos]))) &&
ExistsAndIsValidDirectoryBlob(path.substr(0, files_pos) + "sys/main.dol"))
{
return true;
}
--files_pos;
}
}
static bool IsMainDolForNonGamePartition(const std::string& path)
{
std::string partition_root, true_root;
if (!IsValidDirectoryBlob(path, &partition_root, &true_root))
return false; // This is not a /sys/main.dol
std::string partition_directory_name = partition_root.substr(true_root.size());
partition_directory_name.pop_back(); // Remove trailing slash
const std::optional<PartitionType> partition_type =
ParsePartitionDirectoryName(partition_directory_name);
if (!partition_type || *partition_type == PartitionType::Game)
return false; // volume_path is the game partition's /sys/main.dol
const File::FSTEntry true_root_entry = File::ScanDirectoryTree(true_root, false);
for (const File::FSTEntry& entry : true_root_entry.children)
{
if (entry.isDirectory &&
ParsePartitionDirectoryName(entry.virtualName) == PartitionType::Game &&
ExistsAndIsValidDirectoryBlob(entry.physicalName + "/sys/main.dol"))
{
return true; // volume_path is the /sys/main.dol for a non-game partition
}
}
return false; // volume_path is the game partition's /sys/main.dol
}
bool ShouldHideFromGameList(const std::string& volume_path)
{
return IsInFilesDirectory(volume_path) || IsMainDolForNonGamePartition(volume_path);
}
std::unique_ptr<DirectoryBlobReader> DirectoryBlobReader::Create(const std::string& dol_path)
{
std::string partition_root, true_root;
if (!IsValidDirectoryBlob(dol_path, &partition_root, &true_root))
return nullptr;
return std::unique_ptr<DirectoryBlobReader>(new DirectoryBlobReader(partition_root, true_root));
}
DirectoryBlobReader::DirectoryBlobReader(const std::string& game_partition_root,
const std::string& true_root)
{
DirectoryBlobPartition game_partition(game_partition_root, {});
m_is_wii = game_partition.IsWii();
if (!m_is_wii)
{
m_gamecube_pseudopartition = std::move(game_partition);
m_data_size = m_gamecube_pseudopartition.GetDataSize();
}
else
{
SetNonpartitionDiscHeader(game_partition.GetHeader(), game_partition_root);
SetWiiRegionData(game_partition_root);
std::vector<PartitionWithType> partitions;
partitions.emplace_back(std::move(game_partition), PartitionType::Game);
std::string game_partition_directory_name = game_partition_root.substr(true_root.size());
game_partition_directory_name.pop_back(); // Remove trailing slash
if (ParsePartitionDirectoryName(game_partition_directory_name) == PartitionType::Game)
{
const File::FSTEntry true_root_entry = File::ScanDirectoryTree(true_root, false);
for (const File::FSTEntry& entry : true_root_entry.children)
{
if (entry.isDirectory)
{
const std::optional<PartitionType> type = ParsePartitionDirectoryName(entry.virtualName);
if (type && *type != PartitionType::Game)
{
partitions.emplace_back(DirectoryBlobPartition(entry.physicalName + "/", m_is_wii),
*type);
}
}
}
}
SetPartitions(std::move(partitions));
}
}
bool DirectoryBlobReader::Read(u64 offset, u64 length, u8* buffer)
{
// TODO: We don't handle raw access to the encrypted area of Wii discs correctly.
return (m_is_wii ? m_nonpartition_contents : m_gamecube_pseudopartition.GetContents())
.Read(offset, length, buffer);
}
bool DirectoryBlobReader::SupportsReadWiiDecrypted() const
{
return m_is_wii;
}
bool DirectoryBlobReader::ReadWiiDecrypted(u64 offset, u64 size, u8* buffer, u64 partition_offset)
{
if (!m_is_wii)
return false;
auto it = m_partitions.find(partition_offset);
if (it == m_partitions.end())
return false;
return it->second.GetContents().Read(offset, size, buffer);
}
BlobType DirectoryBlobReader::GetBlobType() const
{
return BlobType::DIRECTORY;
}
u64 DirectoryBlobReader::GetRawSize() const
{
// Not implemented
return 0;
}
u64 DirectoryBlobReader::GetDataSize() const
{
return m_data_size;
}
void DirectoryBlobReader::SetNonpartitionDiscHeader(const std::vector<u8>& partition_header,
const std::string& game_partition_root)
{
constexpr u64 NONPARTITION_DISCHEADER_ADDRESS = 0;
constexpr u64 NONPARTITION_DISCHEADER_SIZE = 0x100;
m_disc_header_nonpartition.resize(NONPARTITION_DISCHEADER_SIZE);
const size_t header_bin_bytes_read =
ReadFileToVector(game_partition_root + "disc/header.bin", &m_disc_header_nonpartition);
// If header.bin is missing or smaller than expected, use the content of sys/boot.bin instead
std::copy(partition_header.data() + header_bin_bytes_read,
partition_header.data() + m_disc_header_nonpartition.size(),
m_disc_header_nonpartition.data() + header_bin_bytes_read);
// 0x60 and 0x61 are the only differences between the partition and non-partition headers
if (header_bin_bytes_read < 0x60)
m_disc_header_nonpartition[0x60] = 0;
if (header_bin_bytes_read < 0x61)
m_disc_header_nonpartition[0x61] = 0;
m_nonpartition_contents.Add(NONPARTITION_DISCHEADER_ADDRESS, m_disc_header_nonpartition);
}
void DirectoryBlobReader::SetWiiRegionData(const std::string& game_partition_root)
{
m_wii_region_data.resize(0x10, 0x00);
m_wii_region_data.resize(0x20, 0x80);
Write32(INVALID_REGION, 0, &m_wii_region_data);
const std::string region_bin_path = game_partition_root + "disc/region.bin";
const size_t bytes_read = ReadFileToVector(region_bin_path, &m_wii_region_data);
if (bytes_read < 0x4)
ERROR_LOG(DISCIO, "Couldn't read region from %s", region_bin_path.c_str());
else if (bytes_read < 0x20)
ERROR_LOG(DISCIO, "Couldn't read age ratings from %s", region_bin_path.c_str());
constexpr u64 WII_REGION_DATA_ADDRESS = 0x4E000;
constexpr u64 WII_REGION_DATA_SIZE = 0x20;
m_nonpartition_contents.Add(WII_REGION_DATA_ADDRESS, m_wii_region_data);
}
void DirectoryBlobReader::SetPartitions(std::vector<PartitionWithType>&& partitions)
{
std::sort(partitions.begin(), partitions.end(),
[](const PartitionWithType& lhs, const PartitionWithType& rhs) {
if (lhs.type == rhs.type)
return lhs.partition.GetRootDirectory() < rhs.partition.GetRootDirectory();
// Ascending sort by partition type, except Update (1) comes before before Game (0)
return (lhs.type > PartitionType::Update || rhs.type > PartitionType::Update) ?
lhs.type < rhs.type :
lhs.type > rhs.type;
});
u32 subtable_1_size = 0;
while (subtable_1_size < partitions.size() && subtable_1_size < 3 &&
partitions[subtable_1_size].type <= PartitionType::Channel)
{
++subtable_1_size;
}
const u32 subtable_2_size = static_cast<u32>(partitions.size() - subtable_1_size);
constexpr u32 PARTITION_TABLE_ADDRESS = 0x40000;
constexpr u32 PARTITION_SUBTABLE1_OFFSET = 0x20;
constexpr u32 PARTITION_SUBTABLE2_OFFSET = 0x40;
m_partition_table.resize(PARTITION_SUBTABLE2_OFFSET + subtable_2_size * 8);
Write32(subtable_1_size, 0x0, &m_partition_table);
Write32((PARTITION_TABLE_ADDRESS + PARTITION_SUBTABLE1_OFFSET) >> 2, 0x4, &m_partition_table);
if (subtable_2_size != 0)
{
Write32(subtable_2_size, 0x8, &m_partition_table);
Write32((PARTITION_TABLE_ADDRESS + PARTITION_SUBTABLE2_OFFSET) >> 2, 0xC, &m_partition_table);
}
constexpr u64 STANDARD_UPDATE_PARTITION_ADDRESS = 0x50000;
constexpr u64 STANDARD_GAME_PARTITION_ADDRESS = 0xF800000;
u64 partition_address = STANDARD_UPDATE_PARTITION_ADDRESS;
u64 offset_in_table = PARTITION_SUBTABLE1_OFFSET;
for (size_t i = 0; i < partitions.size(); ++i)
{
if (i == subtable_1_size)
offset_in_table = PARTITION_SUBTABLE2_OFFSET;
if (partitions[i].type == PartitionType::Game)
partition_address = std::max(partition_address, STANDARD_GAME_PARTITION_ADDRESS);
Write32(static_cast<u32>(partition_address >> 2), offset_in_table, &m_partition_table);
offset_in_table += 4;
Write32(static_cast<u32>(partitions[i].type), offset_in_table, &m_partition_table);
offset_in_table += 4;
SetPartitionHeader(partitions[i].partition, partition_address);
const u64 partition_data_size = partitions[i].partition.GetDataSize();
m_partitions.emplace(partition_address, std::move(partitions[i].partition));
const u64 unaligned_next_partition_address =
VolumeWii::PartitionOffsetToRawOffset(partition_data_size, Partition(partition_address));
partition_address = Common::AlignUp(unaligned_next_partition_address, 0x10000ull);
}
m_data_size = partition_address;
m_nonpartition_contents.Add(PARTITION_TABLE_ADDRESS, m_partition_table);
}
// This function sets the header that's shortly before the start of the encrypted
// area, not the header that's right at the beginning of the encrypted area
void DirectoryBlobReader::SetPartitionHeader(const DirectoryBlobPartition& partition,
u64 partition_address)
{
constexpr u32 TICKET_OFFSET = 0x0;
constexpr u32 TICKET_SIZE = 0x2a4;
constexpr u32 TMD_OFFSET = 0x2c0;
constexpr u32 MAX_TMD_SIZE = 0x49e4;
constexpr u32 H3_OFFSET = 0x4000;
constexpr u32 H3_SIZE = 0x18000;
const std::string& partition_root = partition.GetRootDirectory();
m_nonpartition_contents.CheckSizeAndAdd(partition_address + TICKET_OFFSET, TICKET_SIZE,
partition_root + "ticket.bin");
const u64 tmd_size = m_nonpartition_contents.CheckSizeAndAdd(
partition_address + TMD_OFFSET, MAX_TMD_SIZE, partition_root + "tmd.bin");
const u64 cert_offset = Common::AlignUp(TMD_OFFSET + tmd_size, 0x20ull);
const u64 max_cert_size = H3_OFFSET - cert_offset;
const u64 cert_size = m_nonpartition_contents.CheckSizeAndAdd(
partition_address + cert_offset, max_cert_size, partition_root + "cert.bin");
m_nonpartition_contents.CheckSizeAndAdd(partition_address + H3_OFFSET, H3_SIZE,
partition_root + "h3.bin");
constexpr u32 PARTITION_HEADER_SIZE = 0x1c;
constexpr u32 DATA_OFFSET = 0x20000;
const u64 data_size = Common::AlignUp(partition.GetDataSize(), 0x7c00) / 0x7c00 * 0x8000;
m_partition_headers.emplace_back(PARTITION_HEADER_SIZE);
std::vector<u8>& partition_header = m_partition_headers.back();
Write32(static_cast<u32>(tmd_size), 0x0, &partition_header);
Write32(TMD_OFFSET >> 2, 0x4, &partition_header);
Write32(static_cast<u32>(cert_size), 0x8, &partition_header);
Write32(static_cast<u32>(cert_offset >> 2), 0x0C, &partition_header);
Write32(H3_OFFSET >> 2, 0x10, &partition_header);
Write32(DATA_OFFSET >> 2, 0x14, &partition_header);
Write32(static_cast<u32>(data_size >> 2), 0x18, &partition_header);
m_nonpartition_contents.Add(partition_address + TICKET_SIZE, partition_header);
}
DirectoryBlobPartition::DirectoryBlobPartition(const std::string& root_directory,
std::optional<bool> is_wii)
: m_root_directory(root_directory)
{
SetDiscHeaderAndDiscType(is_wii);
SetBI2();
BuildFST(SetDOL(SetApploader()));
}
void DirectoryBlobPartition::SetDiscHeaderAndDiscType(std::optional<bool> is_wii)
{
constexpr u64 DISCHEADER_ADDRESS = 0;
constexpr u64 DISCHEADER_SIZE = 0x440;
m_disc_header.resize(DISCHEADER_SIZE);
const std::string boot_bin_path = m_root_directory + "sys/boot.bin";
if (ReadFileToVector(boot_bin_path, &m_disc_header) < 0x20)
ERROR_LOG(DISCIO, "%s doesn't exist or is too small", boot_bin_path.c_str());
m_contents.Add(DISCHEADER_ADDRESS, m_disc_header);
if (is_wii.has_value())
{
m_is_wii = *is_wii;
}
else
{
m_is_wii = Common::swap32(&m_disc_header[0x18]) == 0x5d1c9ea3;
const bool is_gc = Common::swap32(&m_disc_header[0x1c]) == 0xc2339f3d;
if (m_is_wii == is_gc)
ERROR_LOG(DISCIO, "Couldn't detect disc type based on %s", boot_bin_path.c_str());
}
m_address_shift = m_is_wii ? 2 : 0;
}
void DirectoryBlobPartition::SetBI2()
{
constexpr u64 BI2_ADDRESS = 0x440;
constexpr u64 BI2_SIZE = 0x2000;
m_bi2.resize(BI2_SIZE);
if (!m_is_wii)
Write32(INVALID_REGION, 0x18, &m_bi2);
const std::string bi2_path = m_root_directory + "sys/bi2.bin";
const size_t bytes_read = ReadFileToVector(bi2_path, &m_bi2);
if (!m_is_wii && bytes_read < 0x1C)
ERROR_LOG(DISCIO, "Couldn't read region from %s", bi2_path.c_str());
m_contents.Add(BI2_ADDRESS, m_bi2);
}
u64 DirectoryBlobPartition::SetApploader()
{
bool success = false;
const std::string path = m_root_directory + "sys/apploader.img";
File::IOFile file(path, "rb");
m_apploader.resize(file.GetSize());
if (m_apploader.size() < 0x20 || !file.ReadBytes(m_apploader.data(), m_apploader.size()))
{
ERROR_LOG(DISCIO, "%s couldn't be accessed or is too small", path.c_str());
}
else
{
const size_t apploader_size = 0x20 + Common::swap32(*(u32*)&m_apploader[0x14]) +
Common::swap32(*(u32*)&m_apploader[0x18]);
if (apploader_size != m_apploader.size())
ERROR_LOG(DISCIO, "%s is the wrong size... Is it really an apploader?", path.c_str());
else
success = true;
}
if (!success)
{
m_apploader.resize(0x20);
// Make sure BS2 HLE doesn't try to run the apploader
Write32(static_cast<u32>(-1), 0x10, &m_apploader);
}
constexpr u64 APPLOADER_ADDRESS = 0x2440;
m_contents.Add(APPLOADER_ADDRESS, m_apploader);
// Return DOL address, 32 byte aligned (plus 32 byte padding)
return Common::AlignUp(APPLOADER_ADDRESS + m_apploader.size() + 0x20, 0x20ull);
}
u64 DirectoryBlobPartition::SetDOL(u64 dol_address)
{
const u64 dol_size = m_contents.CheckSizeAndAdd(dol_address, m_root_directory + "sys/main.dol");
Write32(static_cast<u32>(dol_address >> m_address_shift), 0x0420, &m_disc_header);
// Return FST address, 32 byte aligned (plus 32 byte padding)
return Common::AlignUp(dol_address + dol_size + 0x20, 0x20ull);
}
void DirectoryBlobPartition::BuildFST(u64 fst_address)
{
m_fst_data.clear();
File::FSTEntry rootEntry = File::ScanDirectoryTree(m_root_directory + "files/", true);
ConvertUTF8NamesToSHIFTJIS(&rootEntry);
u32 name_table_size = Common::AlignUp(ComputeNameSize(rootEntry), 1ull << m_address_shift);
u64 total_entries = rootEntry.size + 1; // The root entry itself isn't counted in rootEntry.size
const u64 name_table_offset = total_entries * ENTRY_SIZE;
m_fst_data.resize(name_table_offset + name_table_size);
// 32 KiB aligned start of data on disc
u64 current_data_address = Common::AlignUp(fst_address + m_fst_data.size(), 0x8000ull);
u32 fst_offset = 0; // Offset within FST data
u32 name_offset = 0; // Offset within name table
u32 root_offset = 0; // Offset of root of FST
// write root entry
WriteEntryData(&fst_offset, DIRECTORY_ENTRY, 0, 0, total_entries, m_address_shift);
WriteDirectory(rootEntry, &fst_offset, &name_offset, &current_data_address, root_offset,
name_table_offset);
// overflow check, compare the aligned name offset with the aligned name table size
ASSERT(Common::AlignUp(name_offset, 1ull << m_address_shift) == name_table_size);
// write FST size and location
Write32((u32)(fst_address >> m_address_shift), 0x0424, &m_disc_header);
Write32((u32)(m_fst_data.size() >> m_address_shift), 0x0428, &m_disc_header);
Write32((u32)(m_fst_data.size() >> m_address_shift), 0x042c, &m_disc_header);
m_contents.Add(fst_address, m_fst_data);
m_data_size = current_data_address;
}
void DirectoryBlobPartition::WriteEntryData(u32* entry_offset, u8 type, u32 name_offset,
u64 data_offset, u64 length, u32 address_shift)
{
m_fst_data[(*entry_offset)++] = type;
m_fst_data[(*entry_offset)++] = (name_offset >> 16) & 0xff;
m_fst_data[(*entry_offset)++] = (name_offset >> 8) & 0xff;
m_fst_data[(*entry_offset)++] = (name_offset)&0xff;
Write32((u32)(data_offset >> address_shift), *entry_offset, &m_fst_data);
*entry_offset += 4;
Write32((u32)length, *entry_offset, &m_fst_data);
*entry_offset += 4;
}
void DirectoryBlobPartition::WriteEntryName(u32* name_offset, const std::string& name,
u64 name_table_offset)
{
strncpy((char*)&m_fst_data[*name_offset + name_table_offset], name.c_str(), name.length() + 1);
*name_offset += (u32)(name.length() + 1);
}
void DirectoryBlobPartition::WriteDirectory(const File::FSTEntry& parent_entry, u32* fst_offset,
u32* name_offset, u64* data_offset,
u32 parent_entry_index, u64 name_table_offset)
{
std::vector<File::FSTEntry> sorted_entries = parent_entry.children;
// Sort for determinism
std::sort(sorted_entries.begin(), sorted_entries.end(), [](const File::FSTEntry& one,
const File::FSTEntry& two) {
const std::string one_upper = ASCIIToUppercase(one.virtualName);
const std::string two_upper = ASCIIToUppercase(two.virtualName);
return one_upper == two_upper ? one.virtualName < two.virtualName : one_upper < two_upper;
});
for (const File::FSTEntry& entry : sorted_entries)
{
if (entry.isDirectory)
{
u32 entry_index = *fst_offset / ENTRY_SIZE;
WriteEntryData(fst_offset, DIRECTORY_ENTRY, *name_offset, parent_entry_index,
entry_index + entry.size + 1, 0);
WriteEntryName(name_offset, entry.virtualName, name_table_offset);
WriteDirectory(entry, fst_offset, name_offset, data_offset, entry_index, name_table_offset);
}
else
{
// put entry in FST
WriteEntryData(fst_offset, FILE_ENTRY, *name_offset, *data_offset, entry.size,
m_address_shift);
WriteEntryName(name_offset, entry.virtualName, name_table_offset);
// write entry to virtual disc
m_contents.Add(*data_offset, entry.size, entry.physicalName);
// 32 KiB aligned - many games are fine with less alignment, but not all
*data_offset = Common::AlignUp(*data_offset + entry.size, 0x8000ull);
}
}
}
static size_t ReadFileToVector(const std::string& path, std::vector<u8>* vector)
{
File::IOFile file(path, "rb");
size_t bytes_read;
file.ReadArray<u8>(vector->data(), std::min<u64>(file.GetSize(), vector->size()), &bytes_read);
return bytes_read;
}
static void PadToAddress(u64 start_address, u64* address, u64* length, u8** buffer)
{
if (start_address > *address && *length > 0)
{
u64 padBytes = std::min(start_address - *address, *length);
memset(*buffer, 0, (size_t)padBytes);
*length -= padBytes;
*buffer += padBytes;
*address += padBytes;
}
}
static void Write32(u32 data, u32 offset, std::vector<u8>* buffer)
{
(*buffer)[offset++] = (data >> 24);
(*buffer)[offset++] = (data >> 16) & 0xff;
(*buffer)[offset++] = (data >> 8) & 0xff;
(*buffer)[offset] = data & 0xff;
}
static u32 ComputeNameSize(const File::FSTEntry& parent_entry)
{
u32 name_size = 0;
for (const File::FSTEntry& entry : parent_entry.children)
{
if (entry.isDirectory)
name_size += ComputeNameSize(entry);
name_size += (u32)entry.virtualName.length() + 1;
}
return name_size;
}
static void ConvertUTF8NamesToSHIFTJIS(File::FSTEntry* parent_entry)
{
for (File::FSTEntry& entry : parent_entry->children)
{
if (entry.isDirectory)
ConvertUTF8NamesToSHIFTJIS(&entry);
entry.virtualName = UTF8ToSHIFTJIS(entry.virtualName);
}
}
static std::string ASCIIToUppercase(std::string str)
{
std::transform(str.begin(), str.end(), str.begin(),
[](char c) { return std::toupper(c, std::locale::classic()); });
return str;
}
} // namespace