dolphin/Source/Plugins/Plugin_VideoOGL/Src/Globals.cpp

670 lines
20 KiB
C++

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <wx/wx.h>
#include <wx/filepicker.h>
#include <wx/notebook.h>
#include <wx/dialog.h>
#include <wx/aboutdlg.h>
#include "Globals.h"
#include "pluginspecs_video.h"
#include "main.h"
#include "IniFile.h"
#include <assert.h>
float MValue;
int frameCount;
Config g_Config;
Statistics stats;
void Statistics::ResetFrame()
{
memset(&thisFrame,0,sizeof(ThisFrame));
}
Config::Config()
{
memset(this, 0, sizeof(Config));
}
void Config::Load()
{
std::string temp;
IniFile iniFile;
iniFile.Load("gfx_opengl.ini");
iniFile.Get("Hardware", "Adapter", &iAdapter, 0);
iniFile.Get("Hardware", "WindowedRes", &temp, 0);
strcpy(iWindowedRes, temp.c_str());
iniFile.Get("Hardware", "FullscreenRes", &temp, 0);
strcpy(iFSResolution, temp.c_str());
iniFile.Get("Hardware", "Fullscreen", &bFullscreen, 0);
iniFile.Get("Hardware", "RenderToMainframe", &renderToMainframe, 0);
if (iAdapter == -1)
iAdapter = 0;
iniFile.Get("Settings", "OverlayStats", &bOverlayStats, false);
iniFile.Get("Settings", "Postprocess", &iPostprocessEffect, 0);
iniFile.Get("Settings", "DLOptimize", &iCompileDLsLevel, 0);
iniFile.Get("Settings", "DumpTextures", &bDumpTextures, 0);
iniFile.Get("Settings", "ShowShaderErrors", &bShowShaderErrors, 0);
iniFile.Get("Settings", "Multisample", &iMultisampleMode, 0);
if(iMultisampleMode == 0)
iMultisampleMode = 1;
std::string s;
iniFile.Get("Settings", "TexDumpPath", &s, 0);
if( s.size() < sizeof(texDumpPath) )
strcpy(texDumpPath, s.c_str());
else {
strncpy(texDumpPath, s.c_str(), sizeof(texDumpPath)-1);
texDumpPath[sizeof(texDumpPath)-1] = 0;
}
iniFile.Get("Settings", "TexFmtOverlayEnable", &bTexFmtOverlayEnable, 0);
iniFile.Get("Settings", "TexFmtOverlayCenter", &bTexFmtOverlayCenter, 0);
iniFile.Get("Enhancements", "ForceFiltering", &bForceFiltering, 0);
iniFile.Get("Enhancements", "ForceMaxAniso", &bForceMaxAniso, 0);
}
void Config::Save()
{
IniFile iniFile;
iniFile.Load("gfx_opengl.ini");
iniFile.Set("Hardware", "Adapter", iAdapter);
iniFile.Set("Hardware", "WindowedRes", iWindowedRes);
iniFile.Set("Hardware", "FullscreenRes", iFSResolution);
iniFile.Set("Hardware", "Fullscreen", bFullscreen);
iniFile.Set("Hardware", "RenderToMainframe", renderToMainframe);
iniFile.Set("Settings", "OverlayStats", bOverlayStats);
iniFile.Set("Settings", "Postprocess", iPostprocessEffect);
iniFile.Set("Settings", "DLOptimize", iCompileDLsLevel);
iniFile.Set("Settings", "DumpTextures", bDumpTextures);
iniFile.Set("Settings", "ShowShaderErrors", bShowShaderErrors);
iniFile.Set("Settings", "Multisample", iMultisampleMode);
iniFile.Set("Settings", "TexDumpPath", texDumpPath);
iniFile.Set("Settings", "TexFmtOverlayEnable", bTexFmtOverlayEnable);
iniFile.Set("Settings", "TexFmtOverlayCenter", bTexFmtOverlayCenter);
iniFile.Set("Enhancements", "ForceFiltering", bForceFiltering);
iniFile.Set("Enhancements", "ForceMaxAniso", bForceMaxAniso);
iniFile.Save("gfx_opengl.ini");
}
#ifdef _M_IX86
extern "C" {
#ifdef _WIN32
#define XMD_H
#undef FAR
#define HAVE_BOOLEAN
#endif
#include <jpeglib.h>
}
bool SaveJPEG(const char* filename, int image_width, int image_height, const void* pdata, int quality)
{
u8* image_buffer = new u8[image_width * image_height * 3];
u8* psrc = (u8*)pdata;
// input data is rgba format, so convert to rgb
u8* p = image_buffer;
for(int i = 0; i < image_height; ++i) {
for(int j = 0; j < image_width; ++j) {
p[0] = psrc[0];
p[1] = psrc[1];
p[2] = psrc[2];
p += 3;
psrc += 4;
}
}
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
FILE * outfile; /* target file */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
if ((outfile = fopen(filename, "wb")) == NULL) {
fprintf(stderr, "can't open %s\n", filename);
exit(1);
}
jpeg_stdio_dest(&cinfo, outfile);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 3; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
fclose(outfile);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
delete image_buffer;
/* And we're done! */
return true;
}
#else
bool SaveJPEG(const char* filename, int image_width, int image_height, const void* pdata, int quality)
{
return false;
}
#endif
#if defined(_MSC_VER)
#pragma pack(push, 1)
#endif
struct TGA_HEADER
{
u8 identsize; // size of ID field that follows 18 u8 header (0 usually)
u8 colourmaptype; // type of colour map 0=none, 1=has palette
u8 imagetype; // type of image 0=none,1=indexed,2=rgb,3=grey,+8=rle packed
s16 colourmapstart; // first colour map entry in palette
s16 colourmaplength; // number of colours in palette
u8 colourmapbits; // number of bits per palette entry 15,16,24,32
s16 xstart; // image x origin
s16 ystart; // image y origin
s16 width; // image width in pixels
s16 height; // image height in pixels
u8 bits; // image bits per pixel 8,16,24,32
u8 descriptor; // image descriptor bits (vh flip bits)
// pixel data follows header
#if defined(_MSC_VER)
};
#pragma pack(pop)
#else
} __attribute__((packed));
#endif
bool SaveTGA(const char* filename, int width, int height, void* pdata)
{
TGA_HEADER hdr;
FILE* f = fopen(filename, "wb");
if (f == NULL)
return false;
_assert_( sizeof(TGA_HEADER) == 18 && sizeof(hdr) == 18 );
memset(&hdr, 0, sizeof(hdr));
hdr.imagetype = 2;
hdr.bits = 32;
hdr.width = width;
hdr.height = height;
hdr.descriptor |= 8|(1<<5); // 8bit alpha, flip vertical
fwrite(&hdr, sizeof(hdr), 1, f);
fwrite(pdata, width*height*4, 1, f);
fclose(f);
return true;
}
bool SaveTexture(const char* filename, u32 textarget, u32 tex, int width, int height)
{
GL_REPORT_ERRORD();
std::vector<u32> data(width*height);
glBindTexture(textarget, tex);
glGetTexImage(textarget, 0, GL_BGRA, GL_UNSIGNED_BYTE, &data[0]);
GLenum err;
GL_REPORT_ERROR();
if (err != GL_NO_ERROR) {
return false;
}
return SaveTGA(filename, width, height, &data[0]);//SaveJPEG(filename, width, height, &data[0], 70);
}
////////////////////
// Small profiler //
////////////////////
#include <list>
#include <string>
#include <map>
using namespace std;
int g_bWriteProfile=0;
#ifdef _WIN32
#if defined (_MSC_VER) && _MSC_VER >= 1400
#include <intrin.h>
#pragma intrinsic(__rdtsc)
#endif
static u64 luPerfFreq=0;
inline u64 GET_PROFILE_TIME()
{
#if defined (_MSC_VER) && _MSC_VER >= 1400
return __rdtsc();
#else
LARGE_INTEGER lu;
QueryPerformanceCounter(&lu);
return lu.QuadPart;
#endif
}
#else
static u64 luPerfFreq=1000000;
#define GET_PROFILE_TIME() //GetCpuTick()
#endif
struct DVPROFSTRUCT;
struct DVPROFSTRUCT
{
struct DATA
{
DATA(u64 time, u32 user = 0) : dwTime(time), dwUserData(user) {}
DATA() : dwTime(0), dwUserData(0) {}
u64 dwTime;
u32 dwUserData;
};
~DVPROFSTRUCT() {
list<DVPROFSTRUCT*>::iterator it = listpChild.begin();
while(it != listpChild.end() ) {
delete *it; *it = NULL;
++it;
}
}
list<DATA> listTimes; // before DVProfEnd is called, contains the global time it started
// after DVProfEnd is called, contains the time it lasted
// the list contains all the tracked times
char pname[256];
list<DVPROFSTRUCT*> listpChild; // other profilers called during this profiler period
};
struct DVPROFTRACK
{
u32 dwUserData;
DVPROFSTRUCT::DATA* pdwTime;
DVPROFSTRUCT* pprof;
};
list<DVPROFTRACK> g_listCurTracking; // the current profiling functions, the back element is the
// one that will first get popped off the list when DVProfEnd is called
// the pointer is an element in DVPROFSTRUCT::listTimes
list<DVPROFSTRUCT> g_listProfilers; // the current profilers, note that these are the parents
// any profiler started during the time of another is held in
// DVPROFSTRUCT::listpChild
list<DVPROFSTRUCT*> g_listAllProfilers; // ignores the hierarchy, pointer to elements in g_listProfilers
void DVProfRegister(const char *pname)
{
if (!g_bWriteProfile)
return;
#ifdef _WIN32
if (luPerfFreq <= 1) {
#if defined (_MSC_VER) && _MSC_VER >= 1400
luPerfFreq = 1000000;
#else
LARGE_INTEGER temp;
QueryPerformanceFrequency(&temp);
luPerfFreq = temp.QuadPart;
#endif
}
#endif
list<DVPROFSTRUCT*>::iterator it = g_listAllProfilers.begin();
// while(it != g_listAllProfilers.end() ) {
//
// if( _tcscmp(pname, (*it)->pname) == 0 ) {
// (*it)->listTimes.push_back(timeGetTime());
// DVPROFTRACK dvtrack;
// dvtrack.pdwTime = &(*it)->listTimes.back();
// dvtrack.pprof = *it;
// g_listCurTracking.push_back(dvtrack);
// return;
// }
//
// ++it;
// }
// else add in a new profiler to the appropriate parent profiler
DVPROFSTRUCT* pprof = NULL;
if (g_listCurTracking.size() > 0) {
_assert_( g_listCurTracking.back().pprof != NULL );
g_listCurTracking.back().pprof->listpChild.push_back(new DVPROFSTRUCT());
pprof = g_listCurTracking.back().pprof->listpChild.back();
}
else {
g_listProfilers.push_back(DVPROFSTRUCT());
pprof = &g_listProfilers.back();
}
strncpy(pprof->pname, pname, 256);
// setup the profiler for tracking
pprof->listTimes.push_back(DVPROFSTRUCT::DATA(GET_PROFILE_TIME()));
DVPROFTRACK dvtrack;
dvtrack.pdwTime = &pprof->listTimes.back();
dvtrack.pprof = pprof;
dvtrack.dwUserData = 0;
g_listCurTracking.push_back(dvtrack);
// add to all profiler list
g_listAllProfilers.push_back(pprof);
}
void DVProfEnd(u32 dwUserData)
{
if (!g_bWriteProfile)
return;
if (g_listCurTracking.size() == 0)
return;
DVPROFTRACK dvtrack = g_listCurTracking.back();
_assert_( dvtrack.pdwTime != NULL && dvtrack.pprof != NULL );
dvtrack.pdwTime->dwTime = GET_PROFILE_TIME()- dvtrack.pdwTime->dwTime;
dvtrack.pdwTime->dwUserData= dwUserData;
g_listCurTracking.pop_back();
}
struct DVTIMEINFO
{
DVTIMEINFO() : uInclusive(0), uExclusive(0) {}
u64 uInclusive, uExclusive;
};
map<string, DVTIMEINFO> mapAggregateTimes;
u64 DVProfWriteStruct(FILE* f, DVPROFSTRUCT* p, int ident)
{
fprintf(f, "%*s%s - ", ident, "", p->pname);
list<DVPROFSTRUCT::DATA>::iterator ittime = p->listTimes.begin();
u64 utime = 0;
while(ittime != p->listTimes.end() ) {
utime += ittime->dwTime;
if (ittime->dwUserData)
fprintf(f, "time: %d, user: 0x%8.8x", (u32)ittime->dwTime, ittime->dwUserData);
else
fprintf(f, "time: %d", (u32)ittime->dwTime);
++ittime;
}
// yes this is necessary, maps have problems with constructors on their type
map<string, DVTIMEINFO>::iterator ittimes = mapAggregateTimes.find(p->pname);
if (ittimes == mapAggregateTimes.end()) {
ittimes = mapAggregateTimes.insert(map<string, DVTIMEINFO>::value_type(p->pname, DVTIMEINFO())).first;
ittimes->second.uExclusive = 0;
ittimes->second.uInclusive = 0;
}
ittimes->second.uInclusive += utime;
fprintf(f, "\n");
list<DVPROFSTRUCT*>::iterator itprof = p->listpChild.begin();
u64 uex = utime;
while(itprof != p->listpChild.end() ) {
uex -= DVProfWriteStruct(f, *itprof, ident+4);
++itprof;
}
if (uex > utime) {
uex = 0;
}
ittimes->second.uExclusive += uex;
return utime;
}
void DVProfWrite(const char* pfilename, u32 frames)
{
_assert_( pfilename != NULL );
FILE* f = fopen(pfilename, "w");
// pop back any unused
mapAggregateTimes.clear();
list<DVPROFSTRUCT>::iterator it = g_listProfilers.begin();
while(it != g_listProfilers.end() ) {
DVProfWriteStruct(f, &(*it), 0);
++it;
}
{
map<string, DVTIMEINFO>::iterator it;
fprintf(f, "\n\n-------------------------------------------------------------------\n\n");
u64 uTotal[2] = {0};
double fiTotalTime[2];
for(it = mapAggregateTimes.begin(); it != mapAggregateTimes.end(); ++it) {
uTotal[0] += it->second.uExclusive;
uTotal[1] += it->second.uInclusive;
}
fprintf(f, "total times (%d): ex: %Lu ", frames, 1000000*uTotal[0]/(luPerfFreq*(u64)frames));
fprintf(f, "inc: %Lu\n", 1000000 * uTotal[1]/(luPerfFreq*(u64)frames));
fiTotalTime[0] = 1.0 / (double)uTotal[0];
fiTotalTime[1] = 1.0 / (double)uTotal[1];
// output the combined times
for(it = mapAggregateTimes.begin(); it != mapAggregateTimes.end(); ++it) {
fprintf(f, "%s - ex: %f inc: %f\n", it->first.c_str(), (float)((double)it->second.uExclusive * fiTotalTime[0]),
(float)((double)it->second.uInclusive * fiTotalTime[1]));
}
}
fclose(f);
}
void DVProfClear()
{
g_listCurTracking.clear();
g_listProfilers.clear();
g_listAllProfilers.clear();
}
#ifdef _WIN32
// The one for Linux is in Linux/Linux.cpp
static HANDLE hConsole = NULL;
void OpenConsole() {
COORD csize;
CONSOLE_SCREEN_BUFFER_INFO csbiInfo;
SMALL_RECT srect;
if (hConsole) return;
AllocConsole();
SetConsoleTitle("Opengl Plugin Output");
csize.X = 80;
csize.Y = 1024;
SetConsoleScreenBufferSize(GetStdHandle(STD_OUTPUT_HANDLE), csize);
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbiInfo);
srect = csbiInfo.srWindow;
srect.Right = srect.Left + 79;
srect.Bottom = srect.Top + 44;
SetConsoleWindowInfo(GetStdHandle(STD_OUTPUT_HANDLE), TRUE, &srect);
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
}
void CloseConsole() {
if (hConsole == NULL) return;
FreeConsole(); hConsole = NULL;
}
#endif
static FILE* pfLog = NULL;
void __Log(const char *fmt, ...)
{
char* Msg = (char*)alloca(strlen(fmt)+512);
va_list ap;
va_start( ap, fmt );
vsnprintf( Msg, strlen(fmt)+512, fmt, ap );
va_end( ap );
g_VideoInitialize.pLog(Msg, FALSE);
if( pfLog == NULL ) pfLog = fopen("Logs/oglgfx.txt", "w");
if( pfLog != NULL )
fwrite(Msg, strlen(Msg), 1, pfLog);
#ifdef _WIN32
DWORD tmp;
WriteConsole(hConsole, Msg, (DWORD)strlen(Msg), &tmp, 0);
#else
//printf("%s", Msg);
#endif
}
void __Log(int type, const char *fmt, ...)
{
char* Msg = (char*)alloca(strlen(fmt)+512);
va_list ap;
va_start( ap, fmt );
vsnprintf( Msg, strlen(fmt)+512, fmt, ap );
va_end( ap );
g_VideoInitialize.pLog(Msg, FALSE);
#ifdef _WIN32
DWORD tmp;
WriteConsole(hConsole, Msg, (DWORD)strlen(Msg), &tmp, 0);
#endif
}
void SysMessage(const char *fmt, ...)
{
va_list list;
char msg[512];
va_start(list, fmt);
vsprintf(msg, fmt, list);
va_end(list);
if (msg[strlen(msg)-1] == '\n') msg[strlen(msg)-1] = 0;
wxMessageBox(wxString::FromAscii(msg));
}