dolphin/Source/Core/VideoCommon/RenderBase.cpp

535 lines
14 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The gpu draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#include <cmath>
#include <string>
#include "Common/Atomic.h"
#include "Common/StringUtil.h"
#include "Common/Timer.h"
#include "Core/Core.h"
#include "Core/Host.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/Fifo.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/MainBase.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
// TODO: Move these out of here.
int frameCount;
int OSDChoice, OSDTime;
Renderer *g_renderer = nullptr;
std::mutex Renderer::s_criticalScreenshot;
std::string Renderer::s_sScreenshotName;
volatile bool Renderer::s_bScreenshot;
// The framebuffer size
int Renderer::s_target_width;
int Renderer::s_target_height;
// TODO: Add functionality to reinit all the render targets when the window is resized.
int Renderer::s_backbuffer_width;
int Renderer::s_backbuffer_height;
TargetRectangle Renderer::target_rc;
int Renderer::s_LastEFBScale;
bool Renderer::s_skipSwap;
bool Renderer::XFBWrited;
PEControl::PixelFormat Renderer::prev_efb_format = PEControl::INVALID_FMT;
unsigned int Renderer::efb_scale_numeratorX = 1;
unsigned int Renderer::efb_scale_numeratorY = 1;
unsigned int Renderer::efb_scale_denominatorX = 1;
unsigned int Renderer::efb_scale_denominatorY = 1;
Renderer::Renderer()
: frame_data()
, bLastFrameDumped(false)
{
UpdateActiveConfig();
TextureCache::OnConfigChanged(g_ActiveConfig);
#if defined _WIN32 || defined HAVE_LIBAV
bAVIDumping = false;
#endif
OSDChoice = 0;
OSDTime = 0;
}
Renderer::~Renderer()
{
// invalidate previous efb format
prev_efb_format = PEControl::INVALID_FMT;
efb_scale_numeratorX = efb_scale_numeratorY = efb_scale_denominatorX = efb_scale_denominatorY = 1;
#if defined _WIN32 || defined HAVE_LIBAV
if (g_ActiveConfig.bDumpFrames && bLastFrameDumped && bAVIDumping)
AVIDump::Stop();
#else
if (pFrameDump.IsOpen())
pFrameDump.Close();
#endif
}
void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbWidth, u32 fbHeight, float Gamma)
{
CheckFifoRecording();
if (!fbWidth || !fbHeight)
return;
s_skipSwap = g_bSkipCurrentFrame;
VideoFifo_CheckEFBAccess();
VideoFifo_CheckSwapRequestAt(xfbAddr, fbWidth, fbHeight);
XFBWrited = true;
if (g_ActiveConfig.bUseXFB)
{
FramebufferManagerBase::CopyToXFB(xfbAddr, fbWidth, fbHeight, sourceRc,Gamma);
}
else
{
Swap(xfbAddr, fbWidth, fbHeight,sourceRc,Gamma);
Common::AtomicStoreRelease(s_swapRequested, false);
}
}
int Renderer::EFBToScaledX(int x)
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbWidth(x, s_backbuffer_width);
default:
return x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
};
}
int Renderer::EFBToScaledY(int y)
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbHeight(y, s_backbuffer_height);
default:
return y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
};
}
void Renderer::CalculateTargetScale(int x, int y, int &scaledX, int &scaledY)
{
if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL)
{
scaledX = x;
scaledY = y;
}
else
{
scaledX = x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
scaledY = y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
}
}
// return true if target size changed
bool Renderer::CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height)
{
int newEFBWidth, newEFBHeight;
// TODO: Ugly. Clean up
switch (s_LastEFBScale)
{
case 2: // 1x
efb_scale_numeratorX = efb_scale_numeratorY = 1;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
case 3: // 1.5x
efb_scale_numeratorX = efb_scale_numeratorY = 3;
efb_scale_denominatorX = efb_scale_denominatorY = 2;
break;
case 4: // 2x
efb_scale_numeratorX = efb_scale_numeratorY = 2;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
case 5: // 2.5x
efb_scale_numeratorX = efb_scale_numeratorY = 5;
efb_scale_denominatorX = efb_scale_denominatorY = 2;
break;
case 6: // 3x
efb_scale_numeratorX = efb_scale_numeratorY = 3;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
case 7: // 4x
efb_scale_numeratorX = efb_scale_numeratorY = 4;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
default: // fractional & integral handled later
break;
}
switch (s_LastEFBScale)
{
case 0: // fractional
case 1: // integral
newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH, framebuffer_width);
newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT, framebuffer_height);
if (s_LastEFBScale == 1)
{
newEFBWidth = ((newEFBWidth-1) / EFB_WIDTH + 1) * EFB_WIDTH;
newEFBHeight = ((newEFBHeight-1) / EFB_HEIGHT + 1) * EFB_HEIGHT;
}
efb_scale_numeratorX = newEFBWidth;
efb_scale_denominatorX = EFB_WIDTH;
efb_scale_numeratorY = newEFBHeight;
efb_scale_denominatorY = EFB_HEIGHT;
break;
default:
CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, newEFBWidth, newEFBHeight);
break;
}
if (newEFBWidth != s_target_width || newEFBHeight != s_target_height)
{
s_target_width = newEFBWidth;
s_target_height = newEFBHeight;
return true;
}
return false;
}
void Renderer::SetScreenshot(const std::string& filename)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
s_sScreenshotName = filename;
s_bScreenshot = true;
}
// Create On-Screen-Messages
void Renderer::DrawDebugText()
{
// OSD Menu messages
if (OSDChoice > 0)
{
OSDTime = Common::Timer::GetTimeMs() + 3000;
OSDChoice = -OSDChoice;
}
if ((u32)OSDTime <= Common::Timer::GetTimeMs())
return;
const char* res_text = "";
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO:
res_text = "Auto (fractional)";
break;
case SCALE_AUTO_INTEGRAL:
res_text = "Auto (integral)";
break;
case SCALE_1X:
res_text = "Native";
break;
case SCALE_1_5X:
res_text = "1.5x";
break;
case SCALE_2X:
res_text = "2x";
break;
case SCALE_2_5X:
res_text = "2.5x";
break;
case SCALE_3X:
res_text = "3x";
break;
case SCALE_4X:
res_text = "4x";
break;
}
const char* ar_text = "";
switch (g_ActiveConfig.iAspectRatio)
{
case ASPECT_AUTO:
ar_text = "Auto";
break;
case ASPECT_FORCE_16_9:
ar_text = "16:9";
break;
case ASPECT_FORCE_4_3:
ar_text = "4:3";
break;
case ASPECT_STRETCH:
ar_text = "Stretch";
break;
}
const char* const efbcopy_text = g_ActiveConfig.bEFBCopyEnable ?
(g_ActiveConfig.bCopyEFBToTexture ? "to Texture" : "to RAM") : "Disabled";
// The rows
const std::string lines[] =
{
std::string("3: Internal Resolution: ") + res_text,
std::string("4: Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""),
std::string("5: Copy EFB: ") + efbcopy_text,
std::string("6: Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"),
};
enum { lines_count = sizeof(lines)/sizeof(*lines) };
std::string final_yellow, final_cyan;
// If there is more text than this we will have a collision
if (g_ActiveConfig.bShowFPS)
{
final_yellow = final_cyan = "\n\n";
}
// The latest changed setting in yellow
for (int i = 0; i != lines_count; ++i)
{
if (OSDChoice == -i - 1)
final_yellow += lines[i];
final_yellow += '\n';
}
// The other settings in cyan
for (int i = 0; i != lines_count; ++i)
{
if (OSDChoice != -i - 1)
final_cyan += lines[i];
final_cyan += '\n';
}
// Render a shadow
g_renderer->RenderText(final_cyan, 21, 21, 0xDD000000);
g_renderer->RenderText(final_yellow, 21, 21, 0xDD000000);
//and then the text
g_renderer->RenderText(final_cyan, 20, 20, 0xFF00FFFF);
g_renderer->RenderText(final_yellow, 20, 20, 0xFFFFFF00);
}
// TODO: remove
extern bool g_aspect_wide;
void Renderer::UpdateDrawRectangle(int backbuffer_width, int backbuffer_height)
{
float FloatGLWidth = (float)backbuffer_width;
float FloatGLHeight = (float)backbuffer_height;
float FloatXOffset = 0;
float FloatYOffset = 0;
// The rendering window size
const float WinWidth = FloatGLWidth;
const float WinHeight = FloatGLHeight;
// Handle aspect ratio.
// Default to auto.
bool use16_9 = g_aspect_wide;
// Update aspect ratio hack values
// Won't take effect until next frame
// Don't know if there is a better place for this code so there isn't a 1 frame delay
if ( g_ActiveConfig.bWidescreenHack )
{
float source_aspect = use16_9 ? (16.0f / 9.0f) : (4.0f / 3.0f);
float target_aspect;
switch ( g_ActiveConfig.iAspectRatio )
{
case ASPECT_FORCE_16_9 :
target_aspect = 16.0f / 9.0f;
break;
case ASPECT_FORCE_4_3 :
target_aspect = 4.0f / 3.0f;
break;
case ASPECT_STRETCH :
target_aspect = WinWidth / WinHeight;
break;
default :
// ASPECT_AUTO == no hacking
target_aspect = source_aspect;
break;
}
float adjust = source_aspect / target_aspect;
if ( adjust > 1 )
{
// Vert+
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1/adjust;
}
else
{
// Hor+
g_Config.fAspectRatioHackW = adjust;
g_Config.fAspectRatioHackH = 1;
}
}
else
{
// Hack is disabled
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1;
}
// Check for force-settings and override.
if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9)
use16_9 = true;
else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3)
use16_9 = false;
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
float Ratio = (WinWidth / WinHeight) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f));
// Check if height or width is the limiting factor. If ratio > 1 the picture is too wide and have to limit the width.
if (Ratio > 1.0f)
{
// Scale down and center in the X direction.
FloatGLWidth /= Ratio;
FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f;
}
// The window is too high, we have to limit the height
else
{
// Scale down and center in the Y direction.
FloatGLHeight *= Ratio;
FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f;
}
}
// -----------------------------------------------------------------------
// Crop the picture from 4:3 to 5:4 or from 16:9 to 16:10.
// Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset
// ------------------
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop)
{
float Ratio = !use16_9 ? ((4.0f / 3.0f) / (5.0f / 4.0f)) : (((16.0f / 9.0f) / (16.0f / 10.0f)));
// The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is adjusted)
float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth;
float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight;
// The new width and height
FloatGLWidth = FloatGLWidth * Ratio;
FloatGLHeight = FloatGLHeight * Ratio;
// Adjust the X and Y offset
FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f);
FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f);
}
int XOffset = (int)(FloatXOffset + 0.5f);
int YOffset = (int)(FloatYOffset + 0.5f);
int iWhidth = (int)ceil(FloatGLWidth);
int iHeight = (int)ceil(FloatGLHeight);
iWhidth -= iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders
iHeight -= iHeight % 4;
target_rc.left = XOffset;
target_rc.top = YOffset;
target_rc.right = XOffset + iWhidth;
target_rc.bottom = YOffset + iHeight;
}
void Renderer::SetWindowSize(int width, int height)
{
if (width < 1)
width = 1;
if (height < 1)
height = 1;
// Scale the window size by the EFB scale.
CalculateTargetScale(width, height, width, height);
Host_RequestRenderWindowSize(width, height);
}
void Renderer::CheckFifoRecording()
{
bool wasRecording = g_bRecordFifoData;
g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
if (g_bRecordFifoData)
{
if (!wasRecording)
{
RecordVideoMemory();
}
FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd);
}
}
void Renderer::RecordVideoMemory()
{
u32 *bpmem_ptr = (u32*)&bpmem;
u32 cpmem[256];
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
// that split here.
u32 *xfmem_ptr = (u32*)&xfmem;
u32 *xfregs_ptr = (u32*)&xfmem + FifoDataFile::XF_MEM_SIZE;
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
memset(cpmem, 0, 256 * 4);
FillCPMemoryArray(cpmem);
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size);
}
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& rc, float Gamma)
{
// TODO: merge more generic parts into VideoCommon
g_renderer->SwapImpl(xfbAddr, fbWidth, fbHeight, rc, Gamma);
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
}