dolphin/Source/Core/Core/CoreTiming.h

220 lines
6.8 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
// This is a system to schedule events into the emulated machine's future. Time is measured
// in main CPU clock cycles.
// To schedule an event, you first have to register its type. This is where you pass in the
// callback. You then schedule events using the type id you get back.
// See HW/SystemTimers.cpp for the main part of Dolphin's usage of this scheduler.
// The int cyclesLate that the callbacks get is how many cycles late it was.
// So to schedule a new event on a regular basis:
// inside callback:
// ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
#include <compare>
#include <mutex>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/SPSCQueue.h"
#include "Core/CPUThreadConfigCallback.h"
class PointerWrap;
namespace Core
{
class System;
}
namespace CoreTiming
{
// These really shouldn't be global, but jit64 accesses them directly
struct Globals
{
s64 global_timer = 0;
int slice_length = 0;
u64 fake_TB_start_value = 0;
u64 fake_TB_start_ticks = 0;
float last_OC_factor_inverted = 0.0f;
};
typedef void (*TimedCallback)(Core::System& system, u64 userdata, s64 cyclesLate);
struct EventType
{
TimedCallback callback;
const std::string* name;
};
struct Event
{
s64 time;
u64 fifo_order;
u64 userdata;
EventType* type;
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
constexpr auto operator<=>(const Event& other) const
{
return std::tie(time, fifo_order) <=> std::tie(other.time, other.fifo_order);
}
constexpr bool operator==(const Event& other) const
{
return std::tie(time, fifo_order) == std::tie(other.time, other.fifo_order);
}
};
enum class FromThread
{
CPU,
NON_CPU,
// Don't use ANY unless you're sure you need to call from
// both the CPU thread and at least one other thread
ANY
};
// helpers until the JIT is updated to use the instance
void GlobalAdvance();
void GlobalIdle();
class CoreTimingManager
{
public:
explicit CoreTimingManager(Core::System& system);
// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
// required to end slice -1 and start slice 0 before the first cycle of code is executed.
void Init();
void Shutdown();
// This should only be called from the CPU thread, if you are calling it any other thread, you are
// doing something evil
u64 GetTicks() const;
u64 GetIdleTicks() const;
void RefreshConfig();
void DoState(PointerWrap& p);
// Returns the event_type identifier. if name is not unique, an existing event_type will be
// discarded.
EventType* RegisterEvent(const std::string& name, TimedCallback callback);
void UnregisterAllEvents();
// userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from savestates.
// After the first Advance, the slice lengths and the downcount will be reduced whenever an event
// is scheduled earlier than the current values (when scheduled from the CPU Thread only).
// Scheduling from a callback will not update the downcount until the Advance() completes.
void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata = 0,
FromThread from = FromThread::CPU);
// We only permit one event of each type in the queue at a time.
void RemoveEvent(EventType* event_type);
void RemoveAllEvents(EventType* event_type);
// Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
// the previous timing slice and begins the next one, you must Advance from the previous
// slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an
// Advance() is required to initialize the slice length before the first cycle of emulated
// instructions is executed.
// NOTE: Advance updates the PowerPC downcount and performs a PPC external exception check.
void Advance();
void MoveEvents();
// Pretend that the main CPU has executed enough cycles to reach the next event.
void Idle();
// Clear all pending events. This should ONLY be done on exit or state load.
void ClearPendingEvents();
void LogPendingEvents() const;
std::string GetScheduledEventsSummary() const;
void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock);
u32 GetFakeDecStartValue() const;
void SetFakeDecStartValue(u32 val);
u64 GetFakeDecStartTicks() const;
void SetFakeDecStartTicks(u64 val);
u64 GetFakeTBStartValue() const;
void SetFakeTBStartValue(u64 val);
u64 GetFakeTBStartTicks() const;
void SetFakeTBStartTicks(u64 val);
void ForceExceptionCheck(s64 cycles);
// Directly accessed by the JIT.
Globals& GetGlobals() { return m_globals; }
// Throttle the CPU to the specified target cycle.
// Never used outside of CoreTiming, however it remains public
// in order to allow custom throttling implementations to be tested.
void Throttle(const s64 target_cycle);
TimePoint GetCPUTimePoint(s64 cyclesLate) const; // Used by Dolphin Analytics
bool GetVISkip() const; // Used By VideoInterface
bool UseSyncOnSkipIdle() const;
private:
Globals m_globals;
Core::System& m_system;
// unordered_map stores each element separately as a linked list node so pointers to elements
// remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, EventType> m_event_types;
// STATE_TO_SAVE
// The queue is a min-heap using std::ranges::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't accomodated
// by the standard adaptor class.
std::vector<Event> m_event_queue;
u64 m_event_fifo_id = 0;
std::mutex m_ts_write_lock;
Common::SPSCQueue<Event, false> m_ts_queue;
float m_last_oc_factor = 0.0f;
s64 m_idled_cycles = 0;
u32 m_fake_dec_start_value = 0;
u64 m_fake_dec_start_ticks = 0;
// Are we in a function that has been called from Advance()
bool m_is_global_timer_sane = false;
EventType* m_ev_lost = nullptr;
CPUThreadConfigCallback::ConfigChangedCallbackID m_registered_config_callback_id;
float m_config_oc_factor = 0.0f;
float m_config_oc_inv_factor = 0.0f;
bool m_config_sync_on_skip_idle = false;
s64 m_throttle_last_cycle = 0;
TimePoint m_throttle_deadline = Clock::now();
s64 m_throttle_clock_per_sec = 0;
s64 m_throttle_min_clock_per_sleep = 0;
bool m_throttle_disable_vi_int = false;
DT m_max_fallback = {};
DT m_max_variance = {};
double m_emulation_speed = 1.0;
void ResetThrottle(s64 cycle);
int DowncountToCycles(int downcount) const;
int CyclesToDowncount(int cycles) const;
};
} // namespace CoreTiming