dolphin/Source/Core/DiscIO/WIABlob.cpp

2074 lines
77 KiB
C++

// Copyright 2018 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "DiscIO/WIABlob.h"
#include <algorithm>
#include <array>
#include <cstring>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <type_traits>
#include <utility>
#include <fmt/format.h>
#include <zstd.h>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/Crypto/SHA1.h"
#include "Common/FileUtil.h"
#include "Common/IOFile.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/ScopeGuard.h"
#include "Common/Swap.h"
#include "DiscIO/Blob.h"
#include "DiscIO/DiscUtils.h"
#include "DiscIO/Filesystem.h"
#include "DiscIO/LaggedFibonacciGenerator.h"
#include "DiscIO/MultithreadedCompressor.h"
#include "DiscIO/Volume.h"
#include "DiscIO/VolumeWii.h"
#include "DiscIO/WIACompression.h"
#include "DiscIO/WiiEncryptionCache.h"
namespace DiscIO
{
static void PushBack(std::vector<u8>* vector, const u8* begin, const u8* end)
{
const size_t offset_in_vector = vector->size();
vector->resize(offset_in_vector + (end - begin));
std::copy(begin, end, vector->data() + offset_in_vector);
}
template <typename T>
static void PushBack(std::vector<u8>* vector, const T& x)
{
static_assert(std::is_trivially_copyable_v<T>);
const u8* x_ptr = reinterpret_cast<const u8*>(&x);
PushBack(vector, x_ptr, x_ptr + sizeof(T));
}
std::pair<int, int> GetAllowedCompressionLevels(WIARVZCompressionType compression_type, bool gui)
{
switch (compression_type)
{
case WIARVZCompressionType::Bzip2:
case WIARVZCompressionType::LZMA:
case WIARVZCompressionType::LZMA2:
return {1, 9};
case WIARVZCompressionType::Zstd:
// The actual minimum level can be gotten by calling ZSTD_minCLevel(). However, returning that
// would make the UI rather weird, because it is a negative number with very large magnitude.
// Note: Level 0 is a special number which means "default level" (level 3 as of this writing).
if (gui)
return {1, ZSTD_maxCLevel()};
else
return {ZSTD_minCLevel(), ZSTD_maxCLevel()};
default:
return {0, -1};
}
}
template <bool RVZ>
WIARVZFileReader<RVZ>::WIARVZFileReader(File::IOFile file, const std::string& path)
: m_file(std::move(file)), m_encryption_cache(this)
{
m_valid = Initialize(path);
}
template <bool RVZ>
WIARVZFileReader<RVZ>::~WIARVZFileReader() = default;
template <bool RVZ>
bool WIARVZFileReader<RVZ>::Initialize(const std::string& path)
{
if (!m_file.Seek(0, File::SeekOrigin::Begin) || !m_file.ReadArray(&m_header_1, 1))
return false;
if ((!RVZ && m_header_1.magic != WIA_MAGIC) || (RVZ && m_header_1.magic != RVZ_MAGIC))
return false;
const u32 version = RVZ ? RVZ_VERSION : WIA_VERSION;
const u32 version_read_compatible =
RVZ ? RVZ_VERSION_READ_COMPATIBLE : WIA_VERSION_READ_COMPATIBLE;
const u32 file_version = Common::swap32(m_header_1.version);
const u32 file_version_compatible = Common::swap32(m_header_1.version_compatible);
if (version < file_version_compatible || version_read_compatible > file_version)
{
ERROR_LOG_FMT(DISCIO, "Unsupported version {} in {}", VersionToString(file_version), path);
return false;
}
const auto header_1_actual_hash = Common::SHA1::CalculateDigest(
reinterpret_cast<const u8*>(&m_header_1), sizeof(m_header_1) - Common::SHA1::DIGEST_LEN);
if (m_header_1.header_1_hash != header_1_actual_hash)
return false;
if (Common::swap64(m_header_1.wia_file_size) != m_file.GetSize())
{
ERROR_LOG_FMT(DISCIO, "File size is incorrect for {}", path);
return false;
}
const u32 header_2_size = Common::swap32(m_header_1.header_2_size);
const u32 header_2_min_size = sizeof(WIAHeader2) - sizeof(WIAHeader2::compressor_data);
if (header_2_size < header_2_min_size)
return false;
std::vector<u8> header_2(header_2_size);
if (!m_file.ReadBytes(header_2.data(), header_2.size()))
return false;
const auto header_2_actual_hash = Common::SHA1::CalculateDigest(header_2);
if (m_header_1.header_2_hash != header_2_actual_hash)
return false;
std::memcpy(&m_header_2, header_2.data(), std::min(header_2.size(), sizeof(WIAHeader2)));
if (m_header_2.compressor_data_size > sizeof(WIAHeader2::compressor_data) ||
header_2_size < header_2_min_size + m_header_2.compressor_data_size)
{
return false;
}
const u32 chunk_size = Common::swap32(m_header_2.chunk_size);
const auto is_power_of_two = [](u32 x) { return (x & (x - 1)) == 0; };
if ((!RVZ || chunk_size < VolumeWii::BLOCK_TOTAL_SIZE || !is_power_of_two(chunk_size)) &&
chunk_size % VolumeWii::GROUP_TOTAL_SIZE != 0)
{
return false;
}
const u32 compression_type = Common::swap32(m_header_2.compression_type);
m_compression_type = static_cast<WIARVZCompressionType>(compression_type);
if (m_compression_type > (RVZ ? WIARVZCompressionType::Zstd : WIARVZCompressionType::LZMA2) ||
(RVZ && m_compression_type == WIARVZCompressionType::Purge))
{
ERROR_LOG_FMT(DISCIO, "Unsupported compression type {} in {}", compression_type, path);
return false;
}
const size_t number_of_partition_entries = Common::swap32(m_header_2.number_of_partition_entries);
const size_t partition_entry_size = Common::swap32(m_header_2.partition_entry_size);
std::vector<u8> partition_entries(partition_entry_size * number_of_partition_entries);
if (!m_file.Seek(Common::swap64(m_header_2.partition_entries_offset), File::SeekOrigin::Begin))
return false;
if (!m_file.ReadBytes(partition_entries.data(), partition_entries.size()))
return false;
const auto partition_entries_actual_hash = Common::SHA1::CalculateDigest(partition_entries);
if (m_header_2.partition_entries_hash != partition_entries_actual_hash)
return false;
const size_t copy_length = std::min(partition_entry_size, sizeof(PartitionEntry));
const size_t memset_length = sizeof(PartitionEntry) - copy_length;
u8* ptr = partition_entries.data();
m_partition_entries.resize(number_of_partition_entries);
for (size_t i = 0; i < number_of_partition_entries; ++i, ptr += partition_entry_size)
{
std::memcpy(&m_partition_entries[i], ptr, copy_length);
std::memset(reinterpret_cast<u8*>(&m_partition_entries[i]) + copy_length, 0, memset_length);
}
for (size_t i = 0; i < m_partition_entries.size(); ++i)
{
const std::array<PartitionDataEntry, 2>& entries = m_partition_entries[i].data_entries;
size_t non_empty_entries = 0;
for (size_t j = 0; j < entries.size(); ++j)
{
const u32 number_of_sectors = Common::swap32(entries[j].number_of_sectors);
if (number_of_sectors != 0)
{
++non_empty_entries;
const u32 last_sector = Common::swap32(entries[j].first_sector) + number_of_sectors;
m_data_entries.emplace(last_sector * VolumeWii::BLOCK_TOTAL_SIZE, DataEntry(i, j));
}
}
if (non_empty_entries > 1)
{
if (Common::swap32(entries[0].first_sector) > Common::swap32(entries[1].first_sector))
return false;
}
}
const u32 number_of_raw_data_entries = Common::swap32(m_header_2.number_of_raw_data_entries);
m_raw_data_entries.resize(number_of_raw_data_entries);
Chunk& raw_data_entries =
ReadCompressedData(Common::swap64(m_header_2.raw_data_entries_offset),
Common::swap32(m_header_2.raw_data_entries_size),
number_of_raw_data_entries * sizeof(RawDataEntry), m_compression_type);
if (!raw_data_entries.ReadAll(&m_raw_data_entries))
return false;
for (size_t i = 0; i < m_raw_data_entries.size(); ++i)
{
const RawDataEntry& entry = m_raw_data_entries[i];
const u64 data_size = Common::swap64(entry.data_size);
if (data_size != 0)
m_data_entries.emplace(Common::swap64(entry.data_offset) + data_size, DataEntry(i));
}
const u32 number_of_group_entries = Common::swap32(m_header_2.number_of_group_entries);
m_group_entries.resize(number_of_group_entries);
Chunk& group_entries =
ReadCompressedData(Common::swap64(m_header_2.group_entries_offset),
Common::swap32(m_header_2.group_entries_size),
number_of_group_entries * sizeof(GroupEntry), m_compression_type);
if (!group_entries.ReadAll(&m_group_entries))
return false;
if (HasDataOverlap())
return false;
return true;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::HasDataOverlap() const
{
for (size_t i = 0; i < m_partition_entries.size(); ++i)
{
const std::array<PartitionDataEntry, 2>& entries = m_partition_entries[i].data_entries;
for (size_t j = 0; j < entries.size(); ++j)
{
if (Common::swap32(entries[j].number_of_sectors) == 0)
continue;
const u64 data_offset = Common::swap32(entries[j].first_sector) * VolumeWii::BLOCK_TOTAL_SIZE;
const auto it = m_data_entries.upper_bound(data_offset);
if (it == m_data_entries.end())
return true; // Not an overlap, but an error nonetheless
if (!it->second.is_partition || it->second.index != i || it->second.partition_data_index != j)
return true; // Overlap
}
}
for (size_t i = 0; i < m_raw_data_entries.size(); ++i)
{
if (Common::swap64(m_raw_data_entries[i].data_size) == 0)
continue;
const u64 data_offset = Common::swap64(m_raw_data_entries[i].data_offset);
const auto it = m_data_entries.upper_bound(data_offset);
if (it == m_data_entries.end())
return true; // Not an overlap, but an error nonetheless
if (it->second.is_partition || it->second.index != i)
return true; // Overlap
}
return false;
}
template <bool RVZ>
std::unique_ptr<WIARVZFileReader<RVZ>> WIARVZFileReader<RVZ>::Create(File::IOFile file,
const std::string& path)
{
std::unique_ptr<WIARVZFileReader> blob(new WIARVZFileReader(std::move(file), path));
return blob->m_valid ? std::move(blob) : nullptr;
}
template <bool RVZ>
BlobType WIARVZFileReader<RVZ>::GetBlobType() const
{
return RVZ ? BlobType::RVZ : BlobType::WIA;
}
template <bool RVZ>
std::string WIARVZFileReader<RVZ>::GetCompressionMethod() const
{
switch (m_compression_type)
{
case WIARVZCompressionType::Purge:
return "Purge";
case WIARVZCompressionType::Bzip2:
return "bzip2";
case WIARVZCompressionType::LZMA:
return "LZMA";
case WIARVZCompressionType::LZMA2:
return "LZMA2";
case WIARVZCompressionType::Zstd:
return "Zstandard";
default:
return {};
}
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::Read(u64 offset, u64 size, u8* out_ptr)
{
if (offset + size > Common::swap64(m_header_1.iso_file_size))
return false;
if (offset < sizeof(WIAHeader2::disc_header))
{
const u64 bytes_to_read = std::min(sizeof(WIAHeader2::disc_header) - offset, size);
std::memcpy(out_ptr, m_header_2.disc_header.data() + offset, bytes_to_read);
offset += bytes_to_read;
size -= bytes_to_read;
out_ptr += bytes_to_read;
}
const u32 chunk_size = Common::swap32(m_header_2.chunk_size);
while (size > 0)
{
const auto it = m_data_entries.upper_bound(offset);
if (it == m_data_entries.end())
return false;
const DataEntry& data = it->second;
if (data.is_partition)
{
const PartitionEntry& partition = m_partition_entries[it->second.index];
const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector);
const u64 partition_data_offset = partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
const u32 second_number_of_sectors =
Common::swap32(partition.data_entries[1].number_of_sectors);
const u32 partition_total_sectors =
second_number_of_sectors ? Common::swap32(partition.data_entries[1].first_sector) -
partition_first_sector + second_number_of_sectors :
Common::swap32(partition.data_entries[0].number_of_sectors);
for (const PartitionDataEntry& partition_data : partition.data_entries)
{
if (size == 0)
return true;
const u32 first_sector = Common::swap32(partition_data.first_sector);
const u32 number_of_sectors = Common::swap32(partition_data.number_of_sectors);
const u64 data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 data_size = number_of_sectors * VolumeWii::BLOCK_TOTAL_SIZE;
if (data_size == 0)
continue;
if (data_offset + data_size <= offset)
continue;
if (offset < data_offset)
return false;
const u64 bytes_to_read = std::min(data_size - (offset - data_offset), size);
m_exception_list.clear();
m_write_to_exception_list = true;
m_exception_list_last_group_index = std::numeric_limits<u64>::max();
Common::ScopeGuard guard([this] { m_write_to_exception_list = false; });
bool hash_exception_error = false;
if (!m_encryption_cache.EncryptGroups(
offset - partition_data_offset, bytes_to_read, out_ptr, partition_data_offset,
partition_total_sectors * VolumeWii::BLOCK_DATA_SIZE, partition.partition_key,
[this, &hash_exception_error](
VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP], u64 offset_) {
// EncryptGroups calls ReadWiiDecrypted, which calls ReadFromGroups,
// which populates m_exception_list when m_write_to_exception_list == true
if (!ApplyHashExceptions(m_exception_list, hash_blocks))
hash_exception_error = true;
}))
{
return false;
}
if (hash_exception_error)
return false;
offset += bytes_to_read;
size -= bytes_to_read;
out_ptr += bytes_to_read;
}
}
else
{
const RawDataEntry& raw_data = m_raw_data_entries[data.index];
if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_TOTAL_SIZE,
Common::swap64(raw_data.data_offset), Common::swap64(raw_data.data_size),
Common::swap32(raw_data.group_index),
Common::swap32(raw_data.number_of_groups), 0))
{
return false;
}
}
}
return true;
}
template <bool RVZ>
const typename WIARVZFileReader<RVZ>::PartitionEntry*
WIARVZFileReader<RVZ>::GetPartition(u64 partition_data_offset, u32* partition_first_sector) const
{
const auto it = m_data_entries.upper_bound(partition_data_offset);
if (it == m_data_entries.end() || !it->second.is_partition)
return nullptr;
const PartitionEntry* partition = &m_partition_entries[it->second.index];
*partition_first_sector = Common::swap32(partition->data_entries[0].first_sector);
if (partition_data_offset != *partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE)
return nullptr;
return partition;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::SupportsReadWiiDecrypted(u64 offset, u64 size,
u64 partition_data_offset) const
{
u32 partition_first_sector;
const PartitionEntry* partition = GetPartition(partition_data_offset, &partition_first_sector);
if (!partition)
return false;
for (const PartitionDataEntry& data : partition->data_entries)
{
const u32 start_sector = Common::swap32(data.first_sector) - partition_first_sector;
const u32 end_sector = start_sector + Common::swap32(data.number_of_sectors);
if (offset + size <= end_sector * VolumeWii::BLOCK_DATA_SIZE)
return true;
}
return false;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::ReadWiiDecrypted(u64 offset, u64 size, u8* out_ptr,
u64 partition_data_offset)
{
u32 partition_first_sector;
const PartitionEntry* partition = GetPartition(partition_data_offset, &partition_first_sector);
if (!partition)
return false;
const u64 chunk_size = Common::swap32(m_header_2.chunk_size) * VolumeWii::BLOCK_DATA_SIZE /
VolumeWii::BLOCK_TOTAL_SIZE;
for (const PartitionDataEntry& data : partition->data_entries)
{
if (size == 0)
return true;
const u64 data_offset =
(Common::swap32(data.first_sector) - partition_first_sector) * VolumeWii::BLOCK_DATA_SIZE;
const u64 data_size = Common::swap32(data.number_of_sectors) * VolumeWii::BLOCK_DATA_SIZE;
if (!ReadFromGroups(
&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_DATA_SIZE, data_offset,
data_size, Common::swap32(data.group_index), Common::swap32(data.number_of_groups),
std::max<u32>(1, static_cast<u32>(chunk_size / VolumeWii::GROUP_DATA_SIZE))))
{
return false;
}
}
return size == 0;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::ReadFromGroups(u64* offset, u64* size, u8** out_ptr, u64 chunk_size,
u32 sector_size, u64 data_offset, u64 data_size,
u32 group_index, u32 number_of_groups,
u32 exception_lists)
{
if (data_offset + data_size <= *offset)
return true;
if (*offset < data_offset)
return false;
const u64 skipped_data = data_offset % sector_size;
data_offset -= skipped_data;
data_size += skipped_data;
const u64 start_group_index = (*offset - data_offset) / chunk_size;
for (u64 i = start_group_index; i < number_of_groups && (*size) > 0; ++i)
{
const u64 total_group_index = group_index + i;
if (total_group_index >= m_group_entries.size())
return false;
const GroupEntry group = m_group_entries[total_group_index];
const u64 group_offset_in_data = i * chunk_size;
const u64 offset_in_group = *offset - group_offset_in_data - data_offset;
chunk_size = std::min(chunk_size, data_size - group_offset_in_data);
const u64 bytes_to_read = std::min(chunk_size - offset_in_group, *size);
u32 group_data_size = Common::swap32(group.data_size);
WIARVZCompressionType compression_type = m_compression_type;
u32 rvz_packed_size = 0;
if constexpr (RVZ)
{
if ((group_data_size & 0x80000000) == 0)
compression_type = WIARVZCompressionType::None;
group_data_size &= 0x7FFFFFFF;
rvz_packed_size = Common::swap32(group.rvz_packed_size);
}
if (group_data_size == 0)
{
std::memset(*out_ptr, 0, bytes_to_read);
}
else
{
const u64 group_offset_in_file = static_cast<u64>(Common::swap32(group.data_offset)) << 2;
Chunk& chunk =
ReadCompressedData(group_offset_in_file, group_data_size, chunk_size, compression_type,
exception_lists, rvz_packed_size, group_offset_in_data);
if (!chunk.Read(offset_in_group, bytes_to_read, *out_ptr))
{
m_cached_chunk_offset = std::numeric_limits<u64>::max(); // Invalidate the cache
return false;
}
if (m_write_to_exception_list && m_exception_list_last_group_index != total_group_index)
{
const u64 exception_list_index = offset_in_group / VolumeWii::GROUP_DATA_SIZE;
const u16 additional_offset =
static_cast<u16>(group_offset_in_data % VolumeWii::GROUP_DATA_SIZE /
VolumeWii::BLOCK_DATA_SIZE * VolumeWii::BLOCK_HEADER_SIZE);
chunk.GetHashExceptions(&m_exception_list, exception_list_index, additional_offset);
m_exception_list_last_group_index = total_group_index;
}
}
*offset += bytes_to_read;
*size -= bytes_to_read;
*out_ptr += bytes_to_read;
}
return true;
}
template <bool RVZ>
typename WIARVZFileReader<RVZ>::Chunk&
WIARVZFileReader<RVZ>::ReadCompressedData(u64 offset_in_file, u64 compressed_size,
u64 decompressed_size,
WIARVZCompressionType compression_type,
u32 exception_lists, u32 rvz_packed_size, u64 data_offset)
{
if (offset_in_file == m_cached_chunk_offset)
return m_cached_chunk;
std::unique_ptr<Decompressor> decompressor;
switch (compression_type)
{
case WIARVZCompressionType::None:
decompressor = std::make_unique<NoneDecompressor>();
break;
case WIARVZCompressionType::Purge:
decompressor = std::make_unique<PurgeDecompressor>(rvz_packed_size == 0 ? decompressed_size :
rvz_packed_size);
break;
case WIARVZCompressionType::Bzip2:
decompressor = std::make_unique<Bzip2Decompressor>();
break;
case WIARVZCompressionType::LZMA:
decompressor = std::make_unique<LZMADecompressor>(false, m_header_2.compressor_data,
m_header_2.compressor_data_size);
break;
case WIARVZCompressionType::LZMA2:
decompressor = std::make_unique<LZMADecompressor>(true, m_header_2.compressor_data,
m_header_2.compressor_data_size);
break;
case WIARVZCompressionType::Zstd:
decompressor = std::make_unique<ZstdDecompressor>();
break;
}
const bool compressed_exception_lists = compression_type > WIARVZCompressionType::Purge;
m_cached_chunk =
Chunk(&m_file, offset_in_file, compressed_size, decompressed_size, exception_lists,
compressed_exception_lists, rvz_packed_size, data_offset, std::move(decompressor));
m_cached_chunk_offset = offset_in_file;
return m_cached_chunk;
}
template <bool RVZ>
std::string WIARVZFileReader<RVZ>::VersionToString(u32 version)
{
const u8 a = version >> 24;
const u8 b = (version >> 16) & 0xff;
const u8 c = (version >> 8) & 0xff;
const u8 d = version & 0xff;
if (d == 0 || d == 0xff)
return fmt::format("{}.{:02x}.{:02x}", a, b, c);
else
return fmt::format("{}.{:02x}.{:02x}.beta{}", a, b, c, d);
}
template <bool RVZ>
WIARVZFileReader<RVZ>::Chunk::Chunk() = default;
template <bool RVZ>
WIARVZFileReader<RVZ>::Chunk::Chunk(File::IOFile* file, u64 offset_in_file, u64 compressed_size,
u64 decompressed_size, u32 exception_lists,
bool compressed_exception_lists, u32 rvz_packed_size,
u64 data_offset, std::unique_ptr<Decompressor> decompressor)
: m_decompressor(std::move(decompressor)), m_file(file), m_offset_in_file(offset_in_file),
m_exception_lists(exception_lists), m_compressed_exception_lists(compressed_exception_lists),
m_rvz_packed_size(rvz_packed_size), m_data_offset(data_offset)
{
constexpr size_t MAX_SIZE_PER_EXCEPTION_LIST =
Common::AlignUp(VolumeWii::BLOCK_HEADER_SIZE, Common::SHA1::DIGEST_LEN) /
Common::SHA1::DIGEST_LEN * VolumeWii::BLOCKS_PER_GROUP * sizeof(HashExceptionEntry) +
sizeof(u16);
m_out_bytes_allocated_for_exceptions =
m_compressed_exception_lists ? MAX_SIZE_PER_EXCEPTION_LIST * m_exception_lists : 0;
m_in.data.resize(compressed_size);
m_out.data.resize(decompressed_size + m_out_bytes_allocated_for_exceptions);
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::Chunk::Read(u64 offset, u64 size, u8* out_ptr)
{
if (!m_decompressor || !m_file ||
offset + size > m_out.data.size() - m_out_bytes_allocated_for_exceptions)
{
return false;
}
while (offset + size > GetOutBytesWrittenExcludingExceptions())
{
u64 bytes_to_read;
if (offset + size == m_out.data.size())
{
// Read all the remaining data.
bytes_to_read = m_in.data.size() - m_in.bytes_written;
}
else
{
// Pick a suitable amount of compressed data to read. We have to ensure that bytes_to_read
// is larger than 0 and smaller than or equal to the number of bytes available to read,
// but the rest is a bit arbitrary and could be changed.
// The compressed data is probably not much bigger than the decompressed data.
// Add a few bytes for possible compression overhead and for any hash exceptions.
bytes_to_read = offset + size - GetOutBytesWrittenExcludingExceptions() + 0x100;
// Align the access in an attempt to gain speed. But we don't actually know the
// block size of the underlying storage device, so we just use the Wii block size.
bytes_to_read =
Common::AlignUp(bytes_to_read + m_offset_in_file, VolumeWii::BLOCK_TOTAL_SIZE) -
m_offset_in_file;
// Ensure we don't read too much.
bytes_to_read = std::min<u64>(m_in.data.size() - m_in.bytes_written, bytes_to_read);
}
if (bytes_to_read == 0)
{
// Compressed size is larger than expected or decompressed size is smaller than expected
return false;
}
if (!m_file->Seek(m_offset_in_file, File::SeekOrigin::Begin))
return false;
if (!m_file->ReadBytes(m_in.data.data() + m_in.bytes_written, bytes_to_read))
return false;
m_offset_in_file += bytes_to_read;
m_in.bytes_written += bytes_to_read;
if (m_exception_lists > 0 && !m_compressed_exception_lists)
{
if (!HandleExceptions(m_in.data.data(), m_in.data.size(), m_in.bytes_written,
&m_in_bytes_used_for_exceptions, true))
{
return false;
}
m_in_bytes_read = m_in_bytes_used_for_exceptions;
}
if (m_exception_lists == 0 || m_compressed_exception_lists)
{
if (!Decompress())
return false;
}
if (m_exception_lists > 0 && m_compressed_exception_lists)
{
if (!HandleExceptions(m_out.data.data(), m_out_bytes_allocated_for_exceptions,
m_out.bytes_written, &m_out_bytes_used_for_exceptions, false))
{
return false;
}
if (m_rvz_packed_size != 0 && m_exception_lists == 0)
{
if (!Decompress())
return false;
}
}
if (m_exception_lists == 0)
{
const size_t expected_out_bytes = m_out.data.size() - m_out_bytes_allocated_for_exceptions +
m_out_bytes_used_for_exceptions;
if (m_out.bytes_written > expected_out_bytes)
return false; // Decompressed size is larger than expected
// The reason why we need the m_in.bytes_written == m_in.data.size() check as part of
// this conditional is because (for example) zstd can finish writing all data to m_out
// before becoming done if we've given it all input data except the checksum at the end.
if (m_out.bytes_written == expected_out_bytes && !m_decompressor->Done() &&
m_in.bytes_written == m_in.data.size())
{
return false; // Decompressed size is larger than expected
}
if (m_decompressor->Done() && m_in_bytes_read != m_in.data.size())
return false; // Compressed size is smaller than expected
}
}
std::memcpy(out_ptr, m_out.data.data() + offset + m_out_bytes_used_for_exceptions, size);
return true;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::Chunk::Decompress()
{
if (m_rvz_packed_size != 0 && m_exception_lists == 0)
{
const size_t bytes_to_move = m_out.bytes_written - m_out_bytes_used_for_exceptions;
DecompressionBuffer in{std::vector<u8>(bytes_to_move), bytes_to_move};
std::memcpy(in.data.data(), m_out.data.data() + m_out_bytes_used_for_exceptions, bytes_to_move);
m_out.bytes_written = m_out_bytes_used_for_exceptions;
m_decompressor = std::make_unique<RVZPackDecompressor>(std::move(m_decompressor), std::move(in),
m_data_offset, m_rvz_packed_size);
m_rvz_packed_size = 0;
}
return m_decompressor->Decompress(m_in, &m_out, &m_in_bytes_read);
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::Chunk::HandleExceptions(const u8* data, size_t bytes_allocated,
size_t bytes_written, size_t* bytes_used,
bool align)
{
while (m_exception_lists > 0)
{
if (sizeof(u16) + *bytes_used > bytes_allocated)
{
ERROR_LOG_FMT(DISCIO, "More hash exceptions than expected");
return false;
}
if (sizeof(u16) + *bytes_used > bytes_written)
return true;
const u16 exceptions = Common::swap16(data + *bytes_used);
size_t exception_list_size = exceptions * sizeof(HashExceptionEntry) + sizeof(u16);
if (align && m_exception_lists == 1)
exception_list_size = Common::AlignUp(*bytes_used + exception_list_size, 4) - *bytes_used;
if (exception_list_size + *bytes_used > bytes_allocated)
{
ERROR_LOG_FMT(DISCIO, "More hash exceptions than expected");
return false;
}
if (exception_list_size + *bytes_used > bytes_written)
return true;
*bytes_used += exception_list_size;
--m_exception_lists;
}
return true;
}
template <bool RVZ>
void WIARVZFileReader<RVZ>::Chunk::GetHashExceptions(
std::vector<HashExceptionEntry>* exception_list, u64 exception_list_index,
u16 additional_offset) const
{
ASSERT(m_exception_lists == 0);
const u8* data_start = m_compressed_exception_lists ? m_out.data.data() : m_in.data.data();
const u8* data = data_start;
for (u64 i = exception_list_index; i > 0; --i)
data += Common::swap16(data) * sizeof(HashExceptionEntry) + sizeof(u16);
const u16 exceptions = Common::swap16(data);
data += sizeof(u16);
for (size_t i = 0; i < exceptions; ++i)
{
std::memcpy(&exception_list->emplace_back(), data, sizeof(HashExceptionEntry));
data += sizeof(HashExceptionEntry);
u16& offset = exception_list->back().offset;
offset = Common::swap16(Common::swap16(offset) + additional_offset);
}
ASSERT(data <= data_start + (m_compressed_exception_lists ? m_out_bytes_used_for_exceptions :
m_in_bytes_used_for_exceptions));
}
template <bool RVZ>
size_t WIARVZFileReader<RVZ>::Chunk::GetOutBytesWrittenExcludingExceptions() const
{
return m_exception_lists == 0 ? m_out.bytes_written - m_out_bytes_used_for_exceptions : 0;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::ApplyHashExceptions(
const std::vector<HashExceptionEntry>& exception_list,
VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP])
{
for (const HashExceptionEntry& exception : exception_list)
{
const u16 offset = Common::swap16(exception.offset);
const size_t block_index = offset / VolumeWii::BLOCK_HEADER_SIZE;
if (block_index > VolumeWii::BLOCKS_PER_GROUP)
return false;
const size_t offset_in_block = offset % VolumeWii::BLOCK_HEADER_SIZE;
if (offset_in_block + Common::SHA1::DIGEST_LEN > VolumeWii::BLOCK_HEADER_SIZE)
return false;
std::memcpy(reinterpret_cast<u8*>(&hash_blocks[block_index]) + offset_in_block, &exception.hash,
Common::SHA1::DIGEST_LEN);
}
return true;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::PadTo4(File::IOFile* file, u64* bytes_written)
{
constexpr u32 ZEROES = 0;
const u64 bytes_to_write = Common::AlignUp(*bytes_written, 4) - *bytes_written;
if (bytes_to_write == 0)
return true;
*bytes_written += bytes_to_write;
return file->WriteBytes(&ZEROES, bytes_to_write);
}
template <bool RVZ>
void WIARVZFileReader<RVZ>::AddRawDataEntry(u64 offset, u64 size, int chunk_size, u32* total_groups,
std::vector<RawDataEntry>* raw_data_entries,
std::vector<DataEntry>* data_entries)
{
constexpr size_t SKIP_SIZE = sizeof(WIAHeader2::disc_header);
const u64 skip = offset < SKIP_SIZE ? std::min(SKIP_SIZE - offset, size) : 0;
offset += skip;
size -= skip;
if (size == 0)
return;
const u32 group_index = *total_groups;
const u32 groups = static_cast<u32>(Common::AlignUp(size, chunk_size) / chunk_size);
*total_groups += groups;
data_entries->emplace_back(raw_data_entries->size());
raw_data_entries->emplace_back(RawDataEntry{Common::swap64(offset), Common::swap64(size),
Common::swap32(group_index), Common::swap32(groups)});
}
template <bool RVZ>
typename WIARVZFileReader<RVZ>::PartitionDataEntry WIARVZFileReader<RVZ>::CreatePartitionDataEntry(
u64 offset, u64 size, u32 index, int chunk_size, u32* total_groups,
const std::vector<PartitionEntry>& partition_entries, std::vector<DataEntry>* data_entries)
{
const u32 group_index = *total_groups;
const u64 rounded_size = Common::AlignDown(size, VolumeWii::BLOCK_TOTAL_SIZE);
const u32 groups = static_cast<u32>(Common::AlignUp(rounded_size, chunk_size) / chunk_size);
*total_groups += groups;
data_entries->emplace_back(partition_entries.size(), index);
return PartitionDataEntry{Common::swap32(offset / VolumeWii::BLOCK_TOTAL_SIZE),
Common::swap32(size / VolumeWii::BLOCK_TOTAL_SIZE),
Common::swap32(group_index), Common::swap32(groups)};
}
template <bool RVZ>
ConversionResultCode WIARVZFileReader<RVZ>::SetUpDataEntriesForWriting(
const VolumeDisc* volume, int chunk_size, u64 iso_size, u32* total_groups,
std::vector<PartitionEntry>* partition_entries, std::vector<RawDataEntry>* raw_data_entries,
std::vector<DataEntry>* data_entries, std::vector<const FileSystem*>* partition_file_systems)
{
std::vector<Partition> partitions;
if (volume && volume->HasWiiHashes() && volume->HasWiiEncryption())
partitions = volume->GetPartitions();
std::sort(partitions.begin(), partitions.end(),
[](const Partition& a, const Partition& b) { return a.offset < b.offset; });
*total_groups = 0;
u64 last_partition_end_offset = 0;
const auto add_raw_data_entry = [&](u64 offset, u64 size) {
return AddRawDataEntry(offset, size, chunk_size, total_groups, raw_data_entries, data_entries);
};
const auto create_partition_data_entry = [&](u64 offset, u64 size, u32 index) {
return CreatePartitionDataEntry(offset, size, index, chunk_size, total_groups,
*partition_entries, data_entries);
};
for (const Partition& partition : partitions)
{
// If a partition is odd in some way that prevents us from encoding it as a partition,
// we encode it as raw data instead by skipping the current loop iteration.
// Partitions can always be encoded as raw data, but it is less space efficient.
if (partition.offset < last_partition_end_offset)
{
WARN_LOG_FMT(DISCIO, "Overlapping partitions at {:x}", partition.offset);
continue;
}
if (volume->ReadSwapped<u32>(partition.offset, PARTITION_NONE) != 0x10001U)
{
// This looks more like garbage data than an actual partition.
// The values of data_offset and data_size will very likely also be garbage.
// Some WBFS writing programs scrub the SSBB Masterpiece partitions without
// removing them from the partition table, causing this problem.
WARN_LOG_FMT(DISCIO, "Invalid partition at {:x}", partition.offset);
continue;
}
std::optional<u64> data_offset =
volume->ReadSwappedAndShifted(partition.offset + 0x2b8, PARTITION_NONE);
std::optional<u64> data_size =
volume->ReadSwappedAndShifted(partition.offset + 0x2bc, PARTITION_NONE);
if (!data_offset || !data_size)
return ConversionResultCode::ReadFailed;
const u64 data_start = partition.offset + *data_offset;
const u64 data_end = data_start + *data_size;
if (data_start % VolumeWii::BLOCK_TOTAL_SIZE != 0)
{
WARN_LOG_FMT(DISCIO, "Misaligned partition at {:x}", partition.offset);
continue;
}
if (*data_size < VolumeWii::BLOCK_TOTAL_SIZE)
{
WARN_LOG_FMT(DISCIO, "Very small partition at {:x}", partition.offset);
continue;
}
if (data_end > iso_size)
{
WARN_LOG_FMT(DISCIO, "Too large partition at {:x}", partition.offset);
*data_size = iso_size - *data_offset - partition.offset;
}
const std::optional<u64> fst_offset = GetFSTOffset(*volume, partition);
const std::optional<u64> fst_size = GetFSTSize(*volume, partition);
if (!fst_offset || !fst_size)
return ConversionResultCode::ReadFailed;
const IOS::ES::TicketReader& ticket = volume->GetTicket(partition);
if (!ticket.IsValid())
return ConversionResultCode::ReadFailed;
add_raw_data_entry(last_partition_end_offset, partition.offset - last_partition_end_offset);
add_raw_data_entry(partition.offset, *data_offset);
const u64 fst_end = volume->PartitionOffsetToRawOffset(*fst_offset + *fst_size, partition);
const u64 split_point = std::min(
data_end, Common::AlignUp(fst_end - data_start, VolumeWii::GROUP_TOTAL_SIZE) + data_start);
PartitionEntry partition_entry;
partition_entry.partition_key = ticket.GetTitleKey();
partition_entry.data_entries[0] =
create_partition_data_entry(data_start, split_point - data_start, 0);
partition_entry.data_entries[1] =
create_partition_data_entry(split_point, data_end - split_point, 1);
// Note: We can't simply set last_partition_end_offset to data_end,
// because construct_partition_data_entry may have rounded it
last_partition_end_offset =
(Common::swap32(partition_entry.data_entries[1].first_sector) +
Common::swap32(partition_entry.data_entries[1].number_of_sectors)) *
VolumeWii::BLOCK_TOTAL_SIZE;
partition_entries->emplace_back(std::move(partition_entry));
partition_file_systems->emplace_back(volume->GetFileSystem(partition));
}
add_raw_data_entry(last_partition_end_offset, iso_size - last_partition_end_offset);
return ConversionResultCode::Success;
}
template <bool RVZ>
std::optional<std::vector<u8>> WIARVZFileReader<RVZ>::Compress(Compressor* compressor,
const u8* data, size_t size)
{
if (compressor)
{
if (!compressor->Start(size) || !compressor->Compress(data, size) || !compressor->End())
return std::nullopt;
data = compressor->GetData();
size = compressor->GetSize();
}
return std::vector<u8>(data, data + size);
}
template <bool RVZ>
void WIARVZFileReader<RVZ>::SetUpCompressor(std::unique_ptr<Compressor>* compressor,
WIARVZCompressionType compression_type,
int compression_level, WIAHeader2* header_2)
{
switch (compression_type)
{
case WIARVZCompressionType::None:
*compressor = nullptr;
break;
case WIARVZCompressionType::Purge:
*compressor = std::make_unique<PurgeCompressor>();
break;
case WIARVZCompressionType::Bzip2:
*compressor = std::make_unique<Bzip2Compressor>(compression_level);
break;
case WIARVZCompressionType::LZMA:
case WIARVZCompressionType::LZMA2:
{
u8* compressor_data = nullptr;
u8* compressor_data_size = nullptr;
if (header_2)
{
compressor_data = header_2->compressor_data;
compressor_data_size = &header_2->compressor_data_size;
}
const bool lzma2 = compression_type == WIARVZCompressionType::LZMA2;
*compressor = std::make_unique<LZMACompressor>(lzma2, compression_level, compressor_data,
compressor_data_size);
break;
}
case WIARVZCompressionType::Zstd:
*compressor = std::make_unique<ZstdCompressor>(compression_level);
break;
}
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::TryReuse(std::map<ReuseID, GroupEntry>* reusable_groups,
std::mutex* reusable_groups_mutex,
OutputParametersEntry* entry)
{
if (entry->reused_group)
return true;
if (!entry->reuse_id)
return false;
std::lock_guard guard(*reusable_groups_mutex);
const auto it = reusable_groups->find(*entry->reuse_id);
if (it == reusable_groups->end())
return false;
entry->reused_group = it->second;
return true;
}
static bool AllAre(const std::vector<u8>& data, u8 x)
{
return std::all_of(data.begin(), data.end(), [x](u8 y) { return x == y; });
};
static bool AllAre(const u8* begin, const u8* end, u8 x)
{
return std::all_of(begin, end, [x](u8 y) { return x == y; });
};
static bool AllZero(const std::vector<u8>& data)
{
return AllAre(data, 0);
};
static bool AllSame(const std::vector<u8>& data)
{
return AllAre(data, data.front());
};
static bool AllSame(const u8* begin, const u8* end)
{
return AllAre(begin, end, *begin);
};
template <typename OutputParametersEntry>
static void RVZPack(const u8* in, OutputParametersEntry* out, u64 bytes_per_chunk, size_t chunks,
u64 total_size, u64 data_offset, bool multipart, bool allow_junk_reuse,
bool compression, const FileSystem* file_system)
{
using Seed = std::array<u32, LaggedFibonacciGenerator::SEED_SIZE>;
struct JunkInfo
{
size_t start_offset;
Seed seed;
};
constexpr size_t SEED_SIZE = LaggedFibonacciGenerator::SEED_SIZE * sizeof(u32);
// Maps end_offset -> (start_offset, seed)
std::map<size_t, JunkInfo> junk_info;
size_t position = 0;
while (position < total_size)
{
// Skip the 0 to 32 zero bytes that typically come after a file
size_t zeroes = 0;
while (position + zeroes < total_size && in[position + zeroes] == 0)
++zeroes;
// If there are very many zero bytes (perhaps the PRNG junk data has been scrubbed?)
// and we aren't using compression, it makes sense to encode the zero bytes as junk.
// If we are using compression, the compressor will likely encode zeroes better than we can
if (!compression && zeroes > SEED_SIZE)
junk_info.emplace(position + zeroes, JunkInfo{position, {}});
position += zeroes;
data_offset += zeroes;
const size_t bytes_to_read =
std::min(Common::AlignUp(data_offset + 1, VolumeWii::BLOCK_TOTAL_SIZE) - data_offset,
total_size - position);
const size_t data_offset_mod = static_cast<size_t>(data_offset % VolumeWii::BLOCK_TOTAL_SIZE);
Seed seed;
const size_t bytes_reconstructed = LaggedFibonacciGenerator::GetSeed(
in + position, bytes_to_read, data_offset_mod, seed.data());
if (bytes_reconstructed > 0)
junk_info.emplace(position + bytes_reconstructed, JunkInfo{position, seed});
if (file_system)
{
const std::unique_ptr<DiscIO::FileInfo> file_info =
file_system->FindFileInfo(data_offset + bytes_reconstructed);
// If we're at a file and there's more space in this block after the file,
// continue after the file instead of skipping to the next block
if (file_info)
{
const u64 file_end_offset = file_info->GetOffset() + file_info->GetSize();
if (file_end_offset < data_offset + bytes_to_read)
{
position += file_end_offset - data_offset;
data_offset = file_end_offset;
continue;
}
}
}
position += bytes_to_read;
data_offset += bytes_to_read;
}
for (size_t i = 0; i < chunks; ++i)
{
OutputParametersEntry& entry = out[i];
if (entry.reused_group)
continue;
u64 current_offset = i * bytes_per_chunk;
const u64 end_offset = std::min(current_offset + bytes_per_chunk, total_size);
const bool store_junk_efficiently = allow_junk_reuse || !entry.reuse_id;
// TODO: It would be possible to support skipping RVZ packing even when the chunk size is larger
// than 2 MiB (multipart == true), but it would be more effort than it's worth since Dolphin's
// converter doesn't expose chunk sizes larger than 2 MiB to the user anyway
bool first_loop_iteration = !multipart;
while (current_offset < end_offset)
{
u64 next_junk_start = end_offset;
u64 next_junk_end = end_offset;
Seed* seed = nullptr;
if (store_junk_efficiently && end_offset - current_offset > SEED_SIZE)
{
const auto next_junk_it = junk_info.upper_bound(current_offset + SEED_SIZE);
if (next_junk_it != junk_info.end() &&
next_junk_it->second.start_offset + SEED_SIZE < end_offset)
{
next_junk_start = std::max<u64>(current_offset, next_junk_it->second.start_offset);
next_junk_end = std::min<u64>(end_offset, next_junk_it->first);
seed = &next_junk_it->second.seed;
}
}
if (first_loop_iteration)
{
if (next_junk_start == end_offset)
{
// Storing this chunk without RVZ packing would be inefficient, so store it without
PushBack(&entry.main_data, in + current_offset, in + end_offset);
break;
}
first_loop_iteration = false;
}
const u64 non_junk_bytes = next_junk_start - current_offset;
if (non_junk_bytes > 0)
{
const u8* ptr = in + current_offset;
PushBack(&entry.main_data, Common::swap32(static_cast<u32>(non_junk_bytes)));
PushBack(&entry.main_data, ptr, ptr + non_junk_bytes);
current_offset += non_junk_bytes;
entry.rvz_packed_size += sizeof(u32) + non_junk_bytes;
}
const u64 junk_bytes = next_junk_end - current_offset;
if (junk_bytes > 0)
{
PushBack(&entry.main_data, Common::swap32(static_cast<u32>(junk_bytes) | 0x80000000));
PushBack(&entry.main_data, *seed);
current_offset += junk_bytes;
entry.rvz_packed_size += sizeof(u32) + SEED_SIZE;
}
}
}
}
template <typename OutputParametersEntry>
static void RVZPack(const u8* in, OutputParametersEntry* out, u64 size, u64 data_offset,
bool allow_junk_reuse, bool compression, const FileSystem* file_system)
{
RVZPack(in, out, size, 1, size, data_offset, false, allow_junk_reuse, compression, file_system);
}
template <bool RVZ>
ConversionResult<typename WIARVZFileReader<RVZ>::OutputParameters>
WIARVZFileReader<RVZ>::ProcessAndCompress(CompressThreadState* state, CompressParameters parameters,
const std::vector<PartitionEntry>& partition_entries,
const std::vector<DataEntry>& data_entries,
const FileSystem* file_system,
std::map<ReuseID, GroupEntry>* reusable_groups,
std::mutex* reusable_groups_mutex,
u64 chunks_per_wii_group, u64 exception_lists_per_chunk,
bool compressed_exception_lists, bool compression)
{
std::vector<OutputParametersEntry> output_entries;
if (!parameters.data_entry->is_partition)
{
OutputParametersEntry& entry = output_entries.emplace_back();
std::vector<u8>& data = parameters.data;
if (AllSame(data))
entry.reuse_id = ReuseID{WiiKey{}, data.size(), false, data.front()};
if constexpr (RVZ)
{
RVZPack(data.data(), output_entries.data(), data.size(), parameters.data_offset, true,
compression, file_system);
}
else
{
entry.main_data = std::move(data);
}
}
else
{
const PartitionEntry& partition_entry = partition_entries[parameters.data_entry->index];
auto aes_context = Common::AES::CreateContextDecrypt(partition_entry.partition_key.data());
const u64 groups = Common::AlignUp(parameters.data.size(), VolumeWii::GROUP_TOTAL_SIZE) /
VolumeWii::GROUP_TOTAL_SIZE;
ASSERT(parameters.data.size() % VolumeWii::BLOCK_TOTAL_SIZE == 0);
const u64 blocks = parameters.data.size() / VolumeWii::BLOCK_TOTAL_SIZE;
const u64 blocks_per_chunk = chunks_per_wii_group == 1 ?
exception_lists_per_chunk * VolumeWii::BLOCKS_PER_GROUP :
VolumeWii::BLOCKS_PER_GROUP / chunks_per_wii_group;
const u64 chunks = Common::AlignUp(blocks, blocks_per_chunk) / blocks_per_chunk;
const u64 in_data_per_chunk = blocks_per_chunk * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 out_data_per_chunk = blocks_per_chunk * VolumeWii::BLOCK_DATA_SIZE;
const size_t first_chunk = output_entries.size();
const auto create_reuse_id = [&partition_entry, blocks,
blocks_per_chunk](u8 value, bool encrypted, u64 block) {
const u64 size = std::min(blocks - block, blocks_per_chunk) * VolumeWii::BLOCK_DATA_SIZE;
return ReuseID{partition_entry.partition_key, size, encrypted, value};
};
const u8* parameters_data_end = parameters.data.data() + parameters.data.size();
for (u64 i = 0; i < chunks; ++i)
{
const u64 block_index = i * blocks_per_chunk;
OutputParametersEntry& entry = output_entries.emplace_back();
std::optional<ReuseID>& reuse_id = entry.reuse_id;
// Set this chunk as reusable if the encrypted data is AllSame
const u8* data = parameters.data.data() + block_index * VolumeWii::BLOCK_TOTAL_SIZE;
if (AllSame(data, std::min(parameters_data_end, data + in_data_per_chunk)))
reuse_id = create_reuse_id(parameters.data.front(), true, i * blocks_per_chunk);
TryReuse(reusable_groups, reusable_groups_mutex, &entry);
if (!entry.reused_group && reuse_id)
{
const auto it = std::find_if(output_entries.begin(), output_entries.begin() + i,
[reuse_id](const auto& e) { return e.reuse_id == reuse_id; });
if (it != output_entries.begin() + i)
entry.reused_group = it->reused_group;
}
}
if (!std::all_of(output_entries.begin(), output_entries.end(),
[](const OutputParametersEntry& entry) { return entry.reused_group; }))
{
const u64 number_of_exception_lists =
chunks_per_wii_group == 1 ? exception_lists_per_chunk : chunks;
std::vector<std::vector<HashExceptionEntry>> exception_lists(number_of_exception_lists);
for (u64 i = 0; i < groups; ++i)
{
const u64 offset_of_group = i * VolumeWii::GROUP_TOTAL_SIZE;
const u64 write_offset_of_group = i * VolumeWii::GROUP_DATA_SIZE;
const u64 blocks_in_this_group =
std::min<u64>(VolumeWii::BLOCKS_PER_GROUP, blocks - i * VolumeWii::BLOCKS_PER_GROUP);
for (u32 j = 0; j < VolumeWii::BLOCKS_PER_GROUP; ++j)
{
if (j < blocks_in_this_group)
{
const u64 offset_of_block = offset_of_group + j * VolumeWii::BLOCK_TOTAL_SIZE;
VolumeWii::DecryptBlockData(parameters.data.data() + offset_of_block,
state->decryption_buffer[j].data(), aes_context.get());
}
else
{
state->decryption_buffer[j].fill(0);
}
}
VolumeWii::HashGroup(state->decryption_buffer.data(), state->hash_buffer.data());
for (u64 j = 0; j < blocks_in_this_group; ++j)
{
const u64 chunk_index = j / blocks_per_chunk;
const u64 block_index_in_chunk = j % blocks_per_chunk;
if (output_entries[chunk_index].reused_group)
continue;
const u64 exception_list_index = chunks_per_wii_group == 1 ? i : chunk_index;
const u64 offset_of_block = offset_of_group + j * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 hash_offset_of_block = block_index_in_chunk * VolumeWii::BLOCK_HEADER_SIZE;
VolumeWii::HashBlock hashes;
VolumeWii::DecryptBlockHashes(parameters.data.data() + offset_of_block, &hashes,
aes_context.get());
const auto compare_hash = [&](size_t offset_in_block) {
ASSERT(offset_in_block + Common::SHA1::DIGEST_LEN <= VolumeWii::BLOCK_HEADER_SIZE);
const u8* desired_hash = reinterpret_cast<u8*>(&hashes) + offset_in_block;
const u8* computed_hash =
reinterpret_cast<u8*>(&state->hash_buffer[j]) + offset_in_block;
// We want to store a hash exception either if there is a hash mismatch, or if this
// chunk might get reused in a context where it is paired up (within a 2 MiB Wii group)
// with chunks that are different from the chunks it currently is paired up with, since
// that affects the recalculated hashes. Chunks which have been marked as reusable at
// this point normally have zero matching hashes anyway, so this shouldn't waste space.
if ((chunks_per_wii_group != 1 && output_entries[chunk_index].reuse_id) ||
!std::equal(desired_hash, desired_hash + Common::SHA1::DIGEST_LEN, computed_hash))
{
const u64 hash_offset = hash_offset_of_block + offset_in_block;
ASSERT(hash_offset <= std::numeric_limits<u16>::max());
HashExceptionEntry& exception = exception_lists[exception_list_index].emplace_back();
exception.offset = static_cast<u16>(Common::swap16(hash_offset));
std::memcpy(exception.hash.data(), desired_hash, Common::SHA1::DIGEST_LEN);
}
};
const auto compare_hashes = [&compare_hash](size_t offset, size_t size) {
for (size_t l = 0; l < size; l += Common::SHA1::DIGEST_LEN)
// The std::min is to ensure that we don't go beyond the end of HashBlock with
// padding_2, which is 32 bytes long (not divisible by SHA1::DIGEST_LEN, which is 20).
compare_hash(offset + std::min(l, size - Common::SHA1::DIGEST_LEN));
};
using HashBlock = VolumeWii::HashBlock;
compare_hashes(offsetof(HashBlock, h0), sizeof(HashBlock::h0));
compare_hashes(offsetof(HashBlock, padding_0), sizeof(HashBlock::padding_0));
compare_hashes(offsetof(HashBlock, h1), sizeof(HashBlock::h1));
compare_hashes(offsetof(HashBlock, padding_1), sizeof(HashBlock::padding_1));
compare_hashes(offsetof(HashBlock, h2), sizeof(HashBlock::h2));
compare_hashes(offsetof(HashBlock, padding_2), sizeof(HashBlock::padding_2));
}
static_assert(std::is_trivially_copyable_v<
typename decltype(CompressThreadState::decryption_buffer)::value_type>);
if constexpr (RVZ)
{
// We must not store junk efficiently for chunks that may get reused at a position
// which has a different value of data_offset % VolumeWii::BLOCK_TOTAL_SIZE
const bool allow_junk_reuse = chunks_per_wii_group == 1;
const u64 bytes_per_chunk = std::min(out_data_per_chunk, VolumeWii::GROUP_DATA_SIZE);
const u64 total_size = blocks_in_this_group * VolumeWii::BLOCK_DATA_SIZE;
const u64 data_offset = parameters.data_offset + write_offset_of_group;
RVZPack(state->decryption_buffer[0].data(), output_entries.data() + first_chunk,
bytes_per_chunk, chunks, total_size, data_offset, groups > 1, allow_junk_reuse,
compression, file_system);
}
else
{
const u8* in_ptr = state->decryption_buffer[0].data();
for (u64 j = 0; j < chunks; ++j)
{
OutputParametersEntry& entry = output_entries[first_chunk + j];
if (!entry.reused_group)
{
const u64 bytes_left = (blocks - j * blocks_per_chunk) * VolumeWii::BLOCK_DATA_SIZE;
const u64 bytes_to_write_total = std::min(out_data_per_chunk, bytes_left);
if (i == 0)
entry.main_data.resize(bytes_to_write_total);
const u64 bytes_to_write = std::min(bytes_to_write_total, VolumeWii::GROUP_DATA_SIZE);
std::memcpy(entry.main_data.data() + write_offset_of_group, in_ptr, bytes_to_write);
// Set this chunk as reusable if the decrypted data is AllSame.
// There is also a requirement that it lacks exceptions, but this is checked later
if (i == 0 && !entry.reuse_id)
{
if (AllSame(in_ptr, in_ptr + bytes_to_write))
entry.reuse_id = create_reuse_id(*in_ptr, false, j * blocks_per_chunk);
}
else
{
if (entry.reuse_id && !entry.reuse_id->encrypted &&
(!AllSame(in_ptr, in_ptr + bytes_to_write) || entry.reuse_id->value != *in_ptr))
{
entry.reuse_id.reset();
}
}
}
in_ptr += out_data_per_chunk;
}
}
}
for (size_t i = 0; i < exception_lists.size(); ++i)
{
OutputParametersEntry& entry = output_entries[chunks_per_wii_group == 1 ? 0 : i];
if (entry.reused_group)
continue;
const std::vector<HashExceptionEntry>& in = exception_lists[i];
std::vector<u8>& out = entry.exception_lists;
const u16 exceptions = Common::swap16(static_cast<u16>(in.size()));
PushBack(&out, exceptions);
for (const HashExceptionEntry& exception : in)
PushBack(&out, exception);
}
for (u64 i = 0; i < output_entries.size(); ++i)
{
OutputParametersEntry& entry = output_entries[i];
// If this chunk was set as reusable because the decrypted data is AllSame,
// but it has exceptions, unmark it as reusable
if (entry.reuse_id && !entry.reuse_id->encrypted && !AllZero(entry.exception_lists))
entry.reuse_id.reset();
}
}
}
for (OutputParametersEntry& entry : output_entries)
{
TryReuse(reusable_groups, reusable_groups_mutex, &entry);
if (entry.reused_group)
continue;
// Special case - a compressed size of zero is treated by WIA as meaning the data is all zeroes
if (entry.reuse_id && !entry.reuse_id->encrypted && entry.reuse_id->value == 0)
{
entry.exception_lists.clear();
entry.main_data.clear();
if constexpr (RVZ)
{
entry.rvz_packed_size = 0;
entry.compressed = false;
}
continue;
}
const auto pad_exception_lists = [&entry]() {
while (entry.exception_lists.size() % 4 != 0)
entry.exception_lists.push_back(0);
};
if (state->compressor)
{
if (!state->compressor->Start(entry.exception_lists.size() + entry.main_data.size()))
return ConversionResultCode::InternalError;
}
if (!entry.exception_lists.empty())
{
if (compressed_exception_lists && state->compressor)
{
if (!state->compressor->Compress(entry.exception_lists.data(),
entry.exception_lists.size()))
{
return ConversionResultCode::InternalError;
}
}
else
{
if (!compressed_exception_lists)
pad_exception_lists();
if (state->compressor)
{
if (!state->compressor->AddPrecedingDataOnlyForPurgeHashing(entry.exception_lists.data(),
entry.exception_lists.size()))
{
return ConversionResultCode::InternalError;
}
}
}
}
if (state->compressor)
{
if (!state->compressor->Compress(entry.main_data.data(), entry.main_data.size()))
return ConversionResultCode::InternalError;
if (!state->compressor->End())
return ConversionResultCode::InternalError;
}
bool compressed = !!state->compressor;
if constexpr (RVZ)
{
size_t uncompressed_size = entry.main_data.size();
if (compressed_exception_lists)
uncompressed_size += Common::AlignUp(entry.exception_lists.size(), 4);
compressed = state->compressor && state->compressor->GetSize() < uncompressed_size;
entry.compressed = compressed;
if (!compressed)
pad_exception_lists();
}
if (compressed)
{
const u8* data = state->compressor->GetData();
const size_t size = state->compressor->GetSize();
entry.main_data.resize(size);
std::copy(data, data + size, entry.main_data.data());
if (compressed_exception_lists)
entry.exception_lists.clear();
}
}
return OutputParameters{std::move(output_entries), parameters.bytes_read, parameters.group_index};
}
template <bool RVZ>
ConversionResultCode WIARVZFileReader<RVZ>::Output(std::vector<OutputParametersEntry>* entries,
File::IOFile* outfile,
std::map<ReuseID, GroupEntry>* reusable_groups,
std::mutex* reusable_groups_mutex,
GroupEntry* group_entry, u64* bytes_written)
{
for (OutputParametersEntry& entry : *entries)
{
TryReuse(reusable_groups, reusable_groups_mutex, &entry);
if (entry.reused_group)
{
*group_entry = *entry.reused_group;
++group_entry;
continue;
}
if (*bytes_written >> 2 > std::numeric_limits<u32>::max())
return ConversionResultCode::InternalError;
ASSERT((*bytes_written & 3) == 0);
group_entry->data_offset = Common::swap32(static_cast<u32>(*bytes_written >> 2));
u32 data_size = static_cast<u32>(entry.exception_lists.size() + entry.main_data.size());
if constexpr (RVZ)
{
data_size = (data_size & 0x7FFFFFFF) | (static_cast<u32>(entry.compressed) << 31);
group_entry->rvz_packed_size = Common::swap32(static_cast<u32>(entry.rvz_packed_size));
}
group_entry->data_size = Common::swap32(data_size);
if (!outfile->WriteArray(entry.exception_lists.data(), entry.exception_lists.size()))
return ConversionResultCode::WriteFailed;
if (!outfile->WriteArray(entry.main_data.data(), entry.main_data.size()))
return ConversionResultCode::WriteFailed;
*bytes_written += entry.exception_lists.size() + entry.main_data.size();
if (entry.reuse_id)
{
std::lock_guard guard(*reusable_groups_mutex);
reusable_groups->emplace(*entry.reuse_id, *group_entry);
}
if (!PadTo4(outfile, bytes_written))
return ConversionResultCode::WriteFailed;
++group_entry;
}
return ConversionResultCode::Success;
}
template <bool RVZ>
ConversionResultCode WIARVZFileReader<RVZ>::RunCallback(size_t groups_written, u64 bytes_read,
u64 bytes_written, u32 total_groups,
u64 iso_size, CompressCB callback)
{
int ratio = 0;
if (bytes_read != 0)
ratio = static_cast<int>(100 * bytes_written / bytes_read);
const std::string text = Common::FmtFormatT("{0} of {1} blocks. Compression ratio {2}%",
groups_written, total_groups, ratio);
const float completion = static_cast<float>(bytes_read) / iso_size;
return callback(text, completion) ? ConversionResultCode::Success :
ConversionResultCode::Canceled;
}
template <bool RVZ>
bool WIARVZFileReader<RVZ>::WriteHeader(File::IOFile* file, const u8* data, size_t size,
u64 upper_bound, u64* bytes_written, u64* offset_out)
{
// The first part of the check is to prevent this from running more than once. If *bytes_written
// is past the upper bound, we are already at the end of the file, so we don't need to do anything
if (*bytes_written <= upper_bound && *bytes_written + size > upper_bound)
{
WARN_LOG_FMT(DISCIO,
"Headers did not fit in the allocated space. Writing to end of file instead");
if (!file->Seek(0, File::SeekOrigin::End))
return false;
*bytes_written = file->Tell();
}
*offset_out = *bytes_written;
if (!file->WriteArray(data, size))
return false;
*bytes_written += size;
return PadTo4(file, bytes_written);
}
template <bool RVZ>
ConversionResultCode
WIARVZFileReader<RVZ>::Convert(BlobReader* infile, const VolumeDisc* infile_volume,
File::IOFile* outfile, WIARVZCompressionType compression_type,
int compression_level, int chunk_size, CompressCB callback)
{
ASSERT(infile->GetDataSizeType() == DataSizeType::Accurate);
ASSERT(chunk_size > 0);
const u64 iso_size = infile->GetDataSize();
const u64 chunks_per_wii_group = std::max<u64>(1, VolumeWii::GROUP_TOTAL_SIZE / chunk_size);
const u64 exception_lists_per_chunk = std::max<u64>(1, chunk_size / VolumeWii::GROUP_TOTAL_SIZE);
const bool compressed_exception_lists = compression_type > WIARVZCompressionType::Purge;
u64 bytes_read = 0;
u64 bytes_written = 0;
size_t groups_processed = 0;
WIAHeader1 header_1{};
WIAHeader2 header_2{};
std::vector<PartitionEntry> partition_entries;
std::vector<RawDataEntry> raw_data_entries;
std::vector<GroupEntry> group_entries;
u32 total_groups;
std::vector<DataEntry> data_entries;
const FileSystem* non_partition_file_system =
infile_volume ? infile_volume->GetFileSystem(PARTITION_NONE) : nullptr;
std::vector<const FileSystem*> partition_file_systems;
const ConversionResultCode set_up_data_entries_result = SetUpDataEntriesForWriting(
infile_volume, chunk_size, iso_size, &total_groups, &partition_entries, &raw_data_entries,
&data_entries, &partition_file_systems);
if (set_up_data_entries_result != ConversionResultCode::Success)
return set_up_data_entries_result;
group_entries.resize(total_groups);
const size_t partition_entries_size = partition_entries.size() * sizeof(PartitionEntry);
const size_t raw_data_entries_size = raw_data_entries.size() * sizeof(RawDataEntry);
const size_t group_entries_size = group_entries.size() * sizeof(GroupEntry);
// An estimate for how much space will be taken up by headers.
// We will reserve this much space at the beginning of the file, and if the headers don't
// fit on that space, we will need to write them at the end of the file instead.
const u64 headers_size_upper_bound = [&] {
// 0x100 is added to account for compression overhead (in particular for Purge).
u64 upper_bound = sizeof(WIAHeader1) + sizeof(WIAHeader2) + partition_entries_size +
raw_data_entries_size + 0x100;
// RVZ's added data in GroupEntry usually compresses well, so we'll assume the compression ratio
// for RVZ GroupEntries is 9 / 16 or better. This constant is somehwat arbitrarily chosen, but
// no games were found that get a worse compression ratio than that. There are some games that
// get a worse ratio than 1 / 2, such as Metroid: Other M (PAL) with the default settings.
if (RVZ && compression_type > WIARVZCompressionType::Purge)
upper_bound += static_cast<u64>(group_entries_size) * 9 / 16;
else
upper_bound += group_entries_size;
// This alignment is also somewhat arbitrary.
return Common::AlignUp(upper_bound, VolumeWii::BLOCK_TOTAL_SIZE);
}();
std::vector<u8> buffer;
buffer.resize(headers_size_upper_bound);
outfile->WriteBytes(buffer.data(), buffer.size());
bytes_written = headers_size_upper_bound;
if (!infile->Read(0, header_2.disc_header.size(), header_2.disc_header.data()))
return ConversionResultCode::ReadFailed;
// We intentially do not increment bytes_read here, since these bytes will be read again
std::map<ReuseID, GroupEntry> reusable_groups;
std::mutex reusable_groups_mutex;
const auto set_up_compress_thread_state = [&](CompressThreadState* state) {
SetUpCompressor(&state->compressor, compression_type, compression_level, nullptr);
return ConversionResultCode::Success;
};
const auto process_and_compress = [&](CompressThreadState* state, CompressParameters parameters) {
const DataEntry& data_entry = *parameters.data_entry;
const FileSystem* file_system = data_entry.is_partition ?
partition_file_systems[data_entry.index] :
non_partition_file_system;
const bool compression = compression_type != WIARVZCompressionType::None;
return ProcessAndCompress(state, std::move(parameters), partition_entries, data_entries,
file_system, &reusable_groups, &reusable_groups_mutex,
chunks_per_wii_group, exception_lists_per_chunk,
compressed_exception_lists, compression);
};
const auto output = [&](OutputParameters parameters) {
const ConversionResultCode result =
Output(&parameters.entries, outfile, &reusable_groups, &reusable_groups_mutex,
&group_entries[parameters.group_index], &bytes_written);
if (result != ConversionResultCode::Success)
return result;
return RunCallback(parameters.group_index + parameters.entries.size(), parameters.bytes_read,
bytes_written, total_groups, iso_size, callback);
};
MultithreadedCompressor<CompressThreadState, CompressParameters, OutputParameters> mt_compressor(
set_up_compress_thread_state, process_and_compress, output);
for (const DataEntry& data_entry : data_entries)
{
u32 first_group;
u32 last_group;
u64 data_offset;
u64 data_size;
u64 data_offset_in_partition;
if (data_entry.is_partition)
{
const PartitionEntry& partition_entry = partition_entries[data_entry.index];
const PartitionDataEntry& partition_data_entry =
partition_entry.data_entries[data_entry.partition_data_index];
first_group = Common::swap32(partition_data_entry.group_index);
last_group = first_group + Common::swap32(partition_data_entry.number_of_groups);
const u32 first_sector = Common::swap32(partition_data_entry.first_sector);
data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
data_size =
Common::swap32(partition_data_entry.number_of_sectors) * VolumeWii::BLOCK_TOTAL_SIZE;
const u32 block_in_partition =
first_sector - Common::swap32(partition_entry.data_entries[0].first_sector);
data_offset_in_partition = block_in_partition * VolumeWii::BLOCK_DATA_SIZE;
}
else
{
const RawDataEntry& raw_data_entry = raw_data_entries[data_entry.index];
first_group = Common::swap32(raw_data_entry.group_index);
last_group = first_group + Common::swap32(raw_data_entry.number_of_groups);
data_offset = Common::swap64(raw_data_entry.data_offset);
data_size = Common::swap64(raw_data_entry.data_size);
const u64 skipped_data = data_offset % VolumeWii::BLOCK_TOTAL_SIZE;
data_offset -= skipped_data;
data_size += skipped_data;
data_offset_in_partition = data_offset;
}
ASSERT(groups_processed == first_group);
ASSERT(bytes_read == data_offset);
while (groups_processed < last_group)
{
const ConversionResultCode status = mt_compressor.GetStatus();
if (status != ConversionResultCode::Success)
return status;
u64 bytes_to_read = chunk_size;
if (data_entry.is_partition)
bytes_to_read = std::max<u64>(bytes_to_read, VolumeWii::GROUP_TOTAL_SIZE);
bytes_to_read = std::min<u64>(bytes_to_read, data_offset + data_size - bytes_read);
buffer.resize(bytes_to_read);
if (!infile->Read(bytes_read, bytes_to_read, buffer.data()))
return ConversionResultCode::ReadFailed;
bytes_read += bytes_to_read;
mt_compressor.CompressAndWrite(CompressParameters{
buffer, &data_entry, data_offset_in_partition, bytes_read, groups_processed});
data_offset += bytes_to_read;
data_size -= bytes_to_read;
if (data_entry.is_partition)
{
data_offset_in_partition +=
bytes_to_read / VolumeWii::BLOCK_TOTAL_SIZE * VolumeWii::BLOCK_DATA_SIZE;
}
else
{
data_offset_in_partition += bytes_to_read;
}
groups_processed += Common::AlignUp(bytes_to_read, chunk_size) / chunk_size;
}
ASSERT(data_size == 0);
}
ASSERT(groups_processed == total_groups);
ASSERT(bytes_read == iso_size);
mt_compressor.Shutdown();
const ConversionResultCode status = mt_compressor.GetStatus();
if (status != ConversionResultCode::Success)
return status;
std::unique_ptr<Compressor> compressor;
SetUpCompressor(&compressor, compression_type, compression_level, &header_2);
const std::optional<std::vector<u8>> compressed_raw_data_entries = Compress(
compressor.get(), reinterpret_cast<u8*>(raw_data_entries.data()), raw_data_entries_size);
if (!compressed_raw_data_entries)
return ConversionResultCode::InternalError;
const std::optional<std::vector<u8>> compressed_group_entries =
Compress(compressor.get(), reinterpret_cast<u8*>(group_entries.data()), group_entries_size);
if (!compressed_group_entries)
return ConversionResultCode::InternalError;
bytes_written = sizeof(WIAHeader1) + sizeof(WIAHeader2);
if (!outfile->Seek(sizeof(WIAHeader1) + sizeof(WIAHeader2), File::SeekOrigin::Begin))
return ConversionResultCode::WriteFailed;
u64 partition_entries_offset;
if (!WriteHeader(outfile, reinterpret_cast<u8*>(partition_entries.data()), partition_entries_size,
headers_size_upper_bound, &bytes_written, &partition_entries_offset))
{
return ConversionResultCode::WriteFailed;
}
u64 raw_data_entries_offset;
if (!WriteHeader(outfile, compressed_raw_data_entries->data(),
compressed_raw_data_entries->size(), headers_size_upper_bound, &bytes_written,
&raw_data_entries_offset))
{
return ConversionResultCode::WriteFailed;
}
u64 group_entries_offset;
if (!WriteHeader(outfile, compressed_group_entries->data(), compressed_group_entries->size(),
headers_size_upper_bound, &bytes_written, &group_entries_offset))
{
return ConversionResultCode::WriteFailed;
}
u32 disc_type = 0;
if (infile_volume)
{
if (infile_volume->GetVolumeType() == Platform::GameCubeDisc)
disc_type = 1;
else if (infile_volume->GetVolumeType() == Platform::WiiDisc)
disc_type = 2;
}
header_2.disc_type = Common::swap32(disc_type);
header_2.compression_type = Common::swap32(static_cast<u32>(compression_type));
header_2.compression_level =
static_cast<s32>(Common::swap32(static_cast<u32>(compression_level)));
header_2.chunk_size = Common::swap32(static_cast<u32>(chunk_size));
header_2.number_of_partition_entries = Common::swap32(static_cast<u32>(partition_entries.size()));
header_2.partition_entry_size = Common::swap32(sizeof(PartitionEntry));
header_2.partition_entries_offset = Common::swap64(partition_entries_offset);
header_2.partition_entries_hash = Common::SHA1::CalculateDigest(partition_entries);
header_2.number_of_raw_data_entries = Common::swap32(static_cast<u32>(raw_data_entries.size()));
header_2.raw_data_entries_offset = Common::swap64(raw_data_entries_offset);
header_2.raw_data_entries_size =
Common::swap32(static_cast<u32>(compressed_raw_data_entries->size()));
header_2.number_of_group_entries = Common::swap32(static_cast<u32>(group_entries.size()));
header_2.group_entries_offset = Common::swap64(group_entries_offset);
header_2.group_entries_size = Common::swap32(static_cast<u32>(compressed_group_entries->size()));
header_1.magic = RVZ ? RVZ_MAGIC : WIA_MAGIC;
header_1.version = Common::swap32(RVZ ? RVZ_VERSION : WIA_VERSION);
header_1.version_compatible =
Common::swap32(RVZ ? RVZ_VERSION_WRITE_COMPATIBLE : WIA_VERSION_WRITE_COMPATIBLE);
header_1.header_2_size = Common::swap32(sizeof(WIAHeader2));
header_1.header_2_hash =
Common::SHA1::CalculateDigest(reinterpret_cast<const u8*>(&header_2), sizeof(header_2));
header_1.iso_file_size = Common::swap64(infile->GetDataSize());
header_1.wia_file_size = Common::swap64(outfile->GetSize());
header_1.header_1_hash = Common::SHA1::CalculateDigest(reinterpret_cast<const u8*>(&header_1),
offsetof(WIAHeader1, header_1_hash));
if (!outfile->Seek(0, File::SeekOrigin::Begin))
return ConversionResultCode::WriteFailed;
if (!outfile->WriteArray(&header_1, 1))
return ConversionResultCode::WriteFailed;
if (!outfile->WriteArray(&header_2, 1))
return ConversionResultCode::WriteFailed;
return ConversionResultCode::Success;
}
bool ConvertToWIAOrRVZ(BlobReader* infile, const std::string& infile_path,
const std::string& outfile_path, bool rvz,
WIARVZCompressionType compression_type, int compression_level,
int chunk_size, CompressCB callback)
{
File::IOFile outfile(outfile_path, "wb");
if (!outfile)
{
PanicAlertFmtT(
"Failed to open the output file \"{0}\".\n"
"Check that you have permissions to write the target folder and that the media can "
"be written.",
outfile_path);
return false;
}
std::unique_ptr<VolumeDisc> infile_volume = CreateDisc(infile_path);
const auto convert = rvz ? RVZFileReader::Convert : WIAFileReader::Convert;
const ConversionResultCode result =
convert(infile, infile_volume.get(), &outfile, compression_type, compression_level,
chunk_size, callback);
if (result == ConversionResultCode::ReadFailed)
PanicAlertFmtT("Failed to read from the input file \"{0}\".", infile_path);
if (result == ConversionResultCode::WriteFailed)
{
PanicAlertFmtT("Failed to write the output file \"{0}\".\n"
"Check that you have enough space available on the target drive.",
outfile_path);
}
if (result != ConversionResultCode::Success)
{
// Remove the incomplete output file
outfile.Close();
File::Delete(outfile_path);
}
return result == ConversionResultCode::Success;
}
template class WIARVZFileReader<false>;
template class WIARVZFileReader<true>;
} // namespace DiscIO