dolphin/Source/Plugins/Plugin_WiimoteNew/Src/WiimoteEmu/WiimoteEmu.cpp

1004 lines
26 KiB
C++

#include "Attachment/Classic.h"
#include "Attachment/Nunchuk.h"
#include "Attachment/Guitar.h"
#include "Attachment/Drums.h"
#include "WiimoteEmu.h"
#include "WiimoteHid.h"
#include "../WiimoteReal/WiimoteReal.h"
#include "Timer.h"
#include "Common.h"
#include "UDPTLayer.h"
inline double round(double x) { return (x-floor(x))>0.5 ? ceil(x) : floor(x); } //because damn MSVSC doesen't comply to C99
#include "MatrixMath.h"
namespace WiimoteEmu
{
/* An example of a factory default first bytes of the Eeprom memory. There are differences between
different Wiimotes, my Wiimote had different neutral values for the accelerometer. */
static const u8 eeprom_data_0[] = {
// IR, maybe more
// assuming last 2 bytes are checksum
0xA1, 0xAA, 0x8B, 0x99, 0xAE, 0x9E, 0x78, 0x30, 0xA7, /*0x74, 0xD3,*/ 0x00, 0x00, // messing up the checksum on purpose
0xA1, 0xAA, 0x8B, 0x99, 0xAE, 0x9E, 0x78, 0x30, 0xA7, /*0x74, 0xD3,*/ 0x00, 0x00,
// Accelerometer
// 0g x,y,z, 1g x,y,z, idk, last byte is a checksum
0x80, 0x80, 0x80, 0x00, 0x9A, 0x9A, 0x9A, 0x00, 0x40, 0xE3,
0x80, 0x80, 0x80, 0x00, 0x9A, 0x9A, 0x9A, 0x00, 0x40, 0xE3,
};
static const u8 motion_plus_id[] = { 0x00, 0x00, 0xA6, 0x20, 0x00, 0x05 };
static const u8 eeprom_data_16D0[] = {
0x00, 0x00, 0x00, 0xFF, 0x11, 0xEE, 0x00, 0x00,
0x33, 0xCC, 0x44, 0xBB, 0x00, 0x00, 0x66, 0x99,
0x77, 0x88, 0x00, 0x00, 0x2B, 0x01, 0xE8, 0x13
};
const ReportFeatures reporting_mode_features[] =
{
//0x30: Core Buttons
{ 2, 0, 0, 0, 4 },
//0x31: Core Buttons and Accelerometer
{ 2, 4, 0, 0, 7 },
//0x32: Core Buttons with 8 Extension bytes
{ 2, 0, 0, 4, 12 },
//0x33: Core Buttons and Accelerometer with 12 IR bytes
{ 2, 4, 7, 0, 19 },
//0x34: Core Buttons with 19 Extension bytes
{ 2, 0, 0, 4, 23 },
//0x35: Core Buttons and Accelerometer with 16 Extension Bytes
{ 2, 4, 0, 7, 23 },
//0x36: Core Buttons with 10 IR bytes and 9 Extension Bytes
{ 2, 0, 4, 14, 23 },
//0x37: Core Buttons and Accelerometer with 10 IR bytes and 6 Extension Bytes
{ 2, 4, 7, 17, 23 },
//0x3d: 21 Extension Bytes
{ 0, 0, 0, 2, 23 },
//0x3e / 0x3f: Interleaved Core Buttons and Accelerometer with 36 IR bytes
// UNSUPPORTED
{ 0, 0, 0, 0, 23 },
};
void EmulateShake( AccelData* const accel
, ControllerEmu::Buttons* const buttons_group
, unsigned int* const shake_step )
{
static const double shake_data[] = { -2.5f, -5.0f, -2.5f, 0.0f, 2.5f, 5.0f, 2.5f, 0.0f };
static const unsigned int btns[] = { 0x01, 0x02, 0x04 };
unsigned int shake = 0;
buttons_group->GetState( &shake, btns );
for ( unsigned int i=0; i<3; ++i )
if (shake & (1 << i))
{
(&(accel->x))[i] = shake_data[shake_step[i]++];
shake_step[i] %= sizeof(shake_data)/sizeof(double);
}
else
shake_step[i] = 0;
}
void EmulateTilt(AccelData* const accel
, ControllerEmu::Tilt* const tilt_group
, const bool focus, const bool sideways, const bool upright)
{
float roll, pitch;
tilt_group->GetState( &roll, &pitch, 0, focus ? (PI / 2) : 0 ); // 90 degrees
unsigned int ud = 0, lr = 0, fb = 0;
// some notes that no one will understand but me :p
// left, forward, up
// lr/ left == negative for all orientations
// ud/ up == negative for upright longways
// fb/ forward == positive for (sideways flat)
// determine which axis is which direction
ud = upright ? (sideways ? 0 : 1) : 2;
lr = sideways;
fb = upright ? 2 : (sideways ? 0 : 1);
int sgn[3]={-1,1,1}; //sign fix
if (sideways && !upright)
sgn[fb] *= -1;
if (!sideways && upright)
sgn[ud] *= -1;
(&accel->x)[ud] = (sin((PI / 2) - std::max(fabsf(roll), fabsf(pitch))))*sgn[ud];
(&accel->x)[lr] = -sin(roll)*sgn[lr];
(&accel->x)[fb] = sin(pitch)*sgn[fb];
}
#define SWING_INTENSITY 2.5f//-uncalibrated(aprox) 0x40-calibrated
void EmulateSwing(AccelData* const accel
, ControllerEmu::Force* const swing_group
, const bool sideways, const bool upright)
{
float swing[3];
swing_group->GetState(swing, 0, 2 * PI);
s8 g_dir[3] = {-1, -1, -1};
u8 axis_map[3];
// determine which axis is which direction
axis_map[0] = upright ? (sideways ? 0 : 1) : 2; // up/down
axis_map[1] = sideways; // left|right
axis_map[2] = upright ? 2 : (sideways ? 0 : 1); // forward/backward
// some orientations have up as positive, some as negative
// same with forward
if (sideways && !upright)
g_dir[axis_map[2]] *= -1;
if (!sideways && upright)
g_dir[axis_map[0]] *= -1;
for (unsigned int i=0; i<3; ++i)
{
if (swing[i])
{
// sin() should create a nice curve for the swing data
(&accel->x)[axis_map[i]] += sin(swing[i]) * SWING_INTENSITY * g_dir[i];
}
}
}
const u16 button_bitmasks[] =
{
Wiimote::BUTTON_A,
Wiimote::BUTTON_B,
Wiimote::BUTTON_ONE,
Wiimote::BUTTON_TWO,
Wiimote::BUTTON_MINUS,
Wiimote::BUTTON_PLUS,
Wiimote::BUTTON_HOME
};
const u16 dpad_bitmasks[] =
{
Wiimote::PAD_UP, Wiimote::PAD_DOWN, Wiimote::PAD_LEFT, Wiimote::PAD_RIGHT
};
const u16 dpad_sideways_bitmasks[] =
{
Wiimote::PAD_RIGHT, Wiimote::PAD_LEFT, Wiimote::PAD_UP, Wiimote::PAD_DOWN
};
const char* const named_buttons[] =
{
"A", "B", "1", "2", "-", "+", "Home",
};
void Wiimote::Reset()
{
m_reporting_mode = WM_REPORT_CORE;
// i think these two are good
m_reporting_channel = 0;
m_reporting_auto = false;
m_rumble_on = false;
m_speaker_mute = false;
// will make the first Update() call send a status request
// the first call to RequestStatus() will then set up the status struct extension bit
m_extension->active_extension = -1;
// eeprom
memset(m_eeprom, 0, sizeof(m_eeprom));
// calibration data
memcpy(m_eeprom, eeprom_data_0, sizeof(eeprom_data_0));
// dunno what this is for, copied from old plugin
memcpy(m_eeprom + 0x16D0, eeprom_data_16D0, sizeof(eeprom_data_16D0));
// set up the register
m_register.clear();
m_register[0xa20000].resize(WIIMOTE_REG_SPEAKER_SIZE,0);
m_register[0xa40000].resize(WIIMOTE_REG_EXT_SIZE,0);
m_register[0xa60000].resize(WIIMOTE_REG_EXT_SIZE,0);
m_register[0xB00000].resize(WIIMOTE_REG_IR_SIZE,0);
m_reg_speaker = (SpeakerReg*)&m_register[0xa20000][0];
m_reg_ext = (ExtensionReg*)&m_register[0xa40000][0];
m_reg_motion_plus = &m_register[0xa60000][0];
m_reg_ir = (IrReg*)&m_register[0xB00000][0];
// testing
//memcpy(m_reg_motion_plus + 0xfa, motion_plus_id, sizeof(motion_plus_id));
// status
memset(&m_status, 0, sizeof(m_status));
// Battery levels in voltage
// 0x00 - 0x32: level 1
// 0x33 - 0x43: level 2
// 0x33 - 0x54: level 3
// 0x55 - 0xff: level 4
m_status.battery = 0x5f;
memset(m_shake_step, 0, sizeof(m_shake_step));
// clear read request queue
while (m_read_requests.size())
{
delete[] m_read_requests.front().data;
m_read_requests.pop();
}
}
Wiimote::Wiimote( const unsigned int index )
: m_index(index)
, ir_sin(0)
, ir_cos(1)
// , m_sound_stream( NULL )
{
// ---- set up all the controls ----
// buttons
groups.push_back(m_buttons = new Buttons("Buttons"));
for (unsigned int i=0; i < sizeof(named_buttons)/sizeof(*named_buttons); ++i)
m_buttons->controls.push_back(new ControlGroup::Input( named_buttons[i]));
// ir
groups.push_back(m_ir = new Cursor("IR", &g_WiimoteInitialize));
// swing
groups.push_back(m_swing = new Force("Swing"));
// tilt
groups.push_back(m_tilt = new Tilt("Tilt"));
// udp
groups.push_back(m_udp = new UDPWrapper(m_index, "UDP Wiimote"));
// shake
groups.push_back(m_shake = new Buttons("Shake"));
m_shake->controls.push_back(new ControlGroup::Input("X"));
m_shake->controls.push_back(new ControlGroup::Input("Y"));
m_shake->controls.push_back(new ControlGroup::Input("Z"));
// extension
groups.push_back(m_extension = new Extension("Extension"));
m_extension->attachments.push_back(new WiimoteEmu::None());
m_extension->attachments.push_back(new WiimoteEmu::Nunchuk(m_udp));
m_extension->attachments.push_back(new WiimoteEmu::Classic());
m_extension->attachments.push_back(new WiimoteEmu::Guitar());
m_extension->attachments.push_back(new WiimoteEmu::Drums());
// rumble
groups.push_back(m_rumble = new ControlGroup("Rumble"));
m_rumble->controls.push_back(new ControlGroup::Output("Motor"));
// dpad
groups.push_back(m_dpad = new Buttons("D-Pad"));
for (unsigned int i=0; i < 4; ++i)
m_dpad->controls.push_back(new ControlGroup::Input(named_directions[i]));
// options
groups.push_back( m_options = new ControlGroup("Options"));
m_options->settings.push_back(new ControlGroup::Setting("Background Input", false));
m_options->settings.push_back(new ControlGroup::Setting("Sideways Wiimote", false));
m_options->settings.push_back(new ControlGroup::Setting("Upright Wiimote", false));
#ifdef USE_WIIMOTE_EMU_SPEAKER
// set up speaker stuff
// this doesnt belong here
// TODO: i never clean up any of this audio stuff
if (0 == m_index) // very dumb
{
ALCdevice* pDevice;
ALchar DeviceName[] = "DirectSound3D";
pDevice = alcOpenDevice(DeviceName);
ALCcontext* pContext;
pContext = alcCreateContext(pDevice, NULL);
alcMakeContextCurrent(pContext);
}
alListener3f(AL_POSITION, 0.0, 0.0, 0.0);
alListener3f(AL_VELOCITY, 0.0, 0.0, 0.0);
alListener3f(AL_DIRECTION, 0.0, 0.0, 0.0);
alGenSources(1, &m_audio_source);
alSourcef(m_audio_source, AL_PITCH, 1.0);
alSourcef(m_audio_source, AL_GAIN, 1.0);
alSourcei(m_audio_source, AL_LOOPING, false);
#endif
// --- reset eeprom/register/values to default ---
Reset();
}
std::string Wiimote::GetName() const
{
return std::string("Wiimote") + char('1'+m_index);
}
// if windows is focused or background input is enabled
#define HAS_FOCUS (g_WiimoteInitialize.pRendererHasFocus() || (m_options->settings[0]->value != 0))
bool Wiimote::Step()
{
const bool has_focus = HAS_FOCUS;
const bool is_sideways = m_options->settings[1]->value != 0;
// no rumble if no focus
if (false == has_focus)
m_rumble_on = false;
m_rumble->controls[0]->control_ref->State(m_rumble_on);
// update buttons in status struct
m_status.buttons = 0;
if (has_focus)
{
m_buttons->GetState(&m_status.buttons, button_bitmasks);
m_dpad->GetState(&m_status.buttons, is_sideways ? dpad_sideways_bitmasks : dpad_bitmasks);
UDPTLayer::GetButtons(m_udp, &m_status.buttons);
}
// check if there is a read data request
if (m_read_requests.size())
{
ReadRequest& rr = m_read_requests.front();
// send up to 16 bytes to the wii
SendReadDataReply(rr);
//SendReadDataReply(rr.channel, rr);
// if there is no more data, remove from queue
if (0 == rr.size)
{
delete[] rr.data;
m_read_requests.pop();
}
// dont send any other reports
return true;
}
// check if a status report needs to be sent
// this happens on wiimote sync and when extensions are switched
if (m_extension->active_extension != m_extension->switch_extension)
{
RequestStatus();
// Wiibrew: Following a connection or disconnection event on the Extension Port,
// data reporting is disabled and the Data Reporting Mode must be reset before new data can arrive.
// after a game receives an unrequested status report,
// it expects data reports to stop until it sets the reporting mode again
m_reporting_auto = false;
return true;
}
return false;
}
void Wiimote::GetCoreData(u8* const data)
{
*(wm_core*)data |= m_status.buttons;
}
void Wiimote::GetAccelData(u8* const data, u8* const buttons)
{
const bool has_focus = HAS_FOCUS;
const bool is_sideways = m_options->settings[1]->value != 0;
const bool is_upright = m_options->settings[2]->value != 0;
// ----TILT----
EmulateTilt(&m_accel, m_tilt, has_focus, is_sideways, is_upright);
// ----SWING----
// ----SHAKE----
if (has_focus)
{
EmulateSwing(&m_accel, m_swing, is_sideways, is_upright);
EmulateShake(&m_accel, m_shake, m_shake_step);
// UDP Wiimote
UDPTLayer::GetAcceleration(m_udp, &m_accel);
}
wm_accel* dt = (wm_accel*)data;
accel_cal* calib = (accel_cal*)&m_eeprom[0x16];
double cx,cy,cz;
cx=trim(m_accel.x*(calib->one_g.x-calib->zero_g.x)+calib->zero_g.x);
cy=trim(m_accel.y*(calib->one_g.y-calib->zero_g.y)+calib->zero_g.y);
cz=trim(m_accel.z*(calib->one_g.z-calib->zero_g.z)+calib->zero_g.z);
dt->x=u8(cx);
dt->y=u8(cy);
dt->z=u8(cz);
if (buttons)
{
buttons[0]|=(u8(cx*4)&3)<<5;
buttons[1]|=((u8(cy*2)&1)<<5)|((u8(cz*2)&1)<<6);
}
}
#define kCutoffFreq 5.0f
inline void LowPassFilter(double & var, double newval, double period)
{
double RC=1.0/kCutoffFreq;
double alpha=period/(period+RC);
var = newval * alpha + var * (1.0 - alpha);
}
void Wiimote::GetIRData(u8* const data, bool use_accel)
{
const bool has_focus = HAS_FOCUS;
u16 x[4], y[4];
memset(x, 0xFF, sizeof(x));
if (has_focus)
{
float xx = 10000, yy = 0, zz = 0;
double nsin,ncos;
if (use_accel)
{
double ax,az,len;
ax=m_accel.x;
az=m_accel.z;
len=sqrt(ax*ax+az*az);
if (len)
{
ax/=len;
az/=len; //normalizing the vector
nsin=ax;
ncos=az;
} else
{
nsin=0;
ncos=1;
}
// PanicAlert("%d %d %d\nx:%f\nz:%f\nsin:%f\ncos:%f",accel->x,accel->y,accel->z,ax,az,sin,cos);
//PanicAlert("%d %d %d\n%d %d %d\n%d %d %d",accel->x,accel->y,accel->z,calib->zero_g.x,calib->zero_g.y,calib->zero_g.z,
// calib->one_g.x,calib->one_g.y,calib->one_g.z);
} else
{
nsin=0; //m_tilt stuff here (can't figure it out yet....)
ncos=1;
}
LowPassFilter(ir_sin,nsin,1.0f/60);
LowPassFilter(ir_cos,ncos,1.0f/60);
m_ir->GetState(&xx, &yy, &zz, true);
UDPTLayer::GetIR(m_udp, &xx, &yy, &zz);
Vertex v[4];
static const int camWidth=1024;
static const int camHeight=768;
static const double bndup=-0.315447;
static const double bnddown=0.85;
static const double bndleft=0.443364;
static const double bndright=-0.443364;
static const double dist1=100.f/camWidth; //this seems the optimal distance for zelda
static const double dist2=1.2f*dist1;
for (int i=0; i<4; i++)
{
v[i].x=xx*(bndright-bndleft)/2+(bndleft+bndright)/2;
v[i].y=yy*(bndup-bnddown)/2+(bndup+bnddown)/2;
v[i].z=0;
}
v[0].x-=(zz*0.5+1)*dist1;
v[1].x+=(zz*0.5+1)*dist1;
v[2].x-=(zz*0.5+1)*dist2;
v[3].x+=(zz*0.5+1)*dist2;
#define printmatrix(m) PanicAlert("%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n",m[0][0],m[0][1],m[0][2],m[0][3],m[1][0],m[1][1],m[1][2],m[1][3],m[2][0],m[2][1],m[2][2],m[2][3],m[3][0],m[3][1],m[3][2],m[3][3])
Matrix rot,tot;
static Matrix scale;
static bool isscale=false;
if (!isscale)
{
MatrixScale(scale,1,camWidth/camHeight,1);
//MatrixIdentity(scale);
}
MatrixRotationByZ(rot,ir_sin,ir_cos);
//MatrixIdentity(rot);
MatrixMultiply(tot,scale,rot);
for (int i=0; i<4; i++)
{
MatrixTransformVertex(tot,v[i]);
if ((v[i].x<-1)||(v[i].x>1)||(v[i].y<-1)||(v[i].y>1))
continue;
x[i]=(u16)round((v[i].x+1)/2*(camWidth-1));
y[i]=(u16)round((v[i].y+1)/2*(camHeight-1));
}
// PanicAlert("%f %f\n%f %f\n%f %f\n%f %f\n%d %d\n%d %d\n%d %d\n%d %d",
// v[0].x,v[0].y,v[1].x,v[1].y,v[2].x,v[2].y,v[3].x,v[3].y,
// x[0],y[0],x[1],y[1],x[2],y[2],x[3],y[38]);
}
// Fill report with valid data when full handshake was done
if (m_reg_ir->data[0x30])
// ir mode
switch (m_reg_ir->mode)
{
// basic
case 1 :
{
memset(data, 0xFF, 10);
wm_ir_basic* const irdata = (wm_ir_basic*)data;
for (unsigned int i=0; i<2; ++i)
{
if (x[i*2] < 1024 && y[i*2] < 768)
{
irdata[i].x1 = u8(x[i*2]);
irdata[i].x1hi = x[i*2] >> 8;
irdata[i].y1 = u8(y[i*2]);
irdata[i].y1hi = y[i*2] >> 8;
}
if (x[i*2+1] < 1024 && y[i*2+1] < 768)
{
irdata[i].x2 = u8(x[i*2+1]);
irdata[i].x2hi = x[i*2+1] >> 8;
irdata[i].y2 = u8(y[i*2+1]);
irdata[i].y2hi = y[i*2+1] >> 8;
}
}
}
break;
// extended
case 3 :
{
memset(data, 0xFF, 12);
wm_ir_extended* const irdata = (wm_ir_extended*)data;
for (unsigned int i=0; i<4; ++i)
if (x[i] < 1024 && y[i] < 768)
{
irdata[i].x = u8(x[i]);
irdata[i].xhi = x[i] >> 8;
irdata[i].y = u8(y[i]);
irdata[i].yhi = y[i] >> 8;
irdata[i].size = 10;
}
}
break;
// full
case 5 :
PanicAlert("Full IR report");
// UNSUPPORTED
break;
}
}
void Wiimote::GetExtData(u8* const data)
{
m_extension->GetState(data, HAS_FOCUS);
// i dont think anything accesses the extension data like this, but ill support it. Indeed, commercial games don't do this.
// i think it should be unencrpyted in the register, encrypted when read.
memcpy(m_reg_ext->controller_data, data, sizeof(wm_extension));
if (0xAA == m_reg_ext->encryption)
wiimote_encrypt(&m_ext_key, data, 0x00, sizeof(wm_extension));
}
void Wiimote::Update()
{
// no channel == not connected i guess
if (0 == m_reporting_channel)
return;
// returns true if a report was sent
if (Step())
return;
// ----speaker----
#ifdef USE_WIIMOTE_EMU_SPEAKER
ALint processed = 0;
alGetSourcei(m_audio_source, AL_BUFFERS_PROCESSED, &processed);
while (processed--)
{
//PanicAlert("Buffer Processed");
alSourceUnqueueBuffers(m_audio_source, 1, &m_audio_buffers.front().buffer);
alDeleteBuffers(1, &m_audio_buffers.front().buffer);
delete[] m_audio_buffers.front().samples;
m_audio_buffers.pop();
}
// testing speaker crap
//m_rumble->controls[0]->control_ref->State( m_speaker_data.size() > 0 );
//if ( m_speaker_data.size() )
//m_speaker_data.pop();
//while ( m_speaker_data.size() )
//{
// std::ofstream file;
// file.open( "test.pcm", std::ios::app | std::ios::out | std::ios::binary );
// file.put(m_speaker_data.front());
// file.close();
// m_speaker_data.pop();
//}
#endif
u8 data[MAX_PAYLOAD];
memset(data, 0, sizeof(data));
data[0] = 0xA1;
data[1] = m_reporting_mode;
// figure out what data we need
const ReportFeatures& rptf = reporting_mode_features[m_reporting_mode - WM_REPORT_CORE];
s8 rptf_size = rptf.size;
// core buttons
if (rptf.core)
GetCoreData(data + rptf.core);
// acceleration
if (rptf.accel)
GetAccelData(data + rptf.accel, rptf.core?(data+rptf.core):NULL);
// IR
if (rptf.ir)
GetIRData(data + rptf.ir, (rptf.accel != 0));
// extension
if (rptf.ext)
GetExtData(data + rptf.ext);
// hybrid wiimote stuff
if (WIIMOTE_SRC_HYBRID == g_wiimote_sources[m_index])
{
using namespace WiimoteReal;
g_refresh_critsec.Enter();
if (g_wiimotes[m_index])
{
u8* const real_data = g_wiimotes[m_index]->ProcessReadQueue();
if (real_data)
{
switch (real_data[1])
{
// use data reports
default:
if (real_data[1] >= WM_REPORT_CORE)
{
const ReportFeatures& real_rptf = reporting_mode_features[real_data[1] - WM_REPORT_CORE];
// force same report type from real-wiimote
if (&real_rptf != &rptf)
rptf_size = 0;
// core
// mix real-buttons with emu-buttons in the status struct, and in the report
if (real_rptf.core && rptf.core)
{
m_status.buttons |= *(wm_core*)(real_data + real_rptf.core);
*(wm_core*)(data + rptf.core) = m_status.buttons;
}
// accel
// use real-accel data always i guess
if (real_rptf.accel && rptf.accel)
memcpy(data + rptf.accel, real_data + real_rptf.accel, sizeof(wm_accel));
// ir
// TODO
// ext
// use real-ext data if an emu-extention isn't chosen
if (real_rptf.ext && rptf.ext && (0 == m_extension->switch_extension))
memcpy(data + rptf.ext, real_data + real_rptf.ext, sizeof(wm_extension));
}
else if (WM_ACK_DATA != real_data[1] || m_extension->active_extension > 0)
rptf_size = 0;
else
// use real-acks if an emu-extension isn't chosen
rptf_size = -1;
break;
// use all status reports, after modification of the extension bit
case WM_STATUS_REPORT :
//if (m_extension->switch_extension)
//((wm_status_report*)(real_data + 2))->extension = (m_extension->active_extension > 0);
if (m_extension->active_extension)
((wm_status_report*)(real_data + 2))->extension = 1;
rptf_size = -1;
break;
// use all read-data replies
case WM_READ_DATA_REPLY:
rptf_size = -1;
break;
}
// copy over report from real-wiimote
if (-1 == rptf_size)
{
memcpy(data, real_data, MAX_PAYLOAD);
rptf_size = MAX_PAYLOAD;
}
if (real_data != g_wiimotes[m_index]->m_last_data_report)
delete[] real_data;
}
}
g_refresh_critsec.Leave();
}
// don't send a data report if auto reporting is off
if (false == m_reporting_auto && data[2] >= WM_REPORT_CORE)
return;
// send data report
if (rptf_size)
g_WiimoteInitialize.pWiimoteInterruptChannel(m_index, m_reporting_channel, data, rptf_size);
}
void Wiimote::ControlChannel(const u16 _channelID, const void* _pData, u32 _Size)
{
// Check for custom communication
if (99 == _channelID)
{
// wiimote disconnected
//PanicAlert( "Wiimote Disconnected" );
// reset eeprom/register/reporting mode
Reset();
return;
}
// this all good?
m_reporting_channel = _channelID;
const hid_packet* const hidp = (hid_packet*)_pData;
INFO_LOG(WIIMOTE, "Emu ControlChannel (page: %i, type: 0x%02x, param: 0x%02x)", m_index, hidp->type, hidp->param);
switch (hidp->type)
{
case HID_TYPE_HANDSHAKE :
PanicAlert("HID_TYPE_HANDSHAKE - %s", (hidp->param == HID_PARAM_INPUT) ? "INPUT" : "OUPUT");
break;
case HID_TYPE_SET_REPORT :
if (HID_PARAM_INPUT == hidp->param)
{
PanicAlert("HID_TYPE_SET_REPORT - INPUT");
}
else
{
// AyuanX: My experiment shows Control Channel is never used
// shuffle2: but lwbt uses this, so we'll do what we must :)
HidOutputReport((wm_report*)hidp->data);
u8 handshake = HID_HANDSHAKE_SUCCESS;
g_WiimoteInitialize.pWiimoteInterruptChannel(m_index, _channelID, &handshake, 1);
}
break;
case HID_TYPE_DATA :
PanicAlert("HID_TYPE_DATA - %s", (hidp->param == HID_PARAM_INPUT) ? "INPUT" : "OUTPUT");
break;
default :
PanicAlert("HidControlChannel: Unknown type %x and param %x", hidp->type, hidp->param);
break;
}
}
void Wiimote::InterruptChannel(const u16 _channelID, const void* _pData, u32 _Size)
{
// this all good?
m_reporting_channel = _channelID;
const hid_packet* const hidp = (hid_packet*)_pData;
switch (hidp->type)
{
case HID_TYPE_DATA:
switch (hidp->param)
{
case HID_PARAM_OUTPUT :
{
const wm_report* const sr = (wm_report*)hidp->data;
if (WIIMOTE_SRC_HYBRID == g_wiimote_sources[m_index])
{
switch (sr->wm)
{
// these two types are handled in RequestStatus() & ReadData()
case WM_REQUEST_STATUS :
case WM_READ_DATA :
break;
default :
WiimoteReal::InterruptChannel(m_index, _channelID, _pData, _Size);
break;
}
HidOutputReport(sr, m_extension->switch_extension > 0);
}
else
HidOutputReport(sr);
}
break;
default :
PanicAlert("HidInput: HID_TYPE_DATA - param 0x%02x", hidp->type, hidp->param);
break;
}
break;
default:
PanicAlert("HidInput: Unknown type 0x%02x and param 0x%02x", hidp->type, hidp->param);
break;
}
}
void Wiimote::LoadDefaults(const ControllerInterface& ciface)
{
#define set_control(group, num, str) (group)->controls[num]->control_ref->expression = (str)
ControllerEmu::LoadDefaults(ciface);
// TODO: finish this
// Buttons
// these alright for OSX/Linux?
set_control(m_buttons, 0, "Button 0"); // A
set_control(m_buttons, 1, "Button 1"); // B
//set_control(m_buttons, 2, ""); // 1
//set_control(m_buttons, 3, ""); // 2
//set_control(m_buttons, 4, ""); // -
//set_control(m_buttons, 5, ""); // +
//set_control(m_buttons, 6, ""); // Start
// Shake
for (unsigned int i=0; i<3; ++i)
set_control(m_shake, i, "Button 2");
// IR
#ifndef __APPLE__
set_control(m_ir, 0, "Cursor Y-");
set_control(m_ir, 1, "Cursor Y+");
set_control(m_ir, 2, "Cursor X-");
set_control(m_ir, 3, "Cursor X+");
#endif
// DPad
#ifdef _WIN32
set_control(m_dpad, 0, "UP"); // Up
set_control(m_dpad, 1, "DOWN"); // Down
set_control(m_dpad, 2, "LEFT"); // Left
set_control(m_dpad, 3, "RIGHT"); // Right
#elif __APPLE__
set_control(m_dpad, 0, "Up Arrow"); // Up
set_control(m_dpad, 1, "Down Arrow"); // Down
set_control(m_dpad, 2, "Left Arrow"); // Left
set_control(m_dpad, 3, "Right Arrow"); // Right
#else
set_control(m_dpad, 0, "Up"); // Up
set_control(m_dpad, 1, "Down"); // Down
set_control(m_dpad, 2, "Left"); // Left
set_control(m_dpad, 3, "Right"); // Right
#endif
}
// TODO: i need to test this
void Wiimote::Register::Read( size_t address, void* dst, size_t length )
{
const_iterator i = begin();
const const_iterator e = end();
while (length)
{
const std::vector<u8>* block = NULL;
size_t addr_start = 0;
size_t addr_end = address+length;
// find block and start of next block
for ( ; i!=e; ++i )
// if address is inside or after this block
if ( address >= i->first )
{
block = &i->second;
addr_start = i->first;
}
// if address is before this block
else
{
// how far til the start of the next block
addr_end = std::min( i->first, addr_end );
break;
}
// read bytes from a mapped block
if (block)
{
// offset of wanted data in the vector
const size_t offset = std::min( address - addr_start, block->size() );
// how much data we can read depending on the vector size and how much we want
const size_t amt = std::min( block->size()-offset, length );
memcpy( dst, &block->operator[](offset), amt );
address += amt;
dst = ((u8*)dst) + amt;
length -= amt;
}
// read zeros for unmapped regions
const size_t amt = addr_end - address;
memset( dst, 0, amt );
address += amt;
dst = ((u8*)dst) + amt;
length -= amt;
}
}
// TODO: i need to test this
void Wiimote::Register::Write( size_t address, const void* src, size_t length )
{
iterator i = begin();
const const_iterator e = end();
while (length)
{
std::vector<u8>* block = NULL;
size_t addr_start = 0;
size_t addr_end = address+length;
// find block and start of next block
for ( ; i!=e; ++i )
// if address is inside or after this block
if ( address >= i->first )
{
block = &i->second;
addr_start = i->first;
}
// if address is before this block
else
{
// how far til the start of the next block
addr_end = std::min( i->first, addr_end );
break;
}
// write bytes to a mapped block
if (block)
{
// offset of wanted data in the vector
const size_t offset = std::min( address - addr_start, block->size() );
// how much data we can read depending on the vector size and how much we want
const size_t amt = std::min( block->size()-offset, length );
memcpy( &block->operator[](offset), src, amt );
address += amt;
src = ((u8*)src) + amt;
length -= amt;
}
// do nothing for unmapped regions
const size_t amt = addr_end - address;
address += amt;
src = ((u8*)src) + amt;
length -= amt;
}
}
}