dolphin/Source/Core/VideoCommon/Src/CommandProcessor.cpp

697 lines
24 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// NOTES (mb2):
// * GP/CPU sync can be done by several way:
// - MP1 use BP (breakpoint) in movie-menus and mostly PEtoken in 3D
// - ZWW as Crazy Taxi: PEfinish (GXSetDrawDone)
// - SMS: BP, PEToken, PEfinish
// - ZTP: seems to use PEfinish only
// - Animal Crossing: PEfinish at start but there's a bug...
// There's tons of HiWmk/LoWmk ping pong -> Another sync fashion?
// - Super Monkey Ball Adventures: PEToken. Oddity: read&check-PEToken-value-loop stays
// in its JITed block (never fall in Advance() until the game-watchdog's stuff).
// That's why we can't let perform the AdvanceCallBack as usual.
// The PEToken is volatile now and in the fifo struct.
// - Super Monkey Ball: PEFinish. This game has the lamest way to deal with fifo sync for our MT's stuff.
// A hack is mandatory. DONE and should be ok for other games.
// *What I guess (thx to asynchronous DualCore mode):
// PPC have a frame-finish watchdog. Handled by system timming stuff like the decrementer.
// (DualCore mode): I have observed, after ZTP logos, a fifo-recovery start when DECREMENTER_EXCEPTION is throwned.
// The frame setting (by GP) took too much time and didn't finish properly due to this watchdog.
// Faster GX plugins required, indeed :p
// * BPs are needed for some game GP/CPU sync.
// But it could slowdown (MP1 at least) because our GP in DC is faster than "expected" in some area.
// eg: in movie-menus in MP1, BP are reached quickly.
// The bad thing is that involve too much PPC work (int ack, lock GP, reset BP, new BP addr, unlock BP...) hence the slowdown.
// Anyway, emulation should more accurate like this and it emulate some sort of better load balancing.
// Eather way in those area a more accurate GP timing could be done by slowing down the GP or something less stupid.
// Not functional and not used atm (breaks MP2).
// * funny, in revs before those with this note, BP irq wasn't cleared (a bug indeed) and MP1 menus was faster.
// BP irq was raised and ack just once but never cleared. However it's sufficient for MP1 to work.
// This hack is used atm. Known BPs handling doesn't work well (btw, BP irq clearing might be done by CPIntEnable raising edge).
// The hack seems to be responsible of the movie stutering in MP1 menus.
// TODO (mb2):
// * raise watermark Ov/Un irq: POINTLESS since emulated GP timings can't be accuratly set.
// Only 3 choices IMHO for a correct emulated load balancing in DC mode:
// - make our own GP watchdog hack that can lock CPU if GP too slow. STARTED
// - hack directly something in PPC timings (dunno how)
// - boost GP so we can consider it as infinitely fast compared to CPU.
// * raise ReadIdle/CmdIdle flags and observe behaviour of MP1 & ZTP (at least)
// * Clean useless comments and debug stuff in Read16, Write16, GatherPipeBursted when sync will be fixed for DC
// * (reminder) do the same in:
// PeripheralInterface.cpp, PixelEngine.cpp, OGL->BPStructs.cpp, fifo.cpp... ok just check change log >>
// TODO
// * Kick GPU from dispatcher, not from writes
// * Thunking framework
// * Cleanup of messy now unnecessary safety code in jit
#include "Common.h"
#include "VideoCommon.h"
#include "VideoConfig.h"
#include "MathUtil.h"
#include "Thread.h"
#include "Atomic.h"
#include "Fifo.h"
#include "ChunkFile.h"
#include "CommandProcessor.h"
namespace CommandProcessor
{
int et_UpdateInterrupts;
void UpdateInterrupts_Wrapper(u64 userdata, int cyclesLate)
{
UpdateInterrupts();
}
// look for 1002 verts, breakpoint there, see why next draw is flushed
// TODO(ector): Warn on bbox read/write
// STATE_TO_SAVE
SCPFifoStruct fifo;
UCPStatusReg m_CPStatusReg;
UCPCtrlReg m_CPCtrlReg;
UCPClearReg m_CPClearReg;
u32 HiWatermark_Tighter;
int m_bboxleft;
int m_bboxtop;
int m_bboxright;
int m_bboxbottom;
u16 m_tokenReg;
static u32 fake_GPWatchdogLastToken = 0;
static Common::EventEx s_fifoIdleEvent;
static Common::CriticalSection sFifoCritical;
volatile bool isFifoBusy = false; //This state is changed when the FIFO is processing data.
void FifoCriticalEnter()
{
sFifoCritical.Enter();
}
void FifoCriticalLeave()
{
sFifoCritical.Leave();
}
void DoState(PointerWrap &p)
{
p.Do(m_CPStatusReg);
p.Do(m_CPCtrlReg);
//p.Do(m_CPClearReg);
p.Do(m_bboxleft);
p.Do(m_bboxtop);
p.Do(m_bboxright);
p.Do(m_bboxbottom);
p.Do(m_tokenReg);
p.Do(fifo);
p.Do(HiWatermark_Tighter);
}
//inline void WriteLow (u32& _reg, u16 lowbits) {_reg = (_reg & 0xFFFF0000) | lowbits;}
//inline void WriteHigh(u32& _reg, u16 highbits) {_reg = (_reg & 0x0000FFFF) | ((u32)highbits << 16);}
inline void WriteLow (volatile u32& _reg, u16 lowbits) {Common::AtomicStore(_reg,(_reg & 0xFFFF0000) | lowbits);}
inline void WriteHigh(volatile u32& _reg, u16 highbits) {Common::AtomicStore(_reg,(_reg & 0x0000FFFF) | ((u32)highbits << 16));}
inline u16 ReadLow (u32 _reg) {return (u16)(_reg & 0xFFFF);}
inline u16 ReadHigh (u32 _reg) {return (u16)(_reg >> 16);}
void Init()
{
m_CPStatusReg.Hex = 0;
m_CPStatusReg.CommandIdle = 1;
m_CPStatusReg.ReadIdle = 1;
m_CPCtrlReg.Hex = 0;
m_bboxleft = 0;
m_bboxtop = 0;
m_bboxright = 640;
m_bboxbottom = 480;
m_tokenReg = 0;
fake_GPWatchdogLastToken = 0;
memset(&fifo,0,sizeof(fifo));
fifo.CPCmdIdle = 1 ;
fifo.CPReadIdle = 1; // We use it as UnderFlow flag now, otherwise we need a new volatile variable
fifo.bFF_Breakpoint = 0;
s_fifoIdleEvent.Init();
et_UpdateInterrupts = g_VideoInitialize.pRegisterEvent("UpdateInterrupts", UpdateInterrupts_Wrapper);
}
void Shutdown()
{
s_fifoIdleEvent.Shutdown();
}
void Read16(u16& _rReturnValue, const u32 _Address)
{
INFO_LOG(COMMANDPROCESSOR, "(r): 0x%08x", _Address);
switch (_Address & 0xFFF)
{
case STATUS_REGISTER:
m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint;
m_CPStatusReg.ReadIdle = !fifo.CPReadWriteDistance || !fifo.bFF_GPReadEnable;
m_CPStatusReg.CommandIdle = fifo.CPCmdIdle;
m_CPStatusReg.UnderflowLoWatermark = fifo.CPReadIdle;
// hack: CPU will always believe fifo is empty and on idle
//m_CPStatusReg.ReadIdle = 1;
//m_CPStatusReg.CommandIdle = 1;
INFO_LOG(COMMANDPROCESSOR,"\t Read from STATUS_REGISTER : %04x", m_CPStatusReg.Hex);
DEBUG_LOG(COMMANDPROCESSOR, "(r) status: iBP %s | fReadIdle %s | fCmdIdle %s | iOvF %s | iUndF %s"
, m_CPStatusReg.Breakpoint ? "ON" : "OFF"
, m_CPStatusReg.ReadIdle ? "ON" : "OFF"
, m_CPStatusReg.CommandIdle ? "ON" : "OFF"
, m_CPStatusReg.OverflowHiWatermark ? "ON" : "OFF"
, m_CPStatusReg.UnderflowLoWatermark ? "ON" : "OFF"
);
_rReturnValue = m_CPStatusReg.Hex;
return;
case CTRL_REGISTER: _rReturnValue = m_CPCtrlReg.Hex; return;
case CLEAR_REGISTER:
_rReturnValue = m_CPClearReg.Hex;
PanicAlert("CommandProcessor:: CPU reads from CLEAR_REGISTER!");
ERROR_LOG(COMMANDPROCESSOR, "(r) clear: 0x%04x", _rReturnValue);
return;
case FIFO_TOKEN_REGISTER: _rReturnValue = m_tokenReg; return;
case FIFO_BOUNDING_BOX_LEFT: _rReturnValue = m_bboxleft; return;
case FIFO_BOUNDING_BOX_RIGHT: _rReturnValue = m_bboxright; return;
case FIFO_BOUNDING_BOX_TOP: _rReturnValue = m_bboxtop; return;
case FIFO_BOUNDING_BOX_BOTTOM: _rReturnValue = m_bboxbottom; return;
case FIFO_BASE_LO: _rReturnValue = ReadLow (fifo.CPBase); return;
case FIFO_BASE_HI: _rReturnValue = ReadHigh(fifo.CPBase); return;
case FIFO_END_LO: _rReturnValue = ReadLow (fifo.CPEnd); return;
case FIFO_END_HI: _rReturnValue = ReadHigh(fifo.CPEnd); return;
case FIFO_HI_WATERMARK_LO: _rReturnValue = ReadLow (fifo.CPHiWatermark); return;
case FIFO_HI_WATERMARK_HI: _rReturnValue = ReadHigh(fifo.CPHiWatermark); return;
case FIFO_LO_WATERMARK_LO: _rReturnValue = ReadLow (fifo.CPLoWatermark); return;
case FIFO_LO_WATERMARK_HI: _rReturnValue = ReadHigh(fifo.CPLoWatermark); return;
// TODO: cases cleanup
case FIFO_RW_DISTANCE_LO:
_rReturnValue = ReadLow (fifo.CPReadWriteDistance);
// hack: CPU will always believe fifo is empty and on idle
//_rReturnValue = 0;
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_RW_DISTANCE_LO : %04x", _rReturnValue);
return;
case FIFO_RW_DISTANCE_HI:
_rReturnValue = ReadHigh(fifo.CPReadWriteDistance);
// hack: CPU will always believe fifo is empty and on idle
//_rReturnValue = 0;
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_RW_DISTANCE_HI : %04x", _rReturnValue);
return;
case FIFO_WRITE_POINTER_LO:
_rReturnValue = ReadLow (fifo.CPWritePointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_WRITE_POINTER_LO : %04x", _rReturnValue);
return;
case FIFO_WRITE_POINTER_HI:
_rReturnValue = ReadHigh(fifo.CPWritePointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_WRITE_POINTER_HI : %04x", _rReturnValue);
return;
case FIFO_READ_POINTER_LO:
_rReturnValue = ReadLow (fifo.CPReadPointer);
// hack: CPU will always believe fifo is empty and on idle
//_rReturnValue = ReadLow (fifo.CPWritePointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_READ_POINTER_LO : %04x", _rReturnValue);
return;
case FIFO_READ_POINTER_HI:
_rReturnValue = ReadHigh(fifo.CPReadPointer);
// hack: CPU will always believe fifo is empty and on idle
//_rReturnValue = ReadHigh(fifo.CPWritePointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_READ_POINTER_HI : %04x", _rReturnValue);
return;
case FIFO_BP_LO: _rReturnValue = ReadLow (fifo.CPBreakpoint); return;
case FIFO_BP_HI: _rReturnValue = ReadHigh(fifo.CPBreakpoint); return;
// AyuanX: Lots of games read the followings (e.g. Mario Power Tennis)
case XF_RASBUSY_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_RASBUSY_L: %04x", _rReturnValue);
return;
case XF_RASBUSY_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_RASBUSY_H: %04x", _rReturnValue);
return;
case XF_CLKS_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_CLKS_L: %04x", _rReturnValue);
return;
case XF_CLKS_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_CLKS_H: %04x", _rReturnValue);
return;
case XF_WAIT_IN_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_IN_L: %04x", _rReturnValue);
return;
case XF_WAIT_IN_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_IN_H: %04x", _rReturnValue);
return;
case XF_WAIT_OUT_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_OUT_L: %04x", _rReturnValue);
return;
case XF_WAIT_OUT_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_OUT_H: %04x", _rReturnValue);
return;
case VCACHE_METRIC_CHECK_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_CHECK_L: %04x", _rReturnValue);
return;
case VCACHE_METRIC_CHECK_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_CHECK_H: %04x", _rReturnValue);
return;
case VCACHE_METRIC_MISS_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_MISS_L: %04x", _rReturnValue);
return;
case VCACHE_METRIC_MISS_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_MISS_H: %04x", _rReturnValue);
return;
case VCACHE_METRIC_STALL_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_STALL_L: %04x", _rReturnValue);
return;
case VCACHE_METRIC_STALL_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_STALL_H: %04x", _rReturnValue);
return;
case CLKS_PER_VTX_OUT:
_rReturnValue = 4; //Number of clocks per vertex.. TODO: Calculate properly
DEBUG_LOG(COMMANDPROCESSOR, "Read from CLKS_PER_VTX_OUT: %04x", _rReturnValue);
return;
//add all the other regs here? are they ever read?
default:
_rReturnValue = 0;
WARN_LOG(COMMANDPROCESSOR, "(r16) unknown CP reg @ %08x", _Address);
return;
}
return;
}
void Write16(const u16 _Value, const u32 _Address)
{
INFO_LOG(COMMANDPROCESSOR, "(write16): 0x%04x @ 0x%08x",_Value,_Address);
// Force complete fifo flush if we attempt to set/reset the fifo (API GXSetGPFifo or equivalent)
// It's kind of an API hack but it works for lots of games... and I hope it's the same way for every games.
// TODO: HLE for GX fifo's APIs?
// Here is the hack:
// - if (attempt to overwrite CTRL_REGISTER by 0x0000)
// // then we assume CPReadWriteDistance will be overwrited very soon.
// - if (fifo is not empty)
// // (not 100% sure): shouln't happen unless PPC think having trouble with the sync
// // and it attempt a fifo recovery (look for PI_FIFO_RESET in log).
// // If we want to emulate self fifo recovery we need proper GX metrics emulation... yeah sure :p
// - spin until fifo is empty
// - else
// - normal write16
if (((_Address&0xFFF) == CTRL_REGISTER) && (_Value == 0)) // API hack
{
// weird MP1 redo that right after linking fifo with GP... hmmm
//_dbg_assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance == 0,
// "WTF! Something went wrong with GP/PPC the sync! -> CPReadWriteDistance: 0x%08X\n"
// " - The fifo is not empty but we are going to lock it anyway.\n"
// " - \"Normaly\", this is due to fifo-hang-so-lets-attempt-recovery.\n"
// " - The bad news is dolphin don't support special recovery features like GXfifo's metric yet.\n"
// " - The good news is, the time you read that message, the fifo should be empty now :p\n"
// " - Anyway, fifo flush will be forced if you press OK and dolphin might continue to work...\n"
// " - We aren't betting on that :)", fifo.CPReadWriteDistance);
DEBUG_LOG(COMMANDPROCESSOR, "*********************** GXSetGPFifo very soon? ***********************");
// (mb2) We don't sleep here since it could be a perf issue for super monkey ball (yup only this game IIRC)
// Touching that game is a no-go so I don't want to take the risk :p
if (g_VideoInitialize.bOnThread)
{
while (fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance)
s_fifoIdleEvent.Wait();
}
else
{
CatchUpGPU();
}
}
switch (_Address & 0xFFF)
{
case STATUS_REGISTER:
{
// This should be Read-Only
ERROR_LOG(COMMANDPROCESSOR,"\t write to STATUS_REGISTER : %04x", _Value);
PanicAlert("CommandProcessor:: CPU writes to STATUS_REGISTER!");
}
break;
case CTRL_REGISTER:
{
UCPCtrlReg tmpCtrl(_Value);
m_CPCtrlReg.Hex = tmpCtrl.Hex;
Common::AtomicStore(fifo.bFF_Breakpoint, false);
if (tmpCtrl.FifoUnderflowIntEnable)
Common::AtomicStore(fifo.CPReadIdle, false);
if (tmpCtrl.FifoOverflowIntEnable)
m_CPStatusReg.OverflowHiWatermark = false;
UpdateInterrupts();
fifo.bFF_BPInt = tmpCtrl.BPInt;
fifo.bFF_BPEnable = tmpCtrl.BPEnable;
fifo.bFF_GPReadEnable = tmpCtrl.GPReadEnable;
INFO_LOG(COMMANDPROCESSOR,"\t Write to CTRL_REGISTER : %04x", _Value);
DEBUG_LOG(COMMANDPROCESSOR, "\t GPREAD %s | BP %s | Int %s | OvF %s | UndF %s | LINK %s"
, fifo.bFF_GPReadEnable ? "ON" : "OFF"
, fifo.bFF_BPEnable ? "ON" : "OFF"
, fifo.bFF_BPInt ? "ON" : "OFF"
, m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF"
, m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF"
, m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF"
);
}
break;
case CLEAR_REGISTER:
{
UCPClearReg tmpCtrl(_Value);
if (tmpCtrl.ClearFifoOverflow)
m_CPStatusReg.OverflowHiWatermark = false;
if (tmpCtrl.ClearFifoUnderflow)
Common::AtomicStore(fifo.CPReadIdle, false);
UpdateInterrupts();
DEBUG_LOG(COMMANDPROCESSOR,"\t write to CLEAR_REGISTER : %04x", _Value);
}
break;
case PERF_SELECT:
// Seems to select which set of perf registers should be exposed.
DEBUG_LOG(COMMANDPROCESSOR, "write to PERF_SELECT: %04x", _Value);
break;
// Fifo Registers
case FIFO_TOKEN_REGISTER:
m_tokenReg = _Value;
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_TOKEN_REGISTER : %04x", _Value);
break;
case FIFO_BASE_LO:
WriteLow ((u32 &)fifo.CPBase, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_BASE_LO : %04x", _Value);
break;
case FIFO_BASE_HI:
WriteHigh((u32 &)fifo.CPBase, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_BASE_HI : %04x", _Value);
break;
case FIFO_END_LO:
// Somtimes this value is not aligned with 32B, e.g. New Super Mario Bros. Wii
WriteLow ((u32 &)fifo.CPEnd, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_END_LO : %04x", _Value);
break;
case FIFO_END_HI:
WriteHigh((u32 &)fifo.CPEnd, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_END_HI : %04x", _Value);
break;
case FIFO_WRITE_POINTER_LO:
WriteLow ((u32 &)fifo.CPWritePointer, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_WRITE_POINTER_LO : %04x", _Value);
break;
case FIFO_WRITE_POINTER_HI:
WriteHigh((u32 &)fifo.CPWritePointer, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_WRITE_POINTER_HI : %04x", _Value);
break;
case FIFO_READ_POINTER_LO:
WriteLow ((u32 &)fifo.CPReadPointer, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_READ_POINTER_LO : %04x", _Value);
break;
case FIFO_READ_POINTER_HI:
WriteHigh((u32 &)fifo.CPReadPointer, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_READ_POINTER_HI : %04x", _Value);
break;
case FIFO_HI_WATERMARK_LO:
WriteLow ((u32 &)fifo.CPHiWatermark, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_HI_WATERMARK_LO : %04x", _Value);
break;
case FIFO_HI_WATERMARK_HI:
WriteHigh((u32 &)fifo.CPHiWatermark, _Value);
// Tune this when you see lots of FIFO overflown by GatherPipe
HiWatermark_Tighter = fifo.CPHiWatermark - 32 * 50;
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_HI_WATERMARK_HI : %04x", _Value);
break;
case FIFO_LO_WATERMARK_LO:
WriteLow ((u32 &)fifo.CPLoWatermark, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_LO_WATERMARK_LO : %04x", _Value);
break;
case FIFO_LO_WATERMARK_HI:
WriteHigh((u32 &)fifo.CPLoWatermark, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_LO_WATERMARK_HI : %04x", _Value);
break;
case FIFO_BP_LO:
WriteLow ((u32 &)fifo.CPBreakpoint, _Value);
// Ayuanx: What if BP is not aligned ...
// WriteLow ((u32 &)fifo.CPBreakpoint, (_Value + 31) & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"write to FIFO_BP_LO : %04x", _Value);
break;
case FIFO_BP_HI:
WriteHigh((u32 &)fifo.CPBreakpoint, _Value);
// Ayuanx: If it is set at the very end, it would never be achieved ...
// if (fifo.CPBreakpoint == fifo.CPEnd + 32)
// fifo.CPBreakpoint = fifo.CPBase;
DEBUG_LOG(COMMANDPROCESSOR,"write to FIFO_BP_HI : %04x", _Value);
break;
// Super monkey try to overwrite CPReadWriteDistance by an old saved RWD value. Which is lame for us.
// hack: We have to force CPU to think fifo is alway empty and on idle.
// When we fall here CPReadWriteDistance should be always null and the game should always want to overwrite it by 0.
// To skip it, comment out the following write.
case FIFO_RW_DISTANCE_HI:
WriteHigh((u32 &)fifo.CPReadWriteDistance, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"try to write to FIFO_RW_DISTANCE_HI : %04x", _Value);
break;
case FIFO_RW_DISTANCE_LO:
WriteLow((u32 &)fifo.CPReadWriteDistance, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"try to write to FIFO_RW_DISTANCE_LO : %04x", _Value);
break;
default:
WARN_LOG(COMMANDPROCESSOR, "(w16) unknown CP reg write %04x @ %08x", _Value, _Address);
}
if (!g_VideoInitialize.bOnThread)
CatchUpGPU();
}
void Read32(u32& _rReturnValue, const u32 _Address)
{
_rReturnValue = 0;
_dbg_assert_msg_(COMMANDPROCESSOR, 0, "Read32 from CommandProccessor at 0x%08x", _Address);
}
void Write32(const u32 _Data, const u32 _Address)
{
_dbg_assert_msg_(COMMANDPROCESSOR, 0, "Write32 at CommandProccessor at 0x%08x", _Address);
}
// for GP watchdog hack
void IncrementGPWDToken()
{
Common::AtomicIncrement(fifo.Fake_GPWDToken);
}
bool AllowIdleSkipping()
{
return !g_VideoInitialize.bOnThread || !m_CPCtrlReg.BPEnable;
}
// Check every FAKE_GP_WATCHDOG_PERIOD if a PE-frame-finish occured
// if not then lock CPUThread until GP finish a frame.
void WaitForFrameFinish()
{
while ((fake_GPWatchdogLastToken == fifo.Fake_GPWDToken) && fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance)
{
s_fifoIdleEvent.Wait();
}
fake_GPWatchdogLastToken = fifo.Fake_GPWDToken;
}
void STACKALIGN GatherPipeBursted()
{
// if we aren't linked, we don't care about gather pipe data
if (!m_CPCtrlReg.GPLinkEnable)
{
if (!g_VideoInitialize.bOnThread)
CatchUpGPU();
return;
}
// update the fifo-pointer
if (fifo.CPWritePointer >= fifo.CPEnd)
fifo.CPWritePointer = fifo.CPBase;
else
fifo.CPWritePointer += GATHER_PIPE_SIZE;
Common::AtomicAdd(fifo.CPReadWriteDistance, GATHER_PIPE_SIZE);
if (g_VideoInitialize.bOnThread)
{
// A little trick to prevent FIFO from overflown in dual core mode (n < 100 to avoid dead lock)
for (int cnt = 0; fifo.CPReadWriteDistance > fifo.CPEnd - fifo.CPBase && cnt < 100; cnt++)
Common::SwitchCurrentThread();
}
else
{
CatchUpGPU();
}
// The interrupt latency in Dolphin is much longer than Hardware, so we must be more vigilant on Watermark
if (!m_CPStatusReg.OverflowHiWatermark && fifo.CPReadWriteDistance >= HiWatermark_Tighter)
{
m_CPStatusReg.OverflowHiWatermark = true;
if (m_CPCtrlReg.FifoOverflowIntEnable)
UpdateInterrupts();
}
_assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance <= fifo.CPEnd - fifo.CPBase,
"FIFO is overflown by GatherPipe !\nCPU thread is too fast, lower the HiWatermark may help.");
// check if we are in sync
_assert_msg_(COMMANDPROCESSOR, fifo.CPWritePointer == *(g_VideoInitialize.Fifo_CPUWritePointer), "FIFOs linked but out of sync");
_assert_msg_(COMMANDPROCESSOR, fifo.CPBase == *(g_VideoInitialize.Fifo_CPUBase), "FIFOs linked but out of sync");
_assert_msg_(COMMANDPROCESSOR, fifo.CPEnd == *(g_VideoInitialize.Fifo_CPUEnd), "FIFOs linked but out of sync");
}
// This is only used in single core mode
void CatchUpGPU()
{
// HyperIris: Memory_GetPtr is an expensive call, call it less, run faster
u8 *ptr = Memory_GetPtr(fifo.CPReadPointer);
// check if we are able to run this buffer
while (fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance)
{
// check if we are on a breakpoint
if (fifo.bFF_BPEnable && ((fifo.CPReadPointer <= fifo.CPBreakpoint) && (fifo.CPReadPointer + 32 > fifo.CPBreakpoint)))
{
//_assert_msg_(POWERPC,0,"BP: %08x",fifo.CPBreakpoint);
Common::AtomicStore(fifo.bFF_GPReadEnable, false);
Common::AtomicStore(fifo.bFF_Breakpoint, true);
if (fifo.bFF_BPInt)
UpdateInterrupts();
break;
}
// read the data and send it to the VideoPlugin
// We are going to do FP math on the main thread so have to save the current state
SaveSSEState();
LoadDefaultSSEState();
Fifo_SendFifoData(ptr,32);
LoadSSEState();
// increase the ReadPtr
if (fifo.CPReadPointer >= fifo.CPEnd)
{
ptr -= fifo.CPReadPointer - fifo.CPBase;
fifo.CPReadPointer = fifo.CPBase;
DEBUG_LOG(COMMANDPROCESSOR, "Fifo wraps to base");
}
else
{
ptr += 32;
fifo.CPReadPointer += 32;
}
fifo.CPReadWriteDistance -= 32;
}
if (!fifo.CPReadIdle && fifo.CPReadWriteDistance < fifo.CPLoWatermark)
{
Common::AtomicStore(fifo.CPReadIdle, true);
if (m_CPCtrlReg.FifoUnderflowIntEnable)
UpdateInterrupts();
}
}
void UpdateInterrupts()
{
bool active = (fifo.bFF_BPInt && fifo.bFF_Breakpoint)
|| (m_CPCtrlReg.FifoUnderflowIntEnable && fifo.CPReadIdle)
|| (m_CPCtrlReg.FifoOverflowIntEnable && m_CPStatusReg.OverflowHiWatermark);
INFO_LOG(COMMANDPROCESSOR, "Fifo Interrupt: %s", (active)? "Asserted" : "Deasserted");
g_VideoInitialize.pSetInterrupt(INT_CAUSE_CP, active);
}
void UpdateInterruptsFromVideoPlugin()
{
g_VideoInitialize.pScheduleEvent_Threadsafe(0, et_UpdateInterrupts, 0, true);
}
void SetFifoIdleFromVideoPlugin()
{
s_fifoIdleEvent.Set();
}
} // end of namespace CommandProcessor