dolphin/Source/Core/VideoCommon/TextureCacheBase.cpp

2017 lines
73 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cmath>
#include <cstring>
#include <memory>
#include <string>
#include <utility>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/FileUtil.h"
#include "Common/Hash.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Common/MemoryUtil.h"
#include "Common/StringUtil.h"
#include "Core/ConfigManager.h"
#include "Core/FifoPlayer/FifoPlayer.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/Memmap.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/HiresTextures.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/SamplerCommon.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
static const u64 TEXHASH_INVALID = 0;
// Sonic the Fighters (inside Sonic Gems Collection) loops a 64 frames animation
static const int TEXTURE_KILL_THRESHOLD = 64;
static const int TEXTURE_POOL_KILL_THRESHOLD = 3;
std::unique_ptr<TextureCacheBase> g_texture_cache;
std::bitset<8> TextureCacheBase::valid_bind_points;
TextureCacheBase::TCacheEntry::TCacheEntry(std::unique_ptr<AbstractTexture> tex)
: texture(std::move(tex))
{
}
TextureCacheBase::TCacheEntry::~TCacheEntry()
{
for (auto& reference : references)
reference->references.erase(this);
}
void TextureCacheBase::CheckTempSize(size_t required_size)
{
if (required_size <= temp_size)
return;
temp_size = required_size;
Common::FreeAlignedMemory(temp);
temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16));
}
TextureCacheBase::TextureCacheBase()
{
SetBackupConfig(g_ActiveConfig);
temp_size = 2048 * 2048 * 4;
temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16));
TexDecoder_SetTexFmtOverlayOptions(backup_config.texfmt_overlay,
backup_config.texfmt_overlay_center);
HiresTexture::Init();
SetHash64Function();
InvalidateAllBindPoints();
}
void TextureCacheBase::Invalidate()
{
InvalidateAllBindPoints();
for (size_t i = 0; i < bound_textures.size(); ++i)
{
bound_textures[i] = nullptr;
}
for (auto& tex : textures_by_address)
{
delete tex.second;
}
textures_by_address.clear();
textures_by_hash.clear();
texture_pool.clear();
}
TextureCacheBase::~TextureCacheBase()
{
HiresTexture::Shutdown();
Invalidate();
Common::FreeAlignedMemory(temp);
temp = nullptr;
}
void TextureCacheBase::OnConfigChanged(VideoConfig& config)
{
if (config.bHiresTextures != backup_config.hires_textures ||
config.bCacheHiresTextures != backup_config.cache_hires_textures)
{
HiresTexture::Update();
}
// TODO: Invalidating texcache is really stupid in some of these cases
if (config.iSafeTextureCache_ColorSamples != backup_config.color_samples ||
config.bTexFmtOverlayEnable != backup_config.texfmt_overlay ||
config.bTexFmtOverlayCenter != backup_config.texfmt_overlay_center ||
config.bHiresTextures != backup_config.hires_textures ||
config.bEnableGPUTextureDecoding != backup_config.gpu_texture_decoding)
{
Invalidate();
TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable,
g_ActiveConfig.bTexFmtOverlayCenter);
}
if ((config.stereo_mode != StereoMode::Off) != backup_config.stereo_3d ||
config.bStereoEFBMonoDepth != backup_config.efb_mono_depth)
{
g_texture_cache->DeleteShaders();
if (!g_texture_cache->CompileShaders())
PanicAlert("Failed to recompile one or more texture conversion shaders.");
}
SetBackupConfig(config);
}
void TextureCacheBase::Cleanup(int _frameCount)
{
TexAddrCache::iterator iter = textures_by_address.begin();
TexAddrCache::iterator tcend = textures_by_address.end();
while (iter != tcend)
{
if (iter->second->tmem_only)
{
iter = InvalidateTexture(iter);
}
else if (iter->second->frameCount == FRAMECOUNT_INVALID)
{
iter->second->frameCount = _frameCount;
++iter;
}
else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount)
{
if (iter->second->IsCopy())
{
// Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB
// copies living on the
// host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for
// performance reasons
if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 &&
iter->second->hash != iter->second->CalculateHash())
{
iter = InvalidateTexture(iter);
}
else
{
++iter;
}
}
else
{
iter = InvalidateTexture(iter);
}
}
else
{
++iter;
}
}
TexPool::iterator iter2 = texture_pool.begin();
TexPool::iterator tcend2 = texture_pool.end();
while (iter2 != tcend2)
{
if (iter2->second.frameCount == FRAMECOUNT_INVALID)
{
iter2->second.frameCount = _frameCount;
}
if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second.frameCount)
{
iter2 = texture_pool.erase(iter2);
}
else
{
++iter2;
}
}
}
bool TextureCacheBase::TCacheEntry::OverlapsMemoryRange(u32 range_address, u32 range_size) const
{
if (addr + size_in_bytes <= range_address)
return false;
if (addr >= range_address + range_size)
return false;
return true;
}
void TextureCacheBase::SetBackupConfig(const VideoConfig& config)
{
backup_config.color_samples = config.iSafeTextureCache_ColorSamples;
backup_config.texfmt_overlay = config.bTexFmtOverlayEnable;
backup_config.texfmt_overlay_center = config.bTexFmtOverlayCenter;
backup_config.hires_textures = config.bHiresTextures;
backup_config.cache_hires_textures = config.bCacheHiresTextures;
backup_config.stereo_3d = config.stereo_mode != StereoMode::Off;
backup_config.efb_mono_depth = config.bStereoEFBMonoDepth;
backup_config.gpu_texture_decoding = config.bEnableGPUTextureDecoding;
}
TextureCacheBase::TCacheEntry*
TextureCacheBase::ApplyPaletteToEntry(TCacheEntry* entry, u8* palette, TLUTFormat tlutfmt)
{
TextureConfig new_config = entry->texture->GetConfig();
new_config.levels = 1;
new_config.rendertarget = true;
TCacheEntry* decoded_entry = AllocateCacheEntry(new_config);
if (!decoded_entry)
return nullptr;
decoded_entry->SetGeneralParameters(entry->addr, entry->size_in_bytes, entry->format,
entry->should_force_safe_hashing);
decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
decoded_entry->SetHashes(entry->base_hash, entry->hash);
decoded_entry->frameCount = FRAMECOUNT_INVALID;
decoded_entry->should_force_safe_hashing = false;
decoded_entry->SetNotCopy();
decoded_entry->may_have_overlapping_textures = entry->may_have_overlapping_textures;
ConvertTexture(decoded_entry, entry, palette, tlutfmt);
textures_by_address.emplace(entry->addr, decoded_entry);
return decoded_entry;
}
void TextureCacheBase::ScaleTextureCacheEntryTo(TextureCacheBase::TCacheEntry* entry, u32 new_width,
u32 new_height)
{
if (entry->GetWidth() == new_width && entry->GetHeight() == new_height)
{
return;
}
const u32 max = g_ActiveConfig.backend_info.MaxTextureSize;
if (max < new_width || max < new_height)
{
ERROR_LOG(VIDEO, "Texture too big, width = %d, height = %d", new_width, new_height);
return;
}
TextureConfig newconfig;
newconfig.width = new_width;
newconfig.height = new_height;
newconfig.layers = entry->GetNumLayers();
newconfig.rendertarget = true;
std::unique_ptr<AbstractTexture> new_texture = AllocateTexture(newconfig);
if (new_texture)
{
new_texture->ScaleRectangleFromTexture(entry->texture.get(),
entry->texture->GetConfig().GetRect(),
new_texture->GetConfig().GetRect());
entry->texture.swap(new_texture);
auto config = new_texture->GetConfig();
// At this point new_texture has the old texture in it,
// we can potentially reuse this, so let's move it back to the pool
texture_pool.emplace(config, TexPoolEntry(std::move(new_texture)));
}
else
{
ERROR_LOG(VIDEO, "Scaling failed");
}
}
TextureCacheBase::TCacheEntry*
TextureCacheBase::DoPartialTextureUpdates(TCacheEntry* entry_to_update, u8* palette,
TLUTFormat tlutfmt)
{
// If the flag may_have_overlapping_textures is cleared, there are no overlapping EFB copies,
// which aren't applied already. It is set for new textures, and for the affected range
// on each EFB copy.
if (!entry_to_update->may_have_overlapping_textures)
return entry_to_update;
entry_to_update->may_have_overlapping_textures = false;
const bool isPaletteTexture = IsColorIndexed(entry_to_update->format.texfmt);
// EFB copies are excluded from these updates, until there's an example where a game would
// benefit from updating. This would require more work to be done.
if (entry_to_update->IsCopy())
return entry_to_update;
u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format.texfmt);
u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format.texfmt);
u32 block_size = block_width * block_height *
TexDecoder_GetTexelSizeInNibbles(entry_to_update->format.texfmt) / 2;
u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width;
auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes);
while (iter.first != iter.second)
{
TCacheEntry* entry = iter.first->second;
if (entry != entry_to_update && entry->IsCopy() && !entry->tmem_only &&
entry->references.count(entry_to_update) == 0 &&
entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) &&
entry->memory_stride == numBlocksX * block_size)
{
if (entry->hash == entry->CalculateHash())
{
if (isPaletteTexture)
{
TCacheEntry* decoded_entry = ApplyPaletteToEntry(entry, palette, tlutfmt);
if (decoded_entry)
{
// Link the efb copy with the partially updated texture, so we won't apply this partial
// update again
entry->CreateReference(entry_to_update);
// Mark the texture update as used, as if it was loaded directly
entry->frameCount = FRAMECOUNT_INVALID;
entry = decoded_entry;
}
else
{
++iter.first;
continue;
}
}
u32 src_x, src_y, dst_x, dst_y;
// Note for understanding the math:
// Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist
if (entry->addr >= entry_to_update->addr)
{
u32 block_offset = (entry->addr - entry_to_update->addr) / block_size;
u32 block_x = block_offset % numBlocksX;
u32 block_y = block_offset / numBlocksX;
src_x = 0;
src_y = 0;
dst_x = block_x * block_width;
dst_y = block_y * block_height;
}
else
{
u32 block_offset = (entry_to_update->addr - entry->addr) / block_size;
u32 block_x = (~block_offset + 1) % numBlocksX;
u32 block_y = (block_offset + block_x) / numBlocksX;
src_x = 0;
src_y = block_y * block_height;
dst_x = block_x * block_width;
dst_y = 0;
}
u32 copy_width =
std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x);
u32 copy_height =
std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y);
// If one of the textures is scaled, scale both with the current efb scaling factor
if (entry_to_update->native_width != entry_to_update->GetWidth() ||
entry_to_update->native_height != entry_to_update->GetHeight() ||
entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight())
{
ScaleTextureCacheEntryTo(entry_to_update,
g_renderer->EFBToScaledX(entry_to_update->native_width),
g_renderer->EFBToScaledY(entry_to_update->native_height));
ScaleTextureCacheEntryTo(entry, g_renderer->EFBToScaledX(entry->native_width),
g_renderer->EFBToScaledY(entry->native_height));
src_x = g_renderer->EFBToScaledX(src_x);
src_y = g_renderer->EFBToScaledY(src_y);
dst_x = g_renderer->EFBToScaledX(dst_x);
dst_y = g_renderer->EFBToScaledY(dst_y);
copy_width = g_renderer->EFBToScaledX(copy_width);
copy_height = g_renderer->EFBToScaledY(copy_height);
}
MathUtil::Rectangle<int> srcrect, dstrect;
srcrect.left = src_x;
srcrect.top = src_y;
srcrect.right = (src_x + copy_width);
srcrect.bottom = (src_y + copy_height);
dstrect.left = dst_x;
dstrect.top = dst_y;
dstrect.right = (dst_x + copy_width);
dstrect.bottom = (dst_y + copy_height);
for (u32 layer = 0; layer < entry->texture->GetConfig().layers; layer++)
{
entry_to_update->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer,
0, dstrect, layer, 0);
}
if (isPaletteTexture)
{
// Remove the temporary converted texture, it won't be used anywhere else
// TODO: It would be nice to convert and copy in one step, but this code path isn't common
InvalidateTexture(GetTexCacheIter(entry));
}
else
{
// Link the two textures together, so we won't apply this partial update again
entry->CreateReference(entry_to_update);
// Mark the texture update as used, as if it was loaded directly
entry->frameCount = FRAMECOUNT_INVALID;
}
}
else
{
// If the hash does not match, this EFB copy will not be used for anything, so remove it
iter.first = InvalidateTexture(iter.first);
continue;
}
}
++iter.first;
}
return entry_to_update;
}
void TextureCacheBase::DumpTexture(TCacheEntry* entry, std::string basename, unsigned int level,
bool is_arbitrary)
{
std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().GetGameID();
// make sure that the directory exists
if (!File::IsDirectory(szDir))
File::CreateDir(szDir);
if (is_arbitrary)
{
basename += "_arb";
}
if (level > 0)
{
basename += StringFromFormat("_mip%i", level);
}
std::string filename = szDir + "/" + basename + ".png";
if (!File::Exists(filename))
entry->texture->Save(filename, level);
}
static u32 CalculateLevelSize(u32 level_0_size, u32 level)
{
return std::max(level_0_size >> level, 1u);
}
void TextureCacheBase::BindTextures()
{
for (u32 i = 0; i < bound_textures.size(); i++)
{
if (IsValidBindPoint(i) && bound_textures[i])
g_renderer->SetTexture(i, bound_textures[i]->texture.get());
}
}
class ArbitraryMipmapDetector
{
private:
using PixelRGBAf = std::array<float, 4>;
public:
explicit ArbitraryMipmapDetector() = default;
void AddLevel(u32 width, u32 height, u32 row_length, const u8* buffer)
{
levels.push_back({{width, height, row_length}, buffer});
}
bool HasArbitraryMipmaps(u8* downsample_buffer) const
{
if (levels.size() < 2)
return false;
// This is the average per-pixel, per-channel difference in percent between what we
// expect a normal blurred mipmap to look like and what we actually received
// 4.5% was chosen because it's just below the lowest clearly-arbitrary texture
// I found in my tests, the background clouds in Mario Galaxy's Observatory lobby.
constexpr auto THRESHOLD_PERCENT = 4.5f;
auto* src = downsample_buffer;
auto* dst = downsample_buffer + levels[1].shape.row_length * levels[1].shape.height * 4;
float total_diff = 0.f;
for (std::size_t i = 0; i < levels.size() - 1; ++i)
{
const auto& level = levels[i];
const auto& mip = levels[i + 1];
// Manually downsample the past downsample with a simple box blur
// This is not necessarily close to whatever the original artists used, however
// It should still be closer than a thing that's not a downscale at all
Level::Downsample(i ? src : level.pixels, level.shape, dst, mip.shape);
// Find the average difference between pixels in this level but downsampled
// and the next level
auto diff = mip.AverageDiff(dst);
total_diff += diff;
std::swap(src, dst);
}
auto all_levels = total_diff / (levels.size() - 1);
return all_levels > THRESHOLD_PERCENT;
}
private:
static float SRGBToLinear(u8 srgb_byte)
{
auto srgb_float = static_cast<float>(srgb_byte) / 256.f;
// approximations found on
// http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
return srgb_float * (srgb_float * (srgb_float * 0.305306011f + 0.682171111f) + 0.012522878f);
}
static u8 LinearToSRGB(float linear)
{
return static_cast<u8>(std::max(1.055f * std::pow(linear, 0.416666667f) - 0.055f, 0.f) * 256.f);
}
struct Shape
{
u32 width;
u32 height;
u32 row_length;
};
struct Level
{
Shape shape;
const u8* pixels;
static PixelRGBAf Sample(const u8* src, const Shape& src_shape, u32 x, u32 y)
{
const auto* p = src + (x + y * src_shape.row_length) * 4;
return {{SRGBToLinear(p[0]), SRGBToLinear(p[1]), SRGBToLinear(p[2]), SRGBToLinear(p[3])}};
}
// Puts a downsampled image in dst. dst must be at least width*height*4
static void Downsample(const u8* src, const Shape& src_shape, u8* dst, const Shape& dst_shape)
{
for (u32 i = 0; i < dst_shape.height; ++i)
{
for (u32 j = 0; j < dst_shape.width; ++j)
{
auto x = j * 2;
auto y = i * 2;
const std::array<PixelRGBAf, 4> samples{{
Sample(src, src_shape, x, y), Sample(src, src_shape, x + 1, y),
Sample(src, src_shape, x, y + 1), Sample(src, src_shape, x + 1, y + 1),
}};
auto* dst_pixel = dst + (j + i * dst_shape.row_length) * 4;
dst_pixel[0] =
LinearToSRGB((samples[0][0] + samples[1][0] + samples[2][0] + samples[3][0]) * 0.25f);
dst_pixel[1] =
LinearToSRGB((samples[0][1] + samples[1][1] + samples[2][1] + samples[3][1]) * 0.25f);
dst_pixel[2] =
LinearToSRGB((samples[0][2] + samples[1][2] + samples[2][2] + samples[3][2]) * 0.25f);
dst_pixel[3] =
LinearToSRGB((samples[0][3] + samples[1][3] + samples[2][3] + samples[3][3]) * 0.25f);
}
}
}
float AverageDiff(const u8* other) const
{
float average_diff = 0.f;
const auto* ptr1 = pixels;
const auto* ptr2 = other;
for (u32 i = 0; i < shape.height; ++i)
{
const auto* row1 = ptr1;
const auto* row2 = ptr2;
for (u32 j = 0; j < shape.width; ++j, row1 += 4, row2 += 4)
{
average_diff += std::abs(static_cast<float>(row1[0]) - static_cast<float>(row2[0]));
average_diff += std::abs(static_cast<float>(row1[1]) - static_cast<float>(row2[1]));
average_diff += std::abs(static_cast<float>(row1[2]) - static_cast<float>(row2[2]));
average_diff += std::abs(static_cast<float>(row1[3]) - static_cast<float>(row2[3]));
}
ptr1 += shape.row_length;
ptr2 += shape.row_length;
}
return average_diff / (shape.width * shape.height * 4) / 2.56f;
}
};
std::vector<Level> levels;
};
TextureCacheBase::TCacheEntry* TextureCacheBase::Load(const u32 stage)
{
// if this stage was not invalidated by changes to texture registers, keep the current texture
if (IsValidBindPoint(stage) && bound_textures[stage])
{
return bound_textures[stage];
}
const FourTexUnits& tex = bpmem.tex[stage >> 2];
const u32 id = stage & 3;
const u32 address = (tex.texImage3[id].image_base /* & 0x1FFFFF*/) << 5;
u32 width = tex.texImage0[id].width + 1;
u32 height = tex.texImage0[id].height + 1;
const TextureFormat texformat = static_cast<TextureFormat>(tex.texImage0[id].format);
const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
const TLUTFormat tlutfmt = static_cast<TLUTFormat>(tex.texTlut[id].tlut_format);
const bool use_mipmaps = SamplerCommon::AreBpTexMode0MipmapsEnabled(tex.texMode0[id]);
u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
const bool from_tmem = tex.texImage1[id].image_type != 0;
const u32 tmem_address_even = from_tmem ? tex.texImage1[id].tmem_even * TMEM_LINE_SIZE : 0;
const u32 tmem_address_odd = from_tmem ? tex.texImage2[id].tmem_odd * TMEM_LINE_SIZE : 0;
auto entry = GetTexture(address, width, height, texformat,
g_ActiveConfig.iSafeTextureCache_ColorSamples, tlutaddr, tlutfmt,
use_mipmaps, tex_levels, from_tmem, tmem_address_even, tmem_address_odd);
if (!entry)
return nullptr;
entry->frameCount = FRAMECOUNT_INVALID;
bound_textures[stage] = entry;
GFX_DEBUGGER_PAUSE_AT(NEXT_TEXTURE_CHANGE, true);
// We need to keep track of invalided textures until they have actually been replaced or
// re-loaded
valid_bind_points.set(stage);
return entry;
}
TextureCacheBase::TCacheEntry*
TextureCacheBase::GetTexture(u32 address, u32 width, u32 height, const TextureFormat texformat,
const int textureCacheSafetyColorSampleSize, u32 tlutaddr,
TLUTFormat tlutfmt, bool use_mipmaps, u32 tex_levels, bool from_tmem,
u32 tmem_address_even, u32 tmem_address_odd)
{
// TexelSizeInNibbles(format) * width * height / 16;
const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat);
const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat);
unsigned int expandedWidth = Common::AlignUp(width, bsw);
unsigned int expandedHeight = Common::AlignUp(height, bsh);
const unsigned int nativeW = width;
const unsigned int nativeH = height;
// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and
// custom texture lookup)
u64 base_hash = TEXHASH_INVALID;
u64 full_hash = TEXHASH_INVALID;
TextureAndTLUTFormat full_format(texformat, tlutfmt);
const bool isPaletteTexture = IsColorIndexed(texformat);
// Reject invalid tlut format.
if (isPaletteTexture && !IsValidTLUTFormat(tlutfmt))
return nullptr;
const u32 texture_size =
TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
u32 bytes_per_block = (bsw * bsh * TexDecoder_GetTexelSizeInNibbles(texformat)) / 2;
u32 additional_mips_size = 0; // not including level 0, which is texture_size
// GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in
// the mipmap chain
// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we
// limit the mipmap count to 6 there
tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);
for (u32 level = 1; level != tex_levels; ++level)
{
// We still need to calculate the original size of the mips
const u32 expanded_mip_width = Common::AlignUp(CalculateLevelSize(width, level), bsw);
const u32 expanded_mip_height = Common::AlignUp(CalculateLevelSize(height, level), bsh);
additional_mips_size +=
TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
}
// TODO: the texture cache lookup is based on address, but a texture from tmem has no reason
// to have a unique and valid address. This could result in a regular texture and a tmem
// texture aliasing onto the same texture cache entry.
const u8* src_data;
if (from_tmem)
src_data = &texMem[tmem_address_even];
else
src_data = Memory::GetPointer(address);
if (!src_data)
{
ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", address);
return nullptr;
}
// If we are recording a FifoLog, keep track of what memory we read. FifoRecorder does
// its own memory modification tracking independent of the texture hashing below.
if (g_bRecordFifoData && !from_tmem)
FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size,
MemoryUpdate::TEXTURE_MAP);
// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data
// from the low tmem bank than it should)
base_hash = GetHash64(src_data, texture_size, textureCacheSafetyColorSampleSize);
u32 palette_size = 0;
if (isPaletteTexture)
{
palette_size = TexDecoder_GetPaletteSize(texformat);
full_hash =
base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, textureCacheSafetyColorSampleSize);
}
else
{
full_hash = base_hash;
}
// Search the texture cache for textures by address
//
// Find all texture cache entries for the current texture address, and decide whether to use one
// of
// them, or to create a new one
//
// In most cases, the fastest way is to use only one texture cache entry for the same address.
// Usually,
// when a texture changes, the old version of the texture is unlikely to be used again. If there
// were
// new cache entries created for normal texture updates, there would be a slowdown due to a huge
// amount
// of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
// faster than creating a new one from scratch.
//
// Some games use the same address for different textures though. If the same cache entry was used
// in
// this case, it would be constantly overwritten, and effectively there wouldn't be any caching
// for
// those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has
// multiple
// sets of fonts on each other stored in a single texture and uses the palette to make different
// characters visible or invisible. In Castlevania 3 some textures are used for 2 different things
// or
// at least in 2 different ways(size 1024x1024 vs 1024x256).
//
// To determine whether to use multiple cache entries or a single entry, use the following
// heuristic:
// If the same texture address is used several times during the same frame, assume the address is
// used
// for different purposes and allow creating an additional cache entry. If there's at least one
// entry
// that hasn't been used for the same frame, then overwrite it, in order to keep the cache as
// small as
// possible. If the current texture is found in the cache, use that entry.
//
// For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else
// it was
// done in vain.
auto iter_range = textures_by_address.equal_range(address);
TexAddrCache::iterator iter = iter_range.first;
TexAddrCache::iterator oldest_entry = iter;
int temp_frameCount = 0x7fffffff;
TexAddrCache::iterator unconverted_copy = textures_by_address.end();
while (iter != iter_range.second)
{
TCacheEntry* entry = iter->second;
// Skip entries that are only left in our texture cache for the tmem cache emulation
if (entry->tmem_only)
{
++iter;
continue;
}
// Do not load strided EFB copies, they are not meant to be used directly.
// Also do not directly load EFB copies, which were partly overwritten.
if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH &&
entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures)
{
// EFB copies have slightly different rules as EFB copy formats have different
// meanings from texture formats.
if ((base_hash == entry->hash &&
(!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) ||
IsPlayingBackFifologWithBrokenEFBCopies)
{
// TODO: We should check format/width/height/levels for EFB copies. Checking
// format is complicated because EFB copy formats don't exactly match
// texture formats. I'm not sure what effect checking width/height/levels
// would have.
if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
return entry;
// Note that we found an unconverted EFB copy, then continue. We'll
// perform the conversion later. Currently, we only convert EFB copies to
// palette textures; we could do other conversions if it proved to be
// beneficial.
unconverted_copy = iter;
}
else
{
// Aggressively prune EFB copies: if it isn't useful here, it will probably
// never be useful again. It's theoretically possible for a game to do
// something weird where the copy could become useful in the future, but in
// practice it doesn't happen.
iter = InvalidateTexture(iter);
continue;
}
}
else
{
// For normal textures, all texture parameters need to match
if (!entry->IsEfbCopy() && entry->hash == full_hash && entry->format == full_format &&
entry->native_levels >= tex_levels && entry->native_width == nativeW &&
entry->native_height == nativeH)
{
entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt);
return entry;
}
}
// Find the texture which hasn't been used for the longest time. Count paletted
// textures as the same texture here, when the texture itself is the same. This
// improves the performance a lot in some games that use paletted textures.
// Example: Sonic the Fighters (inside Sonic Gems Collection)
// Skip EFB copies here, so they can be used for partial texture updates
if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
!entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash))
{
temp_frameCount = entry->frameCount;
oldest_entry = iter;
}
++iter;
}
if (unconverted_copy != textures_by_address.end())
{
TCacheEntry* decoded_entry =
ApplyPaletteToEntry(unconverted_copy->second, &texMem[tlutaddr], tlutfmt);
if (decoded_entry)
{
return decoded_entry;
}
}
// Search the texture cache for normal textures by hash
//
// If the texture was fully hashed, the address does not need to match. Identical duplicate
// textures cause unnecessary slowdowns
// Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70
// different ones
if (textureCacheSafetyColorSampleSize == 0 ||
std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8)
{
auto hash_range = textures_by_hash.equal_range(full_hash);
TexHashCache::iterator hash_iter = hash_range.first;
while (hash_iter != hash_range.second)
{
TCacheEntry* entry = hash_iter->second;
// All parameters, except the address, need to match here
if (entry->format == full_format && entry->native_levels >= tex_levels &&
entry->native_width == nativeW && entry->native_height == nativeH)
{
entry = DoPartialTextureUpdates(hash_iter->second, &texMem[tlutaddr], tlutfmt);
return entry;
}
++hash_iter;
}
}
// If at least one entry was not used for the same frame, overwrite the oldest one
if (temp_frameCount != 0x7fffffff)
{
// pool this texture and make a new one later
InvalidateTexture(oldest_entry);
}
std::shared_ptr<HiresTexture> hires_tex;
if (g_ActiveConfig.bHiresTextures)
{
hires_tex = HiresTexture::Search(src_data, texture_size, &texMem[tlutaddr], palette_size, width,
height, texformat, use_mipmaps);
if (hires_tex)
{
const auto& level = hires_tex->m_levels[0];
if (level.width != width || level.height != height)
{
width = level.width;
height = level.height;
}
expandedWidth = level.width;
expandedHeight = level.height;
}
}
// how many levels the allocated texture shall have
const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;
// We can decode on the GPU if it is a supported format and the flag is enabled.
// Currently we don't decode RGBA8 textures from Tmem, as that would require copying from both
// banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since
// there's no conversion between formats. In the future this could be extended with a separate
// shader, however.
bool decode_on_gpu = !hires_tex && g_ActiveConfig.UseGPUTextureDecoding() &&
g_texture_cache->SupportsGPUTextureDecode(texformat, tlutfmt) &&
!(from_tmem && texformat == TextureFormat::RGBA8);
// create the entry/texture
TextureConfig config;
config.width = width;
config.height = height;
config.levels = texLevels;
config.format = hires_tex ? hires_tex->GetFormat() : AbstractTextureFormat::RGBA8;
ArbitraryMipmapDetector arbitrary_mip_detector;
TCacheEntry* entry = AllocateCacheEntry(config);
GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);
if (!entry)
return nullptr;
const u8* tlut = &texMem[tlutaddr];
if (hires_tex)
{
const auto& level = hires_tex->m_levels[0];
entry->texture->Load(0, level.width, level.height, level.row_length, level.data.get(),
level.data_size);
}
// Initialized to null because only software loading uses this buffer
u8* dst_buffer = nullptr;
if (!hires_tex)
{
if (decode_on_gpu)
{
u32 row_stride = bytes_per_block * (expandedWidth / bsw);
g_texture_cache->DecodeTextureOnGPU(entry, 0, src_data, texture_size, texformat, width,
height, expandedWidth, expandedHeight, row_stride, tlut,
tlutfmt);
}
else
{
size_t decoded_texture_size = expandedWidth * sizeof(u32) * expandedHeight;
// Allocate memory for all levels at once
size_t total_texture_size = decoded_texture_size;
// For the downsample, we need 2 buffers; 1 is 1/4 of the original texture, the other 1/16
size_t mip_downsample_buffer_size = decoded_texture_size * 5 / 16;
size_t prev_level_size = decoded_texture_size;
for (u32 i = 1; i < tex_levels; ++i)
{
prev_level_size /= 4;
total_texture_size += prev_level_size;
}
// Add space for the downsampling at the end
total_texture_size += mip_downsample_buffer_size;
CheckTempSize(total_texture_size);
dst_buffer = temp;
if (!(texformat == TextureFormat::RGBA8 && from_tmem))
{
TexDecoder_Decode(dst_buffer, src_data, expandedWidth, expandedHeight, texformat, tlut,
tlutfmt);
}
else
{
u8* src_data_gb = &texMem[tmem_address_odd];
TexDecoder_DecodeRGBA8FromTmem(dst_buffer, src_data, src_data_gb, expandedWidth,
expandedHeight);
}
entry->texture->Load(0, width, height, expandedWidth, dst_buffer, decoded_texture_size);
arbitrary_mip_detector.AddLevel(width, height, expandedWidth, dst_buffer);
dst_buffer += decoded_texture_size;
}
}
iter = textures_by_address.emplace(address, entry);
if (textureCacheSafetyColorSampleSize == 0 ||
std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8)
{
entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry);
}
entry->SetGeneralParameters(address, texture_size, full_format, false);
entry->SetDimensions(nativeW, nativeH, tex_levels);
entry->SetHashes(base_hash, full_hash);
entry->is_custom_tex = hires_tex != nullptr;
entry->memory_stride = entry->BytesPerRow();
entry->SetNotCopy();
std::string basename = "";
if (g_ActiveConfig.bDumpTextures && !hires_tex)
{
basename = HiresTexture::GenBaseName(src_data, texture_size, &texMem[tlutaddr], palette_size,
width, height, texformat, use_mipmaps, true);
}
if (hires_tex)
{
for (u32 level_index = 1; level_index != texLevels; ++level_index)
{
const auto& level = hires_tex->m_levels[level_index];
entry->texture->Load(level_index, level.width, level.height, level.row_length,
level.data.get(), level.data_size);
}
}
else
{
// load mips - TODO: Loading mipmaps from tmem is untested!
src_data += texture_size;
const u8* ptr_even = nullptr;
const u8* ptr_odd = nullptr;
if (from_tmem)
{
ptr_even = &texMem[tmem_address_even + texture_size];
ptr_odd = &texMem[tmem_address_odd];
}
for (u32 level = 1; level != texLevels; ++level)
{
const u32 mip_width = CalculateLevelSize(width, level);
const u32 mip_height = CalculateLevelSize(height, level);
const u32 expanded_mip_width = Common::AlignUp(mip_width, bsw);
const u32 expanded_mip_height = Common::AlignUp(mip_height, bsh);
const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data;
size_t mip_size =
TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
if (decode_on_gpu)
{
u32 row_stride = bytes_per_block * (expanded_mip_width / bsw);
g_texture_cache->DecodeTextureOnGPU(entry, level, mip_src_data, mip_size, texformat,
mip_width, mip_height, expanded_mip_width,
expanded_mip_height, row_stride, tlut, tlutfmt);
}
else
{
// No need to call CheckTempSize here, as the whole buffer is preallocated at the beginning
size_t decoded_mip_size = expanded_mip_width * sizeof(u32) * expanded_mip_height;
TexDecoder_Decode(dst_buffer, mip_src_data, expanded_mip_width, expanded_mip_height,
texformat, tlut, tlutfmt);
entry->texture->Load(level, mip_width, mip_height, expanded_mip_width, dst_buffer,
decoded_mip_size);
arbitrary_mip_detector.AddLevel(mip_width, mip_height, expanded_mip_width, dst_buffer);
dst_buffer += decoded_mip_size;
}
mip_src_data += mip_size;
}
}
entry->has_arbitrary_mips = hires_tex ? hires_tex->HasArbitraryMipmaps() :
arbitrary_mip_detector.HasArbitraryMipmaps(dst_buffer);
if (g_ActiveConfig.bDumpTextures && !hires_tex)
{
for (u32 level = 0; level < texLevels; ++level)
{
DumpTexture(entry, basename, level, entry->has_arbitrary_mips);
}
}
INCSTAT(stats.numTexturesUploaded);
SETSTAT(stats.numTexturesAlive, textures_by_address.size());
entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt);
return entry;
}
TextureCacheBase::TCacheEntry*
TextureCacheBase::GetXFBTexture(u32 address, u32 width, u32 height, TextureFormat tex_format,
int texture_cache_safety_color_sample_size)
{
auto tex_info = ComputeTextureInformation(address, width, height, tex_format,
texture_cache_safety_color_sample_size, false, 0, 0, 0,
TLUTFormat::IA8, 1);
if (!tex_info)
{
return nullptr;
}
const TextureLookupInformation tex_info_value = tex_info.value();
TCacheEntry* entry = GetXFBFromCache(tex_info_value);
if (entry != nullptr)
{
return entry;
}
entry = CreateNormalTexture(tex_info.value());
// XFBs created for the purpose of being a container for textures from memory
// or as a container for overlapping textures, never need to be combined
// with other textures
entry->may_have_overlapping_textures = false;
// At this point, the XFB wasn't found in cache
// this means the address is most likely not pointing at an xfb copy but instead
// an area of memory. Let's attempt to stitch all entries in this memory space
// together
bool loaded_from_overlapping = LoadTextureFromOverlappingTextures(entry, tex_info_value);
if (!loaded_from_overlapping)
{
// At this point, the xfb address is truly "bogus"
// it likely is an area of memory defined by the CPU
// so load it from memory
LoadTextureFromMemory(entry, tex_info_value);
}
if (g_ActiveConfig.bDumpXFBTarget)
{
// While this isn't really an xfb copy, we can treat it as such
// for dumping purposes
static int xfb_count = 0;
const std::string xfb_type = loaded_from_overlapping ? "combined" : "from_memory";
entry->texture->Save(StringFromFormat("%sxfb_%s_%i.png",
File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
xfb_type.c_str(), xfb_count++),
0);
}
return entry;
}
std::optional<TextureLookupInformation> TextureCacheBase::ComputeTextureInformation(
u32 address, u32 width, u32 height, TextureFormat tex_format,
int texture_cache_safety_color_sample_size, bool from_tmem, u32 tmem_address_even,
u32 tmem_address_odd, u32 tlut_address, TLUTFormat tlut_format, u32 levels)
{
TextureLookupInformation tex_info;
tex_info.from_tmem = from_tmem;
tex_info.tmem_address_even = tmem_address_even;
tex_info.tmem_address_odd = tmem_address_odd;
tex_info.address = address;
if (from_tmem)
tex_info.src_data = &texMem[tex_info.tmem_address_even];
else
tex_info.src_data = Memory::GetPointer(tex_info.address);
if (tex_info.src_data == nullptr)
{
ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", tex_info.address);
return {};
}
tex_info.texture_cache_safety_color_sample_size = texture_cache_safety_color_sample_size;
// TexelSizeInNibbles(format) * width * height / 16;
tex_info.block_width = TexDecoder_GetBlockWidthInTexels(tex_format);
tex_info.block_height = TexDecoder_GetBlockHeightInTexels(tex_format);
tex_info.bytes_per_block = (tex_info.block_width * tex_info.block_height *
TexDecoder_GetTexelSizeInNibbles(tex_format)) /
2;
tex_info.expanded_width = Common::AlignUp(width, tex_info.block_width);
tex_info.expanded_height = Common::AlignUp(height, tex_info.block_height);
tex_info.total_bytes = TexDecoder_GetTextureSizeInBytes(tex_info.expanded_width,
tex_info.expanded_height, tex_format);
tex_info.native_width = width;
tex_info.native_height = height;
tex_info.native_levels = levels;
// GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in
// the mipmap chain
// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we
// limit the mipmap count to 6 there
tex_info.computed_levels = std::min<u32>(
IntLog2(std::max(tex_info.native_width, tex_info.native_height)) + 1, tex_info.native_levels);
tex_info.full_format = TextureAndTLUTFormat(tex_format, tlut_format);
tex_info.tlut_address = tlut_address;
// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data
// from the low tmem bank than it should)
tex_info.base_hash = GetHash64(tex_info.src_data, tex_info.total_bytes,
tex_info.texture_cache_safety_color_sample_size);
tex_info.is_palette_texture = IsColorIndexed(tex_format);
if (tex_info.is_palette_texture)
{
tex_info.palette_size = TexDecoder_GetPaletteSize(tex_format);
tex_info.full_hash =
tex_info.base_hash ^ GetHash64(&texMem[tex_info.tlut_address], tex_info.palette_size,
tex_info.texture_cache_safety_color_sample_size);
}
else
{
tex_info.full_hash = tex_info.base_hash;
}
return tex_info;
}
TextureCacheBase::TCacheEntry*
TextureCacheBase::GetXFBFromCache(const TextureLookupInformation& tex_info)
{
auto iter_range = textures_by_address.equal_range(tex_info.address);
TexAddrCache::iterator iter = iter_range.first;
while (iter != iter_range.second)
{
TCacheEntry* entry = iter->second;
if ((entry->is_xfb_copy || entry->format.texfmt == TextureFormat::XFB) &&
entry->native_width == tex_info.native_width &&
entry->native_height == tex_info.native_height &&
entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures)
{
if (tex_info.base_hash == entry->hash && !entry->reference_changed)
{
return entry;
}
else
{
// At this point, we either have an xfb copy that has changed its hash
// or an xfb created by stitching or from memory that has been changed
// we are safe to invalidate this
iter = InvalidateTexture(iter);
continue;
}
}
++iter;
}
return nullptr;
}
bool TextureCacheBase::LoadTextureFromOverlappingTextures(TCacheEntry* entry_to_update,
const TextureLookupInformation& tex_info)
{
bool updated_entry = false;
u32 numBlocksX = entry_to_update->native_width / tex_info.block_width;
auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes);
while (iter.first != iter.second)
{
TCacheEntry* entry = iter.first->second;
if (entry != entry_to_update && entry->IsCopy() && !entry->tmem_only &&
entry->references.count(entry_to_update) == 0 &&
entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) &&
entry->memory_stride == entry_to_update->memory_stride)
{
if (entry->hash == entry->CalculateHash())
{
if (tex_info.is_palette_texture)
{
TCacheEntry* decoded_entry =
ApplyPaletteToEntry(entry, nullptr, tex_info.full_format.tlutfmt);
if (decoded_entry)
{
// Link the efb copy with the partially updated texture, so we won't apply this partial
// update again
entry->CreateReference(entry_to_update);
// Mark the texture update as used, as if it was loaded directly
entry->frameCount = FRAMECOUNT_INVALID;
entry = decoded_entry;
}
else
{
++iter.first;
continue;
}
}
s32 src_x, src_y, dst_x, dst_y;
// Note for understanding the math:
// Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist
if (entry->addr >= entry_to_update->addr)
{
s32 block_offset = (entry->addr - entry_to_update->addr) / tex_info.bytes_per_block;
s32 block_x = block_offset % numBlocksX;
s32 block_y = block_offset / numBlocksX;
src_x = 0;
src_y = 0;
dst_x = block_x * tex_info.block_width;
dst_y = block_y * tex_info.block_height;
}
else
{
s32 block_offset = (entry_to_update->addr - entry->addr) / tex_info.bytes_per_block;
s32 block_x = block_offset % numBlocksX;
s32 block_y = block_offset / numBlocksX;
src_x = block_x * tex_info.block_width;
src_y = block_y * tex_info.block_height;
dst_x = 0;
dst_y = 0;
}
u32 copy_width =
std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x);
u32 copy_height =
std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y);
// If one of the textures is scaled, scale both with the current efb scaling factor
if (entry_to_update->native_width != entry_to_update->GetWidth() ||
entry_to_update->native_height != entry_to_update->GetHeight() ||
entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight())
{
ScaleTextureCacheEntryTo(entry_to_update,
g_renderer->EFBToScaledX(entry_to_update->native_width),
g_renderer->EFBToScaledY(entry_to_update->native_height));
ScaleTextureCacheEntryTo(entry, g_renderer->EFBToScaledX(entry->native_width),
g_renderer->EFBToScaledY(entry->native_height));
src_x = g_renderer->EFBToScaledX(src_x);
src_y = g_renderer->EFBToScaledY(src_y);
dst_x = g_renderer->EFBToScaledX(dst_x);
dst_y = g_renderer->EFBToScaledY(dst_y);
copy_width = g_renderer->EFBToScaledX(copy_width);
copy_height = g_renderer->EFBToScaledY(copy_height);
}
MathUtil::Rectangle<int> srcrect, dstrect;
srcrect.left = src_x;
srcrect.top = src_y;
srcrect.right = (src_x + copy_width);
srcrect.bottom = (src_y + copy_height);
dstrect.left = dst_x;
dstrect.top = dst_y;
dstrect.right = (dst_x + copy_width);
dstrect.bottom = (dst_y + copy_height);
for (u32 layer = 0; layer < entry->texture->GetConfig().layers; layer++)
{
entry_to_update->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer,
0, dstrect, layer, 0);
}
updated_entry = true;
if (tex_info.is_palette_texture)
{
// Remove the temporary converted texture, it won't be used anywhere else
// TODO: It would be nice to convert and copy in one step, but this code path isn't common
InvalidateTexture(GetTexCacheIter(entry));
}
else
{
// Link the two textures together, so we won't apply this partial update again
entry->CreateReference(entry_to_update);
// Mark the texture update as used, as if it was loaded directly
entry->frameCount = FRAMECOUNT_INVALID;
}
}
else
{
// If the hash does not match, this EFB copy will not be used for anything, so remove it
iter.first = InvalidateTexture(iter.first);
continue;
}
}
++iter.first;
}
return updated_entry;
}
TextureCacheBase::TCacheEntry*
TextureCacheBase::CreateNormalTexture(const TextureLookupInformation& tex_info)
{
// create the entry/texture
TextureConfig config;
config.width = tex_info.native_width;
config.height = tex_info.native_height;
config.levels = tex_info.computed_levels;
config.format = AbstractTextureFormat::RGBA8;
config.rendertarget = true;
TCacheEntry* entry = AllocateCacheEntry(config);
GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);
if (!entry)
return nullptr;
textures_by_address.emplace(tex_info.address, entry);
if (tex_info.texture_cache_safety_color_sample_size == 0 ||
std::max(tex_info.total_bytes, tex_info.palette_size) <=
(u32)tex_info.texture_cache_safety_color_sample_size * 8)
{
entry->textures_by_hash_iter = textures_by_hash.emplace(tex_info.full_hash, entry);
}
entry->SetGeneralParameters(tex_info.address, tex_info.total_bytes, tex_info.full_format, false);
entry->SetDimensions(tex_info.native_width, tex_info.native_height, tex_info.computed_levels);
entry->SetHashes(tex_info.base_hash, tex_info.full_hash);
entry->is_custom_tex = false;
entry->memory_stride = entry->BytesPerRow();
entry->SetNotCopy();
INCSTAT(stats.numTexturesUploaded);
SETSTAT(stats.numTexturesAlive, textures_by_address.size());
return entry;
}
void TextureCacheBase::LoadTextureFromMemory(TCacheEntry* entry_to_update,
const TextureLookupInformation& tex_info)
{
// We can decode on the GPU if it is a supported format and the flag is enabled.
// Currently we don't decode RGBA8 textures from Tmem, as that would require copying from both
// banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since
// there's no conversion between formats. In the future this could be extended with a separate
// shader, however.
bool decode_on_gpu = g_ActiveConfig.UseGPUTextureDecoding() &&
g_texture_cache->SupportsGPUTextureDecode(tex_info.full_format.texfmt,
tex_info.full_format.tlutfmt) &&
!(tex_info.from_tmem && tex_info.full_format.texfmt == TextureFormat::RGBA8);
LoadTextureLevelZeroFromMemory(entry_to_update, tex_info, decode_on_gpu);
}
void TextureCacheBase::LoadTextureLevelZeroFromMemory(TCacheEntry* entry_to_update,
const TextureLookupInformation& tex_info,
bool decode_on_gpu)
{
const u8* tlut = &texMem[tex_info.tlut_address];
if (decode_on_gpu)
{
u32 row_stride = tex_info.bytes_per_block * (tex_info.expanded_width / tex_info.block_width);
g_texture_cache->DecodeTextureOnGPU(
entry_to_update, 0, tex_info.src_data, tex_info.total_bytes, tex_info.full_format.texfmt,
tex_info.native_width, tex_info.native_height, tex_info.expanded_width,
tex_info.expanded_height, row_stride, tlut, tex_info.full_format.tlutfmt);
}
else
{
size_t decoded_texture_size = tex_info.expanded_width * sizeof(u32) * tex_info.expanded_height;
CheckTempSize(decoded_texture_size);
if (!(tex_info.full_format.texfmt == TextureFormat::RGBA8 && tex_info.from_tmem))
{
TexDecoder_Decode(temp, tex_info.src_data, tex_info.expanded_width, tex_info.expanded_height,
tex_info.full_format.texfmt, tlut, tex_info.full_format.tlutfmt);
}
else
{
u8* src_data_gb = &texMem[tex_info.tmem_address_odd];
TexDecoder_DecodeRGBA8FromTmem(temp, tex_info.src_data, src_data_gb, tex_info.expanded_width,
tex_info.expanded_height);
}
entry_to_update->texture->Load(0, tex_info.native_width, tex_info.native_height,
tex_info.expanded_width, temp, decoded_texture_size);
}
}
void TextureCacheBase::CopyRenderTargetToTexture(u32 dstAddr, EFBCopyFormat dstFormat, u32 width,
u32 height, u32 dstStride, bool is_depth_copy,
const EFBRectangle& srcRect, bool isIntensity,
bool scaleByHalf, float y_scale, float gamma)
{
// Emulation methods:
//
// - EFB to RAM:
// Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
// Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being
// used as a texture again.
// Advantage: CPU can read data from the EFB copy and we don't lose any important updates to
// the texture
// Disadvantage: Encoding+decoding steps often are redundant because only some games read or
// modify EFB copies before using them as textures.
//
// - EFB to texture:
// Copies the requested EFB data to a texture object in VRAM, performing any color conversion
// using shaders.
// Advantage: Works for many games, since in most cases EFB copies aren't read or modified at
// all before being used as a texture again.
// Since we don't do any further encoding or decoding here, this method is much
// faster.
// It also allows enhancing the visual quality by doing scaled EFB copies.
//
// - Hybrid EFB copies:
// 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to
// RAM)
// 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address
// range.
// If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB
// copies.
// 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB
// copy was triggered to that address before):
// 2a) Entry doesn't exist:
// - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
// - Create a texture cache entry for the target (type = TCET_EC_VRAM)
// - Store a hash of the encoded RAM data in the texcache entry.
// 2b) Entry exists AND type is TCET_EC_VRAM:
// - Like case 2a, but reuse the old texcache entry instead of creating a new one.
// 2c) Entry exists AND type is TCET_EC_DYNAMIC:
// - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded
// data in the existing texcache entry.
// - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic,
// i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end
// up deleting it and reloading the data from RAM anyway.
// 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you
// stored when encoding the EFB data to RAM.
// 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
// 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set
// type to TCET_EC_DYNAMIC.
// Redecode the source RAM data to a VRAM object. The entry basically behaves like a
// normal texture now.
// 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
// Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
// Compatibility is as good as EFB to RAM.
// Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
// EFB copy cache depends on accurate texture hashing being enabled. However,
// with accurate hashing you end up being as slow as without a copy cache
// anyway.
//
// Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush
// which stalls any further CPU processing.
const bool is_xfb_copy = !is_depth_copy && !isIntensity && dstFormat == EFBCopyFormat::XFB;
bool copy_to_vram =
g_ActiveConfig.backend_info.bSupportsCopyToVram && !g_ActiveConfig.bDisableCopyToVRAM;
bool copy_to_ram =
!(is_xfb_copy ? g_ActiveConfig.bSkipXFBCopyToRam : g_ActiveConfig.bSkipEFBCopyToRam) ||
!copy_to_vram;
u8* dst = Memory::GetPointer(dstAddr);
if (dst == nullptr)
{
ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr);
return;
}
// tex_w and tex_h are the native size of the texture in the GC memory.
// The size scaled_* represents the emulated texture. Those differ
// because of upscaling and because of yscaling of XFB copies.
// For the latter, we keep the EFB resolution for the virtual XFB blit.
u32 tex_w = width;
u32 tex_h = height;
u32 scaled_tex_w = g_renderer->EFBToScaledX(srcRect.GetWidth());
u32 scaled_tex_h = g_renderer->EFBToScaledY(srcRect.GetHeight());
if (scaleByHalf)
{
tex_w /= 2;
tex_h /= 2;
scaled_tex_w /= 2;
scaled_tex_h /= 2;
}
if (!is_xfb_copy && !g_ActiveConfig.bCopyEFBScaled)
{
// No upscaling
scaled_tex_w = tex_w;
scaled_tex_h = tex_h;
}
// Get the base (in memory) format of this efb copy.
TextureFormat baseFormat = TexDecoder_GetEFBCopyBaseFormat(dstFormat);
u32 blockH = TexDecoder_GetBlockHeightInTexels(baseFormat);
const u32 blockW = TexDecoder_GetBlockWidthInTexels(baseFormat);
// Round up source height to multiple of block size
u32 actualHeight = Common::AlignUp(tex_h, blockH);
const u32 actualWidth = Common::AlignUp(tex_w, blockW);
u32 num_blocks_y = actualHeight / blockH;
const u32 num_blocks_x = actualWidth / blockW;
// RGBA takes two cache lines per block; all others take one
const u32 bytes_per_block = baseFormat == TextureFormat::RGBA8 ? 64 : 32;
const u32 bytes_per_row = num_blocks_x * bytes_per_block;
const u32 covered_range = num_blocks_y * dstStride;
if (copy_to_ram)
{
PEControl::PixelFormat srcFormat = bpmem.zcontrol.pixel_format;
EFBCopyParams format(srcFormat, dstFormat, is_depth_copy, isIntensity, y_scale);
CopyEFB(dst, format, tex_w, bytes_per_row, num_blocks_y, dstStride, srcRect, scaleByHalf);
}
else
{
if (is_xfb_copy)
{
UninitializeXFBMemory(dst, dstStride, bytes_per_row, num_blocks_y);
}
else
{
// Hack: Most games don't actually need the correct texture data in RAM
// and we can just keep a copy in VRAM. We zero the memory so we
// can check it hasn't changed before using our copy in VRAM.
u8* ptr = dst;
for (u32 i = 0; i < num_blocks_y; i++)
{
memset(ptr, 0, bytes_per_row);
ptr += dstStride;
}
}
}
if (g_bRecordFifoData)
{
// Mark the memory behind this efb copy as dynamicly generated for the Fifo log
u32 address = dstAddr;
for (u32 i = 0; i < num_blocks_y; i++)
{
FifoRecorder::GetInstance().UseMemory(address, bytes_per_row, MemoryUpdate::TEXTURE_MAP,
true);
address += dstStride;
}
}
if (dstStride < bytes_per_row)
{
// This kind of efb copy results in a scrambled image.
// I'm pretty sure no game actually wants to do this, it might be caused by a
// programming bug in the game, or a CPU/Bounding box emulation issue with dolphin.
// The copy_to_ram code path above handles this "correctly" and scrambles the image
// but the copy_to_vram code path just saves and uses unscrambled texture instead.
// To avoid a "incorrect" result, we simply skip doing the copy_to_vram code path
// so if the game does try to use the scrambled texture, dolphin will grab the scrambled
// texture (or black if copy_to_ram is also disabled) out of ram.
ERROR_LOG(VIDEO, "Memory stride too small (%i < %i)", dstStride, bytes_per_row);
copy_to_vram = false;
}
// Invalidate all textures, if they are either fully overwritten by our efb copy, or if they
// have a different stride than our efb copy. Partly overwritten textures with the same stride
// as our efb copy are marked to check them for partial texture updates.
// TODO: The logic to detect overlapping strided efb copies is not 100% accurate.
bool strided_efb_copy = dstStride != bytes_per_row;
auto iter = FindOverlappingTextures(dstAddr, covered_range);
while (iter.first != iter.second)
{
TCacheEntry* entry = iter.first->second;
if (entry->addr == dstAddr && entry->is_xfb_copy)
{
for (auto& reference : entry->references)
{
reference->reference_changed = true;
}
}
if (entry->OverlapsMemoryRange(dstAddr, covered_range))
{
u32 overlap_range = std::min(entry->addr + entry->size_in_bytes, dstAddr + covered_range) -
std::max(entry->addr, dstAddr);
if (!copy_to_vram || entry->memory_stride != dstStride ||
(!strided_efb_copy && entry->size_in_bytes == overlap_range) ||
(strided_efb_copy && entry->size_in_bytes == overlap_range && entry->addr == dstAddr))
{
iter.first = InvalidateTexture(iter.first);
continue;
}
entry->may_have_overlapping_textures = true;
// There are cases (Rogue Squadron 2 / Texas Holdem on Wiiware) where
// for xfb copies the textures overlap which causes the hash of the first copy
// to be different (from when it was originally created). This has no implications
// for XFB2Tex because the underlying memory doesn't change (dummy values) but
// can affect XFB2Ram when we compare the texture cache copy hash with the
// newly computed hash
// By calculating the hash when we receive overlapping xfbs, we are able
// to mitigate this
if (entry->is_xfb_copy && copy_to_ram)
{
entry->hash = entry->CalculateHash();
}
// Do not load textures by hash, if they were at least partly overwritten by an efb copy.
// In this case, comparing the hash is not enough to check, if two textures are identical.
if (entry->textures_by_hash_iter != textures_by_hash.end())
{
textures_by_hash.erase(entry->textures_by_hash_iter);
entry->textures_by_hash_iter = textures_by_hash.end();
}
}
++iter.first;
}
if (copy_to_vram)
{
// create the texture
TextureConfig config;
config.rendertarget = true;
config.width = scaled_tex_w;
config.height = scaled_tex_h;
config.layers = FramebufferManagerBase::GetEFBLayers();
TCacheEntry* entry = AllocateCacheEntry(config);
if (entry)
{
entry->SetGeneralParameters(dstAddr, 0, baseFormat, is_xfb_copy);
entry->SetDimensions(tex_w, tex_h, 1);
entry->gamma = gamma;
entry->frameCount = FRAMECOUNT_INVALID;
if (is_xfb_copy)
{
entry->should_force_safe_hashing = is_xfb_copy;
entry->SetXfbCopy(dstStride);
}
else
{
entry->SetEfbCopy(dstStride);
}
entry->may_have_overlapping_textures = false;
entry->is_custom_tex = false;
CopyEFBToCacheEntry(entry, is_depth_copy, srcRect, scaleByHalf, dstFormat, isIntensity);
u64 hash = entry->CalculateHash();
entry->SetHashes(hash, hash);
if (g_ActiveConfig.bDumpEFBTarget && !is_xfb_copy)
{
static int efb_count = 0;
entry->texture->Save(StringFromFormat("%sefb_frame_%i.png",
File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
efb_count++),
0);
}
if (g_ActiveConfig.bDumpXFBTarget && is_xfb_copy)
{
static int xfb_count = 0;
entry->texture->Save(StringFromFormat("%sxfb_copy_%i.png",
File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
xfb_count++),
0);
}
textures_by_address.emplace(dstAddr, entry);
}
}
}
void TextureCacheBase::UninitializeXFBMemory(u8* dst, u32 stride, u32 bytes_per_row,
u32 num_blocks_y)
{
// Originally, we planned on using a 'key color'
// for alpha to address partial xfbs (Mario Strikers / Chicken Little).
// This work was removed since it was unfinished but there
// was still a desire to differentiate between the old and the new approach
// which is why we still set uninitialized xfb memory to fuchsia
// (Y=1,U=254,V=254) instead of dark green (Y=0,U=0,V=0) in YUV
// like is done in the EFB path.
for (u32 i = 0; i < num_blocks_y; i++)
{
for (u32 offset = 0; offset < bytes_per_row; offset++)
{
if (offset % 2)
{
dst[offset] = 254;
}
else
{
dst[offset] = 1;
}
}
dst += stride;
}
}
TextureCacheBase::TCacheEntry* TextureCacheBase::AllocateCacheEntry(const TextureConfig& config)
{
std::unique_ptr<AbstractTexture> texture = AllocateTexture(config);
if (!texture)
{
return nullptr;
}
TCacheEntry* cacheEntry = new TCacheEntry(std::move(texture));
cacheEntry->textures_by_hash_iter = textures_by_hash.end();
cacheEntry->id = last_entry_id++;
return cacheEntry;
}
std::unique_ptr<AbstractTexture> TextureCacheBase::AllocateTexture(const TextureConfig& config)
{
TexPool::iterator iter = FindMatchingTextureFromPool(config);
std::unique_ptr<AbstractTexture> entry;
if (iter != texture_pool.end())
{
entry = std::move(iter->second.texture);
texture_pool.erase(iter);
}
else
{
entry = g_renderer->CreateTexture(config);
if (!entry)
return nullptr;
INCSTAT(stats.numTexturesCreated);
}
return entry;
}
TextureCacheBase::TexPool::iterator
TextureCacheBase::FindMatchingTextureFromPool(const TextureConfig& config)
{
// Find a texture from the pool that does not have a frameCount of FRAMECOUNT_INVALID.
// This prevents a texture from being used twice in a single frame with different data,
// which potentially means that a driver has to maintain two copies of the texture anyway.
// Render-target textures are fine through, as they have to be generated in a seperated pass.
// As non-render-target textures are usually static, this should not matter much.
auto range = texture_pool.equal_range(config);
auto matching_iter = std::find_if(range.first, range.second, [](const auto& iter) {
return iter.first.rendertarget || iter.second.frameCount != FRAMECOUNT_INVALID;
});
return matching_iter != range.second ? matching_iter : texture_pool.end();
}
TextureCacheBase::TexAddrCache::iterator
TextureCacheBase::GetTexCacheIter(TextureCacheBase::TCacheEntry* entry)
{
auto iter_range = textures_by_address.equal_range(entry->addr);
TexAddrCache::iterator iter = iter_range.first;
while (iter != iter_range.second)
{
if (iter->second == entry)
{
return iter;
}
++iter;
}
return textures_by_address.end();
}
std::pair<TextureCacheBase::TexAddrCache::iterator, TextureCacheBase::TexAddrCache::iterator>
TextureCacheBase::FindOverlappingTextures(u32 addr, u32 size_in_bytes)
{
// We index by the starting address only, so there is no way to query all textures
// which end after the given addr. But the GC textures have a limited size, so we
// look for all textures which have a start address bigger than addr minus the maximal
// texture size. But this yields false-positives which must be checked later on.
// 1024 x 1024 texel times 8 nibbles per texel
constexpr u32 max_texture_size = 1024 * 1024 * 4;
u32 lower_addr = addr > max_texture_size ? addr - max_texture_size : 0;
auto begin = textures_by_address.lower_bound(lower_addr);
auto end = textures_by_address.upper_bound(addr + size_in_bytes);
return std::make_pair(begin, end);
}
TextureCacheBase::TexAddrCache::iterator
TextureCacheBase::InvalidateTexture(TexAddrCache::iterator iter)
{
if (iter == textures_by_address.end())
return textures_by_address.end();
TCacheEntry* entry = iter->second;
if (entry->textures_by_hash_iter != textures_by_hash.end())
{
textures_by_hash.erase(entry->textures_by_hash_iter);
entry->textures_by_hash_iter = textures_by_hash.end();
}
for (size_t i = 0; i < bound_textures.size(); ++i)
{
// If the entry is currently bound and not invalidated, keep it, but mark it as invalidated.
// This way it can still be used via tmem cache emulation, but nothing else.
// Spyro: A Hero's Tail is known for using such overwritten textures.
if (bound_textures[i] == entry && IsValidBindPoint(static_cast<u32>(i)))
{
bound_textures[i]->tmem_only = true;
return ++iter;
}
}
auto config = entry->texture->GetConfig();
texture_pool.emplace(config, TexPoolEntry(std::move(entry->texture)));
return textures_by_address.erase(iter);
}
u32 TextureCacheBase::TCacheEntry::BytesPerRow() const
{
const u32 blockW = TexDecoder_GetBlockWidthInTexels(format.texfmt);
// Round up source height to multiple of block size
const u32 actualWidth = Common::AlignUp(native_width, blockW);
const u32 numBlocksX = actualWidth / blockW;
// RGBA takes two cache lines per block; all others take one
const u32 bytes_per_block = format == TextureFormat::RGBA8 ? 64 : 32;
return numBlocksX * bytes_per_block;
}
u32 TextureCacheBase::TCacheEntry::NumBlocksY() const
{
u32 blockH = TexDecoder_GetBlockHeightInTexels(format.texfmt);
// Round up source height to multiple of block size
u32 actualHeight = Common::AlignUp(native_height, blockH);
return actualHeight / blockH;
}
void TextureCacheBase::TCacheEntry::SetXfbCopy(u32 stride)
{
is_efb_copy = false;
is_xfb_copy = true;
memory_stride = stride;
_assert_msg_(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
size_in_bytes = memory_stride * NumBlocksY();
}
void TextureCacheBase::TCacheEntry::SetEfbCopy(u32 stride)
{
is_efb_copy = true;
is_xfb_copy = false;
memory_stride = stride;
_assert_msg_(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
size_in_bytes = memory_stride * NumBlocksY();
}
void TextureCacheBase::TCacheEntry::SetNotCopy()
{
is_xfb_copy = false;
is_efb_copy = false;
}
int TextureCacheBase::TCacheEntry::HashSampleSize() const
{
if (should_force_safe_hashing)
{
return 0;
}
return g_ActiveConfig.iSafeTextureCache_ColorSamples;
}
u64 TextureCacheBase::TCacheEntry::CalculateHash() const
{
u8* ptr = Memory::GetPointer(addr);
if (memory_stride == BytesPerRow())
{
return GetHash64(ptr, size_in_bytes, HashSampleSize());
}
else
{
u32 blocks = NumBlocksY();
u64 temp_hash = size_in_bytes;
u32 samples_per_row = 0;
if (HashSampleSize() != 0)
{
// Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left
// side of the efb copy
samples_per_row = std::max(HashSampleSize() / blocks, 4u);
}
for (u32 i = 0; i < blocks; i++)
{
// Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from
// canceling each other out
temp_hash = (temp_hash * 397) ^ GetHash64(ptr, BytesPerRow(), samples_per_row);
ptr += memory_stride;
}
return temp_hash;
}
}