dolphin/Source/Core/InputCommon/ControllerInterface/MappingCommon.cpp

294 lines
9.2 KiB
C++

// Copyright 2022 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "InputCommon/ControllerInterface/MappingCommon.h"
#include <algorithm>
#include <chrono>
#include <ranges>
#include <string>
#include <vector>
#include <fmt/format.h>
#include <fmt/ranges.h>
#include "Common/MathUtil.h"
#include "Common/StringUtil.h"
#include "InputCommon/ControllerEmu/ControllerEmu.h"
#include "InputCommon/ControllerEmu/StickGate.h"
#include "InputCommon/ControllerInterface/ControllerInterface.h"
#include "InputCommon/ControllerInterface/CoreDevice.h"
namespace ciface::MappingCommon
{
// Pressing inputs at the same time will result in the & operator vs a hotkey expression.
constexpr auto HOTKEY_VS_CONJUNCION_THRESHOLD = std::chrono::milliseconds(50);
// Some devices (e.g. DS4) provide an analog and digital input for the trigger.
// We prefer just the analog input for simultaneous digital+analog input detections.
constexpr auto SPURIOUS_TRIGGER_COMBO_THRESHOLD = std::chrono::milliseconds(150);
std::string GetExpressionForControl(const std::string& control_name,
const ciface::Core::DeviceQualifier& control_device,
const ciface::Core::DeviceQualifier& default_device,
Quote quote)
{
std::string expr;
// non-default device
if (control_device != default_device)
{
expr += control_device.ToString();
expr += ':';
}
// append the control name
expr += control_name;
if (quote == Quote::On)
{
// If our expression contains any non-alpha characters
// we should quote it
if (!std::ranges::all_of(expr, Common::IsAlpha))
expr = fmt::format("`{}`", expr);
}
return expr;
}
std::string BuildExpression(const Core::InputDetector::Results& detections,
const ciface::Core::DeviceQualifier& default_device, Quote quote)
{
std::vector<const Core::InputDetector::Detection*> pressed_inputs;
std::vector<std::string> alternations;
const auto get_control_expression = [&](auto& detection) {
// Return the parent-most name if there is one for better hotkey strings.
// Detection of L/R_Ctrl will be changed to just Ctrl.
// Users can manually map L_Ctrl if they so desire.
const auto input = (quote == Quote::On) ?
detection.device->GetParentMostInput(detection.input) :
detection.input;
ciface::Core::DeviceQualifier device_qualifier;
device_qualifier.FromDevice(detection.device.get());
return MappingCommon::GetExpressionForControl(input->GetName(), device_qualifier,
default_device, quote);
};
bool new_alternation = false;
const auto handle_press = [&](auto& detection) {
pressed_inputs.emplace_back(&detection);
new_alternation = true;
};
const auto handle_release = [&]() {
if (!new_alternation)
return;
new_alternation = false;
std::vector<std::string> alternation;
for (auto* input : pressed_inputs)
alternation.push_back(get_control_expression(*input));
const bool is_hotkey = pressed_inputs.size() >= 2 &&
(pressed_inputs[1]->press_time - pressed_inputs[0]->press_time) >
HOTKEY_VS_CONJUNCION_THRESHOLD;
if (is_hotkey)
{
alternations.push_back(fmt::format("@({})", fmt::join(alternation, "+")));
}
else
{
std::ranges::sort(alternation);
alternations.push_back(fmt::to_string(fmt::join(alternation, "&")));
}
};
for (auto& detection : detections)
{
// Remove since-released inputs.
for (auto it = pressed_inputs.begin(); it != pressed_inputs.end();)
{
if ((*it)->release_time && (*it)->release_time <= detection.press_time)
{
handle_release();
it = pressed_inputs.erase(it);
}
else
{
++it;
}
}
handle_press(detection);
}
handle_release();
// Remove duplicates
std::ranges::sort(alternations);
const auto unique_result = std::ranges::unique(alternations);
alternations.erase(unique_result.begin(), unique_result.end());
return fmt::to_string(fmt::join(alternations, "|"));
}
void RemoveSpuriousTriggerCombinations(Core::InputDetector::Results* detections)
{
const auto is_spurious = [&](const auto& detection) {
return std::ranges::any_of(*detections, [&](const auto& d) {
// This is a spurious digital detection if a "smooth" (analog) detection is temporally near.
return &d != &detection && d.IsAnalogPress() && !detection.IsAnalogPress() &&
abs(d.press_time - detection.press_time) < SPURIOUS_TRIGGER_COMBO_THRESHOLD;
});
};
std::erase_if(*detections, is_spurious);
}
void RemoveDetectionsAfterTimePoint(Core::InputDetector::Results* results, Clock::time_point after)
{
const auto is_after_time = [&](const Core::InputDetector::Detection& detection) {
return detection.release_time.value_or(after) >= after;
};
std::erase_if(*results, is_after_time);
}
bool ContainsCompleteDetection(const Core::InputDetector::Results& results)
{
return std::ranges::any_of(results, [](const Core::InputDetector::Detection& detection) {
return detection.release_time.has_value();
});
}
ReshapableInputMapper::ReshapableInputMapper(const Core::DeviceContainer& container,
const std::vector<std::string>& device_strings)
{
m_input_detector.Start(container, device_strings);
}
bool ReshapableInputMapper::Update()
{
const auto prev_size = m_input_detector.GetResults().size();
constexpr auto wait_time = std::chrono::seconds{4};
m_input_detector.Update(wait_time, wait_time, wait_time * REQUIRED_INPUT_COUNT);
return m_input_detector.GetResults().size() != prev_size;
}
float ReshapableInputMapper::GetCurrentAngle() const
{
constexpr auto quarter_circle = float(MathUtil::TAU) * 0.25f;
return quarter_circle - (float(m_input_detector.GetResults().size()) * quarter_circle);
}
bool ReshapableInputMapper::IsComplete() const
{
return m_input_detector.GetResults().size() >= REQUIRED_INPUT_COUNT ||
m_input_detector.IsComplete();
}
bool ReshapableInputMapper::IsCalibrationNeeded() const
{
return std::ranges::any_of(m_input_detector.GetResults() | std::views::take(REQUIRED_INPUT_COUNT),
&ciface::Core::InputDetector::Detection::IsAnalogPress);
}
bool ReshapableInputMapper::ApplyResults(ControllerEmu::EmulatedController* controller,
ControllerEmu::ReshapableInput* stick)
{
auto const detections = m_input_detector.TakeResults();
if (detections.size() < REQUIRED_INPUT_COUNT)
return false;
// Transpose URDL to UDLR.
const std::array results{detections[0], detections[2], detections[3], detections[1]};
const auto default_device = controller->GetDefaultDevice();
for (std::size_t i = 0; i != results.size(); ++i)
{
ciface::Core::DeviceQualifier device_qualifier;
device_qualifier.FromDevice(results[i].device.get());
stick->controls[i]->control_ref->SetExpression(ciface::MappingCommon::GetExpressionForControl(
results[i].input->GetName(), device_qualifier, default_device,
ciface::MappingCommon::Quote::On));
controller->UpdateSingleControlReference(g_controller_interface,
stick->controls[i]->control_ref.get());
}
return true;
}
CalibrationBuilder::CalibrationBuilder(std::optional<Common::DVec2> center)
: m_calibration_data(ControllerEmu::ReshapableInput::CALIBRATION_SAMPLE_COUNT, 0.0),
m_center{center}
{
}
void CalibrationBuilder::Update(Common::DVec2 point)
{
if (!m_center.has_value())
m_center = point;
const auto new_point = point - *m_center;
ControllerEmu::ReshapableInput::UpdateCalibrationData(m_calibration_data, m_prev_point,
new_point);
m_prev_point = new_point;
}
bool CalibrationBuilder::IsCalibrationDataSensible() const
{
// Even the GC controller's small range would pass this test.
constexpr double REASONABLE_AVERAGE_RADIUS = 0.6;
// Test that the average input radius is not below a threshold.
// This will make sure the user has actually moved their stick from neutral.
MathUtil::RunningVariance<ControlState> stats;
for (const auto x : m_calibration_data)
stats.Push(x);
if (stats.Mean() < REASONABLE_AVERAGE_RADIUS)
return false;
// Test that the standard deviation is below a threshold.
// This will make sure the user has not just filled in one side of their input.
// Approx. deviation of a square input gate, anything much more than that would be unusual.
constexpr double REASONABLE_DEVIATION = 0.14;
return stats.StandardDeviation() < REASONABLE_DEVIATION;
}
ControlState CalibrationBuilder::GetCalibrationRadiusAtAngle(double angle) const
{
return ControllerEmu::ReshapableInput::GetCalibrationDataRadiusAtAngle(m_calibration_data, angle);
}
void CalibrationBuilder::ApplyResults(ControllerEmu::ReshapableInput* stick)
{
stick->SetCenter(GetCenter());
stick->SetCalibrationData(std::move(m_calibration_data));
}
Common::DVec2 CalibrationBuilder::GetCenter() const
{
return m_center.value_or(Common::DVec2{});
}
} // namespace ciface::MappingCommon