294 lines
9.2 KiB
C++
294 lines
9.2 KiB
C++
// Copyright 2022 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "InputCommon/ControllerInterface/MappingCommon.h"
|
|
|
|
#include <algorithm>
|
|
#include <chrono>
|
|
#include <ranges>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <fmt/format.h>
|
|
#include <fmt/ranges.h>
|
|
|
|
#include "Common/MathUtil.h"
|
|
#include "Common/StringUtil.h"
|
|
|
|
#include "InputCommon/ControllerEmu/ControllerEmu.h"
|
|
#include "InputCommon/ControllerEmu/StickGate.h"
|
|
#include "InputCommon/ControllerInterface/ControllerInterface.h"
|
|
#include "InputCommon/ControllerInterface/CoreDevice.h"
|
|
|
|
namespace ciface::MappingCommon
|
|
{
|
|
// Pressing inputs at the same time will result in the & operator vs a hotkey expression.
|
|
constexpr auto HOTKEY_VS_CONJUNCION_THRESHOLD = std::chrono::milliseconds(50);
|
|
|
|
// Some devices (e.g. DS4) provide an analog and digital input for the trigger.
|
|
// We prefer just the analog input for simultaneous digital+analog input detections.
|
|
constexpr auto SPURIOUS_TRIGGER_COMBO_THRESHOLD = std::chrono::milliseconds(150);
|
|
|
|
std::string GetExpressionForControl(const std::string& control_name,
|
|
const ciface::Core::DeviceQualifier& control_device,
|
|
const ciface::Core::DeviceQualifier& default_device,
|
|
Quote quote)
|
|
{
|
|
std::string expr;
|
|
|
|
// non-default device
|
|
if (control_device != default_device)
|
|
{
|
|
expr += control_device.ToString();
|
|
expr += ':';
|
|
}
|
|
|
|
// append the control name
|
|
expr += control_name;
|
|
|
|
if (quote == Quote::On)
|
|
{
|
|
// If our expression contains any non-alpha characters
|
|
// we should quote it
|
|
if (!std::ranges::all_of(expr, Common::IsAlpha))
|
|
expr = fmt::format("`{}`", expr);
|
|
}
|
|
|
|
return expr;
|
|
}
|
|
|
|
std::string BuildExpression(const Core::InputDetector::Results& detections,
|
|
const ciface::Core::DeviceQualifier& default_device, Quote quote)
|
|
{
|
|
std::vector<const Core::InputDetector::Detection*> pressed_inputs;
|
|
|
|
std::vector<std::string> alternations;
|
|
|
|
const auto get_control_expression = [&](auto& detection) {
|
|
// Return the parent-most name if there is one for better hotkey strings.
|
|
// Detection of L/R_Ctrl will be changed to just Ctrl.
|
|
// Users can manually map L_Ctrl if they so desire.
|
|
const auto input = (quote == Quote::On) ?
|
|
detection.device->GetParentMostInput(detection.input) :
|
|
detection.input;
|
|
|
|
ciface::Core::DeviceQualifier device_qualifier;
|
|
device_qualifier.FromDevice(detection.device.get());
|
|
|
|
return MappingCommon::GetExpressionForControl(input->GetName(), device_qualifier,
|
|
default_device, quote);
|
|
};
|
|
|
|
bool new_alternation = false;
|
|
|
|
const auto handle_press = [&](auto& detection) {
|
|
pressed_inputs.emplace_back(&detection);
|
|
new_alternation = true;
|
|
};
|
|
|
|
const auto handle_release = [&]() {
|
|
if (!new_alternation)
|
|
return;
|
|
|
|
new_alternation = false;
|
|
|
|
std::vector<std::string> alternation;
|
|
for (auto* input : pressed_inputs)
|
|
alternation.push_back(get_control_expression(*input));
|
|
|
|
const bool is_hotkey = pressed_inputs.size() >= 2 &&
|
|
(pressed_inputs[1]->press_time - pressed_inputs[0]->press_time) >
|
|
HOTKEY_VS_CONJUNCION_THRESHOLD;
|
|
|
|
if (is_hotkey)
|
|
{
|
|
alternations.push_back(fmt::format("@({})", fmt::join(alternation, "+")));
|
|
}
|
|
else
|
|
{
|
|
std::ranges::sort(alternation);
|
|
alternations.push_back(fmt::to_string(fmt::join(alternation, "&")));
|
|
}
|
|
};
|
|
|
|
for (auto& detection : detections)
|
|
{
|
|
// Remove since-released inputs.
|
|
for (auto it = pressed_inputs.begin(); it != pressed_inputs.end();)
|
|
{
|
|
if ((*it)->release_time && (*it)->release_time <= detection.press_time)
|
|
{
|
|
handle_release();
|
|
it = pressed_inputs.erase(it);
|
|
}
|
|
else
|
|
{
|
|
++it;
|
|
}
|
|
}
|
|
|
|
handle_press(detection);
|
|
}
|
|
|
|
handle_release();
|
|
|
|
// Remove duplicates
|
|
std::ranges::sort(alternations);
|
|
const auto unique_result = std::ranges::unique(alternations);
|
|
alternations.erase(unique_result.begin(), unique_result.end());
|
|
|
|
return fmt::to_string(fmt::join(alternations, "|"));
|
|
}
|
|
|
|
void RemoveSpuriousTriggerCombinations(Core::InputDetector::Results* detections)
|
|
{
|
|
const auto is_spurious = [&](const auto& detection) {
|
|
return std::ranges::any_of(*detections, [&](const auto& d) {
|
|
// This is a spurious digital detection if a "smooth" (analog) detection is temporally near.
|
|
return &d != &detection && d.IsAnalogPress() && !detection.IsAnalogPress() &&
|
|
abs(d.press_time - detection.press_time) < SPURIOUS_TRIGGER_COMBO_THRESHOLD;
|
|
});
|
|
};
|
|
|
|
std::erase_if(*detections, is_spurious);
|
|
}
|
|
|
|
void RemoveDetectionsAfterTimePoint(Core::InputDetector::Results* results, Clock::time_point after)
|
|
{
|
|
const auto is_after_time = [&](const Core::InputDetector::Detection& detection) {
|
|
return detection.release_time.value_or(after) >= after;
|
|
};
|
|
|
|
std::erase_if(*results, is_after_time);
|
|
}
|
|
|
|
bool ContainsCompleteDetection(const Core::InputDetector::Results& results)
|
|
{
|
|
return std::ranges::any_of(results, [](const Core::InputDetector::Detection& detection) {
|
|
return detection.release_time.has_value();
|
|
});
|
|
}
|
|
|
|
ReshapableInputMapper::ReshapableInputMapper(const Core::DeviceContainer& container,
|
|
const std::vector<std::string>& device_strings)
|
|
{
|
|
m_input_detector.Start(container, device_strings);
|
|
}
|
|
|
|
bool ReshapableInputMapper::Update()
|
|
{
|
|
const auto prev_size = m_input_detector.GetResults().size();
|
|
|
|
constexpr auto wait_time = std::chrono::seconds{4};
|
|
m_input_detector.Update(wait_time, wait_time, wait_time * REQUIRED_INPUT_COUNT);
|
|
|
|
return m_input_detector.GetResults().size() != prev_size;
|
|
}
|
|
|
|
float ReshapableInputMapper::GetCurrentAngle() const
|
|
{
|
|
constexpr auto quarter_circle = float(MathUtil::TAU) * 0.25f;
|
|
return quarter_circle - (float(m_input_detector.GetResults().size()) * quarter_circle);
|
|
}
|
|
|
|
bool ReshapableInputMapper::IsComplete() const
|
|
{
|
|
return m_input_detector.GetResults().size() >= REQUIRED_INPUT_COUNT ||
|
|
m_input_detector.IsComplete();
|
|
}
|
|
|
|
bool ReshapableInputMapper::IsCalibrationNeeded() const
|
|
{
|
|
return std::ranges::any_of(m_input_detector.GetResults() | std::views::take(REQUIRED_INPUT_COUNT),
|
|
&ciface::Core::InputDetector::Detection::IsAnalogPress);
|
|
}
|
|
|
|
bool ReshapableInputMapper::ApplyResults(ControllerEmu::EmulatedController* controller,
|
|
ControllerEmu::ReshapableInput* stick)
|
|
{
|
|
auto const detections = m_input_detector.TakeResults();
|
|
|
|
if (detections.size() < REQUIRED_INPUT_COUNT)
|
|
return false;
|
|
|
|
// Transpose URDL to UDLR.
|
|
const std::array results{detections[0], detections[2], detections[3], detections[1]};
|
|
|
|
const auto default_device = controller->GetDefaultDevice();
|
|
|
|
for (std::size_t i = 0; i != results.size(); ++i)
|
|
{
|
|
ciface::Core::DeviceQualifier device_qualifier;
|
|
device_qualifier.FromDevice(results[i].device.get());
|
|
|
|
stick->controls[i]->control_ref->SetExpression(ciface::MappingCommon::GetExpressionForControl(
|
|
results[i].input->GetName(), device_qualifier, default_device,
|
|
ciface::MappingCommon::Quote::On));
|
|
|
|
controller->UpdateSingleControlReference(g_controller_interface,
|
|
stick->controls[i]->control_ref.get());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
CalibrationBuilder::CalibrationBuilder(std::optional<Common::DVec2> center)
|
|
: m_calibration_data(ControllerEmu::ReshapableInput::CALIBRATION_SAMPLE_COUNT, 0.0),
|
|
m_center{center}
|
|
{
|
|
}
|
|
|
|
void CalibrationBuilder::Update(Common::DVec2 point)
|
|
{
|
|
if (!m_center.has_value())
|
|
m_center = point;
|
|
|
|
const auto new_point = point - *m_center;
|
|
ControllerEmu::ReshapableInput::UpdateCalibrationData(m_calibration_data, m_prev_point,
|
|
new_point);
|
|
m_prev_point = new_point;
|
|
}
|
|
|
|
bool CalibrationBuilder::IsCalibrationDataSensible() const
|
|
{
|
|
// Even the GC controller's small range would pass this test.
|
|
constexpr double REASONABLE_AVERAGE_RADIUS = 0.6;
|
|
|
|
// Test that the average input radius is not below a threshold.
|
|
// This will make sure the user has actually moved their stick from neutral.
|
|
|
|
MathUtil::RunningVariance<ControlState> stats;
|
|
|
|
for (const auto x : m_calibration_data)
|
|
stats.Push(x);
|
|
|
|
if (stats.Mean() < REASONABLE_AVERAGE_RADIUS)
|
|
return false;
|
|
|
|
// Test that the standard deviation is below a threshold.
|
|
// This will make sure the user has not just filled in one side of their input.
|
|
|
|
// Approx. deviation of a square input gate, anything much more than that would be unusual.
|
|
constexpr double REASONABLE_DEVIATION = 0.14;
|
|
|
|
return stats.StandardDeviation() < REASONABLE_DEVIATION;
|
|
}
|
|
|
|
ControlState CalibrationBuilder::GetCalibrationRadiusAtAngle(double angle) const
|
|
{
|
|
return ControllerEmu::ReshapableInput::GetCalibrationDataRadiusAtAngle(m_calibration_data, angle);
|
|
}
|
|
|
|
void CalibrationBuilder::ApplyResults(ControllerEmu::ReshapableInput* stick)
|
|
{
|
|
stick->SetCenter(GetCenter());
|
|
stick->SetCalibrationData(std::move(m_calibration_data));
|
|
}
|
|
|
|
Common::DVec2 CalibrationBuilder::GetCenter() const
|
|
{
|
|
return m_center.value_or(Common::DVec2{});
|
|
}
|
|
|
|
} // namespace ciface::MappingCommon
|