dolphin/Source/Core/VideoCommon/TextureCacheBase.h

468 lines
17 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <filesystem>
#include <fmt/format.h>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "Common/BitSet.h"
#include "Common/CommonTypes.h"
#include "Common/Flag.h"
#include "Common/MathUtil.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/Assets/CustomAsset.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/TextureConfig.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/TextureInfo.h"
#include "VideoCommon/VideoEvents.h"
class AbstractFramebuffer;
class AbstractStagingTexture;
class PointerWrap;
struct VideoConfig;
namespace VideoCommon
{
class CustomTextureData;
class GameTextureAsset;
} // namespace VideoCommon
constexpr std::string_view EFB_DUMP_PREFIX = "efb1";
constexpr std::string_view XFB_DUMP_PREFIX = "xfb1";
static constexpr int FRAMECOUNT_INVALID = 0;
struct TextureAndTLUTFormat
{
TextureAndTLUTFormat(TextureFormat texfmt_ = TextureFormat::I4,
TLUTFormat tlutfmt_ = TLUTFormat::IA8)
: texfmt(texfmt_), tlutfmt(tlutfmt_)
{
}
bool operator==(const TextureAndTLUTFormat& other) const
{
if (IsColorIndexed(texfmt))
return texfmt == other.texfmt && tlutfmt == other.tlutfmt;
return texfmt == other.texfmt;
}
bool operator!=(const TextureAndTLUTFormat& other) const { return !operator==(other); }
TextureFormat texfmt;
TLUTFormat tlutfmt;
};
struct EFBCopyParams
{
EFBCopyParams(PixelFormat efb_format_, EFBCopyFormat copy_format_, bool depth_, bool yuv_,
bool all_copy_filter_coefs_needed_, bool copy_filter_can_overflow_,
bool apply_gamma_)
: efb_format(efb_format_), copy_format(copy_format_), depth(depth_), yuv(yuv_),
all_copy_filter_coefs_needed(all_copy_filter_coefs_needed_),
copy_filter_can_overflow(copy_filter_can_overflow_), apply_gamma(apply_gamma_)
{
}
bool operator<(const EFBCopyParams& rhs) const
{
return std::tie(efb_format, copy_format, depth, yuv, all_copy_filter_coefs_needed,
copy_filter_can_overflow,
apply_gamma) < std::tie(rhs.efb_format, rhs.copy_format, rhs.depth, rhs.yuv,
rhs.all_copy_filter_coefs_needed,
rhs.copy_filter_can_overflow, rhs.apply_gamma);
}
PixelFormat efb_format;
EFBCopyFormat copy_format;
bool depth;
bool yuv;
bool all_copy_filter_coefs_needed;
bool copy_filter_can_overflow;
bool apply_gamma;
};
template <>
struct fmt::formatter<EFBCopyParams>
{
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
template <typename FormatContext>
auto format(const EFBCopyParams& uid, FormatContext& ctx) const
{
std::string copy_format;
if (uid.copy_format == EFBCopyFormat::XFB)
copy_format = "XFB";
else
copy_format = fmt::to_string(uid.copy_format);
return fmt::format_to(ctx.out(),
"format: {}, copy format: {}, depth: {}, yuv: {}, apply_gamma: {}, "
"all_copy_filter_coefs_needed: {}, copy_filter_can_overflow: {}",
uid.efb_format, copy_format, uid.depth, uid.yuv, uid.apply_gamma,
uid.all_copy_filter_coefs_needed, uid.copy_filter_can_overflow);
}
};
struct TCacheEntry
{
// common members
std::unique_ptr<AbstractTexture> texture;
std::unique_ptr<AbstractFramebuffer> framebuffer;
u32 addr = 0;
u32 size_in_bytes = 0;
u64 base_hash = 0;
u64 hash = 0; // for paletted textures, hash = base_hash ^ palette_hash
TextureAndTLUTFormat format;
u32 memory_stride = 0;
bool is_efb_copy = false;
bool is_custom_tex = false;
bool may_have_overlapping_textures = true;
// indicates that the mips in this texture are arbitrary content, aren't just downscaled
bool has_arbitrary_mips = false;
bool should_force_safe_hashing = false; // for XFB
bool is_xfb_copy = false;
bool is_xfb_container = false;
u64 id = 0;
u32 content_semaphore = 0; // Counts up
// Indicates that this TCacheEntry has been invalided from m_textures_by_address
bool invalidated = false;
bool reference_changed = false; // used by xfb to determine when a reference xfb changed
// Texture dimensions from the GameCube's point of view
u32 native_width = 0;
u32 native_height = 0;
u32 native_levels = 0;
// used to delete textures which haven't been used for TEXTURE_KILL_THRESHOLD frames
int frameCount = FRAMECOUNT_INVALID;
// Keep an iterator to the entry in m_textures_by_hash, so it does not need to be searched when
// removing the cache entry
std::multimap<u64, std::shared_ptr<TCacheEntry>>::iterator textures_by_hash_iter;
// This is used to keep track of both:
// * efb copies used by this partially updated texture
// * partially updated textures which refer to this efb copy
std::unordered_set<TCacheEntry*> references;
// Pending EFB copy
std::unique_ptr<AbstractStagingTexture> pending_efb_copy;
u32 pending_efb_copy_width = 0;
u32 pending_efb_copy_height = 0;
std::string texture_info_name = "";
std::vector<VideoCommon::CachedAsset<VideoCommon::GameTextureAsset>> linked_game_texture_assets;
std::vector<VideoCommon::CachedAsset<VideoCommon::CustomAsset>> linked_asset_dependencies;
explicit TCacheEntry(std::unique_ptr<AbstractTexture> tex,
std::unique_ptr<AbstractFramebuffer> fb);
~TCacheEntry();
void SetGeneralParameters(u32 _addr, u32 _size, TextureAndTLUTFormat _format,
bool force_safe_hashing)
{
addr = _addr;
size_in_bytes = _size;
format = _format;
should_force_safe_hashing = force_safe_hashing;
}
void SetDimensions(unsigned int _native_width, unsigned int _native_height,
unsigned int _native_levels)
{
native_width = _native_width;
native_height = _native_height;
native_levels = _native_levels;
memory_stride = _native_width;
}
void SetHashes(u64 _base_hash, u64 _hash)
{
base_hash = _base_hash;
hash = _hash;
}
// This texture entry is used by the other entry as a sub-texture
void CreateReference(TCacheEntry* other_entry)
{
// References are two-way, so they can easily be destroyed later
this->references.emplace(other_entry);
other_entry->references.emplace(this);
}
// Acquiring a content lock will lock the current contents and prevent texture cache from
// reusing the same entry for a newer version of the texture.
void AcquireContentLock() { content_semaphore++; }
void ReleaseContentLock() { content_semaphore--; }
// Can this be mutated?
bool IsLocked() const { return content_semaphore > 0; }
void SetXfbCopy(u32 stride);
void SetEfbCopy(u32 stride);
void SetNotCopy();
bool OverlapsMemoryRange(u32 range_address, u32 range_size) const;
bool IsEfbCopy() const { return is_efb_copy; }
bool IsCopy() const { return is_xfb_copy || is_efb_copy; }
u32 NumBlocksX() const;
u32 NumBlocksY() const;
u32 BytesPerRow() const;
u64 CalculateHash() const;
int HashSampleSize() const;
u32 GetWidth() const { return texture->GetConfig().width; }
u32 GetHeight() const { return texture->GetConfig().height; }
u32 GetNumLevels() const { return texture->GetConfig().levels; }
u32 GetNumLayers() const { return texture->GetConfig().layers; }
AbstractTextureFormat GetFormat() const { return texture->GetConfig().format; }
void DoState(PointerWrap& p);
};
using RcTcacheEntry = std::shared_ptr<TCacheEntry>;
class TextureCacheBase
{
public:
// Minimal version of TCacheEntry just for TexPool
struct TexPoolEntry
{
std::unique_ptr<AbstractTexture> texture;
std::unique_ptr<AbstractFramebuffer> framebuffer;
int frameCount = FRAMECOUNT_INVALID;
TexPoolEntry(std::unique_ptr<AbstractTexture> tex, std::unique_ptr<AbstractFramebuffer> fb);
};
struct TextureCreationInfo
{
u64 base_hash;
u64 full_hash;
u32 bytes_per_block;
u32 palette_size;
};
TextureCacheBase();
virtual ~TextureCacheBase();
bool Initialize();
void Shutdown();
void OnConfigChanged(const VideoConfig& config);
// Removes textures which aren't used for more than TEXTURE_KILL_THRESHOLD frames,
// frameCount is the current frame number.
void Cleanup(int _frameCount);
void Invalidate();
void ReleaseToPool(TCacheEntry* entry);
TCacheEntry* Load(const TextureInfo& texture_info);
RcTcacheEntry GetTexture(const int textureCacheSafetyColorSampleSize,
const TextureInfo& texture_info);
RcTcacheEntry GetXFBTexture(u32 address, u32 width, u32 height, u32 stride,
MathUtil::Rectangle<int>* display_rect);
virtual void BindTextures(BitSet32 used_textures);
void CopyRenderTargetToTexture(u32 dstAddr, EFBCopyFormat dstFormat, u32 width, u32 height,
u32 dstStride, bool is_depth_copy,
const MathUtil::Rectangle<int>& srcRect, bool isIntensity,
bool scaleByHalf, float y_scale, float gamma, bool clamp_top,
bool clamp_bottom,
const CopyFilterCoefficients::Values& filter_coefficients);
void ScaleTextureCacheEntryTo(RcTcacheEntry& entry, u32 new_width, u32 new_height);
// Flushes all pending EFB copies to emulated RAM.
void FlushEFBCopies();
// Flush any Bound textures that can't be reused
void FlushStaleBinds();
// Texture Serialization
void SerializeTexture(AbstractTexture* tex, const TextureConfig& config, PointerWrap& p);
std::optional<TexPoolEntry> DeserializeTexture(PointerWrap& p);
// Save States
void DoState(PointerWrap& p);
static bool AllCopyFilterCoefsNeeded(const std::array<u32, 3>& coefficients);
static bool CopyFilterCanOverflow(const std::array<u32, 3>& coefficients);
protected:
// Decodes the specified data to the GPU texture specified by entry.
// Returns false if the configuration is not supported.
// width, height are the size of the image in pixels.
// aligned_width, aligned_height are the size of the image in pixels, aligned to the block size.
// row_stride is the number of bytes for a row of blocks, not pixels.
bool DecodeTextureOnGPU(RcTcacheEntry& entry, u32 dst_level, const u8* data, u32 data_size,
TextureFormat format, u32 width, u32 height, u32 aligned_width,
u32 aligned_height, u32 row_stride, const u8* palette,
TLUTFormat palette_format);
virtual void CopyEFB(AbstractStagingTexture* dst, const EFBCopyParams& params, u32 native_width,
u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride,
const MathUtil::Rectangle<int>& src_rect, bool scale_by_half,
bool linear_filter, float y_scale, float gamma, bool clamp_top,
bool clamp_bottom, const std::array<u32, 3>& filter_coefficients);
virtual void CopyEFBToCacheEntry(RcTcacheEntry& entry, bool is_depth_copy,
const MathUtil::Rectangle<int>& src_rect, bool scale_by_half,
bool linear_filter, EFBCopyFormat dst_format, bool is_intensity,
float gamma, bool clamp_top, bool clamp_bottom,
const std::array<u32, 3>& filter_coefficients);
alignas(16) u8* m_temp = nullptr;
size_t m_temp_size = 0;
private:
using TexAddrCache = std::multimap<u32, RcTcacheEntry>;
using TexHashCache = std::multimap<u64, RcTcacheEntry>;
using TexPool = std::unordered_multimap<TextureConfig, TexPoolEntry>;
static bool DidLinkedAssetsChange(const TCacheEntry& entry);
TCacheEntry* LoadImpl(const TextureInfo& texture_info, bool force_reload);
bool CreateUtilityTextures();
void SetBackupConfig(const VideoConfig& config);
RcTcacheEntry
CreateTextureEntry(const TextureCreationInfo& creation_info, const TextureInfo& texture_info,
int safety_color_sample_size,
std::vector<std::shared_ptr<VideoCommon::CustomTextureData>> assets_data,
bool custom_arbitrary_mipmaps, bool skip_texture_dump);
RcTcacheEntry GetXFBFromCache(u32 address, u32 width, u32 height, u32 stride);
RcTcacheEntry ApplyPaletteToEntry(RcTcacheEntry& entry, const u8* palette, TLUTFormat tlutfmt);
RcTcacheEntry ReinterpretEntry(const RcTcacheEntry& existing_entry, TextureFormat new_format);
RcTcacheEntry DoPartialTextureUpdates(RcTcacheEntry& entry_to_update, const u8* palette,
TLUTFormat tlutfmt);
void StitchXFBCopy(RcTcacheEntry& entry_to_update);
void DumpTexture(RcTcacheEntry& entry, std::string basename, unsigned int level,
bool is_arbitrary);
void CheckTempSize(size_t required_size);
RcTcacheEntry AllocateCacheEntry(const TextureConfig& config);
std::optional<TexPoolEntry> AllocateTexture(const TextureConfig& config);
TexPool::iterator FindMatchingTextureFromPool(const TextureConfig& config);
TexAddrCache::iterator GetTexCacheIter(TCacheEntry* entry);
// Return all possible overlapping textures. As addr+size of the textures is not
// indexed, this may return false positives.
std::pair<TexAddrCache::iterator, TexAddrCache::iterator>
FindOverlappingTextures(u32 addr, u32 size_in_bytes);
// Removes and unlinks texture from texture cache and returns it to the pool
TexAddrCache::iterator InvalidateTexture(TexAddrCache::iterator t_iter,
bool discard_pending_efb_copy = false);
void UninitializeEFBMemory(u8* dst, u32 stride, u32 bytes_per_row, u32 num_blocks_y);
void UninitializeXFBMemory(u8* dst, u32 stride, u32 bytes_per_row, u32 num_blocks_y);
// Precomputing the coefficients for the previous, current, and next lines for the copy filter.
static std::array<u32, 3>
GetRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients);
static std::array<u32, 3>
GetVRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients);
// Flushes a pending EFB copy to RAM from the host to the guest RAM.
void WriteEFBCopyToRAM(u8* dst_ptr, u32 width, u32 height, u32 stride,
std::unique_ptr<AbstractStagingTexture> staging_texture);
void FlushEFBCopy(TCacheEntry* entry);
// Returns a staging texture of the maximum EFB copy size.
std::unique_ptr<AbstractStagingTexture> GetEFBCopyStagingTexture();
// Returns an EFB copy staging texture to the pool, so it can be re-used.
void ReleaseEFBCopyStagingTexture(std::unique_ptr<AbstractStagingTexture> tex);
bool CheckReadbackTexture(u32 width, u32 height, AbstractTextureFormat format);
void DoSaveState(PointerWrap& p);
void DoLoadState(PointerWrap& p);
// m_textures_by_address is the authoritive version of what's actually "in" the texture cache
// but it's possible for invalidated TCache entries to live on elsewhere
TexAddrCache m_textures_by_address;
// m_textures_by_hash is an alternative view of the texture cache
// All textures in here will also be in m_textures_by_address
TexHashCache m_textures_by_hash;
// m_bound_textures are actually active in the current draw
// It's valid for textures to be in here after they've been invalidated
std::array<RcTcacheEntry, 8> m_bound_textures{};
TexPool m_texture_pool;
u64 m_last_entry_id = 0;
// Backup configuration values
struct BackupConfig
{
int color_samples;
bool texfmt_overlay;
bool texfmt_overlay_center;
bool hires_textures;
bool cache_hires_textures;
bool copy_cache_enable;
bool stereo_3d;
bool efb_mono_depth;
bool gpu_texture_decoding;
bool disable_vram_copies;
bool arbitrary_mipmap_detection;
bool graphics_mods;
u32 graphics_mod_change_count;
};
BackupConfig m_backup_config = {};
// Encoding texture used for EFB copies to RAM.
std::unique_ptr<AbstractTexture> m_efb_encoding_texture;
std::unique_ptr<AbstractFramebuffer> m_efb_encoding_framebuffer;
// Decoding texture used for GPU texture decoding.
std::unique_ptr<AbstractTexture> m_decoding_texture;
// Pool of readback textures used for deferred EFB copies.
std::vector<std::unique_ptr<AbstractStagingTexture>> m_efb_copy_staging_texture_pool;
// List of pending EFB copies. It is important that the order is preserved for these,
// so that overlapping textures are written to guest RAM in the order they are issued.
// It's valid for textures to live be in here after they've been invalidated
std::vector<RcTcacheEntry> m_pending_efb_copies;
// Staging texture used for readbacks.
// We store this in the class so that the same staging texture can be used for multiple
// readbacks, saving the overhead of allocating a new buffer every time.
std::unique_ptr<AbstractStagingTexture> m_readback_texture;
void OnFrameEnd();
Common::EventHook m_frame_event =
AfterFrameEvent::Register([this] { OnFrameEnd(); }, "TextureCache");
};
extern std::unique_ptr<TextureCacheBase> g_texture_cache;