dolphin/Source/Core/VideoCommon/TextureCacheBase.cpp

3217 lines
121 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/TextureCacheBase.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#if defined(_M_X86) || defined(_M_X86_64)
#include <pmmintrin.h>
#endif
#include <fmt/format.h>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/FileUtil.h"
#include "Common/Hash.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Common/MemoryUtil.h"
#include "Core/Config/GraphicsSettings.h"
#include "Core/ConfigManager.h"
#include "Core/FifoPlayer/FifoPlayer.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/Memmap.h"
#include "Core/System.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/AbstractGfx.h"
#include "VideoCommon/AbstractStagingTexture.h"
#include "VideoCommon/Assets/CustomTextureData.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/GraphicsModSystem/Runtime/FBInfo.h"
#include "VideoCommon/GraphicsModSystem/Runtime/GraphicsModActionData.h"
#include "VideoCommon/GraphicsModSystem/Runtime/GraphicsModManager.h"
#include "VideoCommon/HiresTextures.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/Present.h"
#include "VideoCommon/ShaderCache.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TMEM.h"
#include "VideoCommon/TextureConversionShader.h"
#include "VideoCommon/TextureConverterShaderGen.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
static const u64 TEXHASH_INVALID = 0;
// Sonic the Fighters (inside Sonic Gems Collection) loops a 64 frames animation
static const int TEXTURE_KILL_THRESHOLD = 64;
static const int TEXTURE_POOL_KILL_THRESHOLD = 3;
static int xfb_count = 0;
std::unique_ptr<TextureCacheBase> g_texture_cache;
TCacheEntry::TCacheEntry(std::unique_ptr<AbstractTexture> tex,
std::unique_ptr<AbstractFramebuffer> fb)
: texture(std::move(tex)), framebuffer(std::move(fb))
{
}
TCacheEntry::~TCacheEntry()
{
for (auto& reference : references)
reference->references.erase(this);
ASSERT_MSG(VIDEO, g_texture_cache, "Texture cache destroyed before TCacheEntry was destroyed");
g_texture_cache->ReleaseToPool(this);
}
void TextureCacheBase::CheckTempSize(size_t required_size)
{
if (required_size <= m_temp_size)
return;
m_temp_size = required_size;
Common::FreeAlignedMemory(m_temp);
m_temp = static_cast<u8*>(Common::AllocateAlignedMemory(m_temp_size, 16));
}
TextureCacheBase::TextureCacheBase()
{
SetBackupConfig(g_ActiveConfig);
m_temp_size = 2048 * 2048 * 4;
m_temp = static_cast<u8*>(Common::AllocateAlignedMemory(m_temp_size, 16));
TexDecoder_SetTexFmtOverlayOptions(m_backup_config.texfmt_overlay,
m_backup_config.texfmt_overlay_center);
HiresTexture::Init();
TMEM::InvalidateAll();
}
void TextureCacheBase::Shutdown()
{
// Clear pending EFB copies first, so we don't try to flush them.
m_pending_efb_copies.clear();
HiresTexture::Shutdown();
// For correctness, we need to invalidate textures before the gpu context starts shutting down.
Invalidate();
}
TextureCacheBase::~TextureCacheBase()
{
Common::FreeAlignedMemory(m_temp);
m_temp = nullptr;
}
bool TextureCacheBase::Initialize()
{
if (!CreateUtilityTextures())
{
PanicAlertFmt("Failed to create utility textures.");
return false;
}
return true;
}
void TextureCacheBase::Invalidate()
{
FlushEFBCopies();
TMEM::InvalidateAll();
for (auto& bind : m_bound_textures)
bind.reset();
m_textures_by_hash.clear();
m_textures_by_address.clear();
m_texture_pool.clear();
}
void TextureCacheBase::OnConfigChanged(const VideoConfig& config)
{
if (config.bHiresTextures != m_backup_config.hires_textures ||
config.bCacheHiresTextures != m_backup_config.cache_hires_textures)
{
HiresTexture::Update();
}
const u32 change_count =
config.graphics_mod_config ? config.graphics_mod_config->GetChangeCount() : 0;
// TODO: Invalidating texcache is really stupid in some of these cases
if (config.iSafeTextureCache_ColorSamples != m_backup_config.color_samples ||
config.bTexFmtOverlayEnable != m_backup_config.texfmt_overlay ||
config.bTexFmtOverlayCenter != m_backup_config.texfmt_overlay_center ||
config.bHiresTextures != m_backup_config.hires_textures ||
config.bEnableGPUTextureDecoding != m_backup_config.gpu_texture_decoding ||
config.bDisableCopyToVRAM != m_backup_config.disable_vram_copies ||
config.bArbitraryMipmapDetection != m_backup_config.arbitrary_mipmap_detection ||
config.bGraphicMods != m_backup_config.graphics_mods ||
change_count != m_backup_config.graphics_mod_change_count)
{
Invalidate();
TexDecoder_SetTexFmtOverlayOptions(config.bTexFmtOverlayEnable, config.bTexFmtOverlayCenter);
}
SetBackupConfig(config);
}
void TextureCacheBase::Cleanup(int _frameCount)
{
TexAddrCache::iterator iter = m_textures_by_address.begin();
TexAddrCache::iterator tcend = m_textures_by_address.end();
while (iter != tcend)
{
if (iter->second->frameCount == FRAMECOUNT_INVALID)
{
iter->second->frameCount = _frameCount;
++iter;
}
else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount)
{
if (iter->second->IsCopy())
{
// Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB
// copies living on the
// host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for
// performance reasons
if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 &&
iter->second->hash != iter->second->CalculateHash())
{
iter = InvalidateTexture(iter);
}
else
{
++iter;
}
}
else
{
iter = InvalidateTexture(iter);
}
}
else
{
++iter;
}
}
TexPool::iterator iter2 = m_texture_pool.begin();
TexPool::iterator tcend2 = m_texture_pool.end();
while (iter2 != tcend2)
{
if (iter2->second.frameCount == FRAMECOUNT_INVALID)
{
iter2->second.frameCount = _frameCount;
}
if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second.frameCount)
{
iter2 = m_texture_pool.erase(iter2);
}
else
{
++iter2;
}
}
}
bool TCacheEntry::OverlapsMemoryRange(u32 range_address, u32 range_size) const
{
if (addr + size_in_bytes <= range_address)
return false;
if (addr >= range_address + range_size)
return false;
return true;
}
void TextureCacheBase::SetBackupConfig(const VideoConfig& config)
{
m_backup_config.color_samples = config.iSafeTextureCache_ColorSamples;
m_backup_config.texfmt_overlay = config.bTexFmtOverlayEnable;
m_backup_config.texfmt_overlay_center = config.bTexFmtOverlayCenter;
m_backup_config.hires_textures = config.bHiresTextures;
m_backup_config.cache_hires_textures = config.bCacheHiresTextures;
m_backup_config.stereo_3d = config.stereo_mode != StereoMode::Off;
m_backup_config.efb_mono_depth = config.bStereoEFBMonoDepth;
m_backup_config.gpu_texture_decoding = config.bEnableGPUTextureDecoding;
m_backup_config.disable_vram_copies = config.bDisableCopyToVRAM;
m_backup_config.arbitrary_mipmap_detection = config.bArbitraryMipmapDetection;
m_backup_config.graphics_mods = config.bGraphicMods;
m_backup_config.graphics_mod_change_count =
config.graphics_mod_config ? config.graphics_mod_config->GetChangeCount() : 0;
}
bool TextureCacheBase::DidLinkedAssetsChange(const TCacheEntry& entry)
{
for (const auto& cached_asset : entry.linked_game_texture_assets)
{
if (cached_asset.m_asset)
{
if (cached_asset.m_asset->GetLastLoadedTime() > cached_asset.m_cached_write_time)
return true;
}
}
for (const auto& cached_asset : entry.linked_asset_dependencies)
{
if (cached_asset.m_asset)
{
if (cached_asset.m_asset->GetLastLoadedTime() > cached_asset.m_cached_write_time)
return true;
}
}
return false;
}
RcTcacheEntry TextureCacheBase::ApplyPaletteToEntry(RcTcacheEntry& entry, const u8* palette,
TLUTFormat tlutfmt)
{
DEBUG_ASSERT(g_ActiveConfig.backend_info.bSupportsPaletteConversion);
const AbstractPipeline* pipeline = g_shader_cache->GetPaletteConversionPipeline(tlutfmt);
if (!pipeline)
{
ERROR_LOG_FMT(VIDEO, "Failed to get conversion pipeline for format {}", tlutfmt);
return {};
}
TextureConfig new_config = entry->texture->GetConfig();
new_config.levels = 1;
new_config.flags |= AbstractTextureFlag_RenderTarget;
RcTcacheEntry decoded_entry = AllocateCacheEntry(new_config);
if (!decoded_entry)
return decoded_entry;
decoded_entry->SetGeneralParameters(entry->addr, entry->size_in_bytes, entry->format,
entry->should_force_safe_hashing);
decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
decoded_entry->SetHashes(entry->base_hash, entry->hash);
decoded_entry->frameCount = FRAMECOUNT_INVALID;
decoded_entry->should_force_safe_hashing = false;
decoded_entry->SetNotCopy();
decoded_entry->may_have_overlapping_textures = entry->may_have_overlapping_textures;
g_gfx->BeginUtilityDrawing();
const u32 palette_size = entry->format == TextureFormat::I4 ? 32 : 512;
u32 texel_buffer_offset;
if (g_vertex_manager->UploadTexelBuffer(palette, palette_size,
TexelBufferFormat::TEXEL_BUFFER_FORMAT_R16_UINT,
&texel_buffer_offset))
{
struct Uniforms
{
float multiplier;
u32 texel_buffer_offset;
u32 pad[2];
};
static_assert(std::is_standard_layout<Uniforms>::value);
Uniforms uniforms = {};
uniforms.multiplier = entry->format == TextureFormat::I4 ? 15.0f : 255.0f;
uniforms.texel_buffer_offset = texel_buffer_offset;
g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
g_gfx->SetAndDiscardFramebuffer(decoded_entry->framebuffer.get());
g_gfx->SetViewportAndScissor(decoded_entry->texture->GetRect());
g_gfx->SetPipeline(pipeline);
g_gfx->SetTexture(1, entry->texture.get());
g_gfx->SetSamplerState(1, RenderState::GetPointSamplerState());
g_gfx->Draw(0, 3);
g_gfx->EndUtilityDrawing();
decoded_entry->texture->FinishedRendering();
}
else
{
ERROR_LOG_FMT(VIDEO, "Texel buffer upload of {} bytes failed", palette_size);
g_gfx->EndUtilityDrawing();
}
m_textures_by_address.emplace(decoded_entry->addr, decoded_entry);
return decoded_entry;
}
RcTcacheEntry TextureCacheBase::ReinterpretEntry(const RcTcacheEntry& existing_entry,
TextureFormat new_format)
{
const AbstractPipeline* pipeline =
g_shader_cache->GetTextureReinterpretPipeline(existing_entry->format.texfmt, new_format);
if (!pipeline)
{
ERROR_LOG_FMT(VIDEO, "Failed to obtain texture reinterpreting pipeline from format {} to {}",
existing_entry->format.texfmt, new_format);
return {};
}
TextureConfig new_config = existing_entry->texture->GetConfig();
new_config.levels = 1;
new_config.flags |= AbstractTextureFlag_RenderTarget;
RcTcacheEntry reinterpreted_entry = AllocateCacheEntry(new_config);
if (!reinterpreted_entry)
return {};
reinterpreted_entry->SetGeneralParameters(existing_entry->addr, existing_entry->size_in_bytes,
new_format, existing_entry->should_force_safe_hashing);
reinterpreted_entry->SetDimensions(existing_entry->native_width, existing_entry->native_height,
1);
reinterpreted_entry->SetHashes(existing_entry->base_hash, existing_entry->hash);
reinterpreted_entry->frameCount = existing_entry->frameCount;
reinterpreted_entry->SetNotCopy();
reinterpreted_entry->is_efb_copy = existing_entry->is_efb_copy;
reinterpreted_entry->may_have_overlapping_textures =
existing_entry->may_have_overlapping_textures;
g_gfx->BeginUtilityDrawing();
g_gfx->SetAndDiscardFramebuffer(reinterpreted_entry->framebuffer.get());
g_gfx->SetViewportAndScissor(reinterpreted_entry->texture->GetRect());
g_gfx->SetPipeline(pipeline);
g_gfx->SetTexture(0, existing_entry->texture.get());
g_gfx->SetSamplerState(1, RenderState::GetPointSamplerState());
g_gfx->Draw(0, 3);
g_gfx->EndUtilityDrawing();
reinterpreted_entry->texture->FinishedRendering();
m_textures_by_address.emplace(reinterpreted_entry->addr, reinterpreted_entry);
return reinterpreted_entry;
}
void TextureCacheBase::ScaleTextureCacheEntryTo(RcTcacheEntry& entry, u32 new_width, u32 new_height)
{
if (entry->GetWidth() == new_width && entry->GetHeight() == new_height)
{
return;
}
const u32 max = g_ActiveConfig.backend_info.MaxTextureSize;
if (max < new_width || max < new_height)
{
ERROR_LOG_FMT(VIDEO, "Texture too big, width = {}, height = {}", new_width, new_height);
return;
}
const TextureConfig newconfig(new_width, new_height, 1, entry->GetNumLayers(), 1,
AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget);
std::optional<TexPoolEntry> new_texture = AllocateTexture(newconfig);
if (!new_texture)
{
ERROR_LOG_FMT(VIDEO, "Scaling failed due to texture allocation failure");
return;
}
// No need to convert the coordinates here since they'll be the same.
g_gfx->ScaleTexture(new_texture->framebuffer.get(), new_texture->texture->GetConfig().GetRect(),
entry->texture.get(), entry->texture->GetConfig().GetRect());
entry->texture.swap(new_texture->texture);
entry->framebuffer.swap(new_texture->framebuffer);
// At this point new_texture has the old texture in it,
// we can potentially reuse this, so let's move it back to the pool
auto config = new_texture->texture->GetConfig();
m_texture_pool.emplace(
config, TexPoolEntry(std::move(new_texture->texture), std::move(new_texture->framebuffer)));
}
bool TextureCacheBase::CheckReadbackTexture(u32 width, u32 height, AbstractTextureFormat format)
{
if (m_readback_texture && m_readback_texture->GetConfig().width >= width &&
m_readback_texture->GetConfig().height >= height &&
m_readback_texture->GetConfig().format == format)
{
return true;
}
TextureConfig staging_config(std::max(width, 128u), std::max(height, 128u), 1, 1, 1, format, 0);
m_readback_texture.reset();
m_readback_texture = g_gfx->CreateStagingTexture(StagingTextureType::Readback, staging_config);
return m_readback_texture != nullptr;
}
void TextureCacheBase::SerializeTexture(AbstractTexture* tex, const TextureConfig& config,
PointerWrap& p)
{
// If we're in measure mode, skip the actual readback to save some time.
const bool skip_readback = p.IsMeasureMode();
p.Do(config);
if (skip_readback || CheckReadbackTexture(config.width, config.height, config.format))
{
// First, measure the amount of memory needed.
u32 total_size = 0;
for (u32 layer = 0; layer < config.layers; layer++)
{
for (u32 level = 0; level < config.levels; level++)
{
u32 level_width = std::max(config.width >> level, 1u);
u32 level_height = std::max(config.height >> level, 1u);
u32 stride = AbstractTexture::CalculateStrideForFormat(config.format, level_width);
u32 size = stride * level_height;
total_size += size;
}
}
// Set aside total_size bytes of space for the textures.
// When measuring, this will be set aside and not written to,
// but when writing we'll use this pointer directly to avoid
// needing to allocate/free an extra buffer.
u8* texture_data = p.DoExternal(total_size);
if (!skip_readback && p.IsMeasureMode())
{
ERROR_LOG_FMT(VIDEO, "Couldn't acquire {} bytes for serializing texture.", total_size);
return;
}
if (!skip_readback)
{
// Save out each layer of the texture to the pointer.
for (u32 layer = 0; layer < config.layers; layer++)
{
for (u32 level = 0; level < config.levels; level++)
{
u32 level_width = std::max(config.width >> level, 1u);
u32 level_height = std::max(config.height >> level, 1u);
auto rect = tex->GetConfig().GetMipRect(level);
m_readback_texture->CopyFromTexture(tex, rect, layer, level, rect);
u32 stride = AbstractTexture::CalculateStrideForFormat(config.format, level_width);
u32 size = stride * level_height;
m_readback_texture->ReadTexels(rect, texture_data, stride);
texture_data += size;
}
}
}
}
else
{
PanicAlertFmt("Failed to create staging texture for serialization");
}
}
std::optional<TextureCacheBase::TexPoolEntry> TextureCacheBase::DeserializeTexture(PointerWrap& p)
{
TextureConfig config;
p.Do(config);
// Read in the size from the save state, then texture data will point to
// a region of size total_size where textures are stored.
u32 total_size = 0;
u8* texture_data = p.DoExternal(total_size);
if (!p.IsReadMode() || total_size == 0)
return std::nullopt;
auto tex = AllocateTexture(config);
if (!tex)
{
PanicAlertFmt("Failed to create texture for deserialization");
return std::nullopt;
}
size_t start = 0;
for (u32 layer = 0; layer < config.layers; layer++)
{
for (u32 level = 0; level < config.levels; level++)
{
const u32 level_width = std::max(config.width >> level, 1u);
const u32 level_height = std::max(config.height >> level, 1u);
const size_t stride = AbstractTexture::CalculateStrideForFormat(config.format, level_width);
const size_t size = stride * level_height;
if ((start + size) > total_size)
{
ERROR_LOG_FMT(VIDEO, "Insufficient texture data for layer {} level {}", layer, level);
return tex;
}
tex->texture->Load(level, level_width, level_height, level_width, &texture_data[start], size);
start += size;
}
}
return tex;
}
void TextureCacheBase::DoState(PointerWrap& p)
{
// Flush all pending XFB copies before either loading or saving.
FlushEFBCopies();
p.Do(m_last_entry_id);
if (p.IsWriteMode() || p.IsMeasureMode())
DoSaveState(p);
else
DoLoadState(p);
}
void TextureCacheBase::DoSaveState(PointerWrap& p)
{
// Flush all stale binds
FlushStaleBinds();
std::map<const TCacheEntry*, u32> entry_map;
std::vector<TCacheEntry*> entries_to_save;
auto ShouldSaveEntry = [](const RcTcacheEntry& entry) {
// We skip non-copies as they can be decoded from RAM when the state is loaded.
// Storing them would duplicate data in the save state file, adding to decompression time.
// We also need to store invalidated entires, as they can't be restored from RAM.
return entry->IsCopy() || entry->invalidated;
};
auto AddCacheEntryToMap = [&entry_map, &entries_to_save](const RcTcacheEntry& entry) -> u32 {
auto iter = entry_map.find(entry.get());
if (iter != entry_map.end())
return iter->second;
// Since we are sequentially allocating texture entries, we need to save the textures in the
// same order they were collected. This is because of iterating both the address and hash maps.
// Therefore, the map is used for fast lookup, and the vector for ordering.
u32 id = static_cast<u32>(entry_map.size());
entry_map.emplace(entry.get(), id);
entries_to_save.push_back(entry.get());
return id;
};
auto GetCacheEntryId = [&entry_map](const TCacheEntry* entry) -> std::optional<u32> {
auto iter = entry_map.find(entry);
return iter != entry_map.end() ? std::make_optional(iter->second) : std::nullopt;
};
// Transform the m_textures_by_address and m_textures_by_hash maps to a mapping
// of address/hash to entry ID.
std::vector<std::pair<u32, u32>> textures_by_address_list;
std::vector<std::pair<u64, u32>> textures_by_hash_list;
std::vector<std::pair<u32, u32>> bound_textures_list;
if (Config::Get(Config::GFX_SAVE_TEXTURE_CACHE_TO_STATE))
{
for (const auto& it : m_textures_by_address)
{
if (ShouldSaveEntry(it.second))
{
const u32 id = AddCacheEntryToMap(it.second);
textures_by_address_list.emplace_back(it.first, id);
}
}
for (const auto& it : m_textures_by_hash)
{
if (ShouldSaveEntry(it.second))
{
const u32 id = AddCacheEntryToMap(it.second);
textures_by_hash_list.emplace_back(it.first, id);
}
}
for (u32 i = 0; i < m_bound_textures.size(); i++)
{
const auto& tentry = m_bound_textures[i];
if (m_bound_textures[i] && ShouldSaveEntry(tentry))
{
const u32 id = AddCacheEntryToMap(tentry);
bound_textures_list.emplace_back(i, id);
}
}
}
// Save the texture cache entries out in the order the were referenced.
u32 size = static_cast<u32>(entries_to_save.size());
p.Do(size);
for (TCacheEntry* entry : entries_to_save)
{
SerializeTexture(entry->texture.get(), entry->texture->GetConfig(), p);
entry->DoState(p);
}
p.DoMarker("TextureCacheEntries");
// Save references for each cache entry.
// As references are circular, we need to have everything created before linking entries.
std::set<std::pair<u32, u32>> reference_pairs;
for (const auto& it : entry_map)
{
const TCacheEntry* entry = it.first;
auto id1 = GetCacheEntryId(entry);
if (!id1)
continue;
for (const TCacheEntry* referenced_entry : entry->references)
{
auto id2 = GetCacheEntryId(referenced_entry);
if (!id2)
continue;
auto refpair1 = std::make_pair(*id1, *id2);
auto refpair2 = std::make_pair(*id2, *id1);
if (reference_pairs.count(refpair1) == 0 && reference_pairs.count(refpair2) == 0)
reference_pairs.insert(refpair1);
}
}
auto doList = [&p](auto list) {
u32 list_size = static_cast<u32>(list.size());
p.Do(list_size);
for (const auto& it : list)
{
p.Do(it.first);
p.Do(it.second);
}
};
doList(reference_pairs);
doList(textures_by_address_list);
doList(textures_by_hash_list);
doList(bound_textures_list);
// Free the readback texture to potentially save host-mapped GPU memory, depending on where
// the driver mapped the staging buffer.
m_readback_texture.reset();
}
void TextureCacheBase::DoLoadState(PointerWrap& p)
{
// Helper for getting a cache entry from an ID.
std::map<u32, RcTcacheEntry> id_map;
RcTcacheEntry null_entry;
auto GetEntry = [&id_map, &null_entry](u32 id) -> RcTcacheEntry& {
auto iter = id_map.find(id);
return iter == id_map.end() ? null_entry : iter->second;
};
// Only clear out state when actually restoring/loading.
// Since we throw away entries when not in loading mode now, we don't need to check
// before inserting entries into the cache, as GetEntry will always return null.
const bool commit_state = p.IsReadMode();
if (commit_state)
Invalidate();
// Preload all cache entries.
u32 size = 0;
p.Do(size);
for (u32 i = 0; i < size; i++)
{
// Even if the texture isn't valid, we still need to create the cache entry object
// to update the point in the state state. We'll just throw it away if it's invalid.
auto tex = DeserializeTexture(p);
auto entry =
std::make_shared<TCacheEntry>(std::move(tex->texture), std::move(tex->framebuffer));
entry->textures_by_hash_iter = m_textures_by_hash.end();
entry->DoState(p);
if (entry->texture && commit_state)
id_map.emplace(i, entry);
}
p.DoMarker("TextureCacheEntries");
// Link all cache entry references.
p.Do(size);
for (u32 i = 0; i < size; i++)
{
u32 id1 = 0, id2 = 0;
p.Do(id1);
p.Do(id2);
auto e1 = GetEntry(id1);
auto e2 = GetEntry(id2);
if (e1 && e2)
e1->CreateReference(e2.get());
}
// Fill in address map.
p.Do(size);
for (u32 i = 0; i < size; i++)
{
u32 addr = 0;
u32 id = 0;
p.Do(addr);
p.Do(id);
auto& entry = GetEntry(id);
if (entry)
m_textures_by_address.emplace(addr, entry);
}
// Fill in hash map.
p.Do(size);
for (u32 i = 0; i < size; i++)
{
u64 hash = 0;
u32 id = 0;
p.Do(hash);
p.Do(id);
auto& entry = GetEntry(id);
if (entry)
entry->textures_by_hash_iter = m_textures_by_hash.emplace(hash, entry);
}
// Clear bound textures
for (u32 i = 0; i < m_bound_textures.size(); i++)
m_bound_textures[i].reset();
// Fill in bound textures
p.Do(size);
for (u32 i = 0; i < size; i++)
{
u32 index = 0;
u32 id = 0;
p.Do(index);
p.Do(id);
auto& entry = GetEntry(id);
if (entry)
m_bound_textures[index] = entry;
}
}
void TextureCacheBase::OnFrameEnd()
{
// Flush any outstanding EFB copies to RAM, in case the game is running at an uncapped frame
// rate and not waiting for vblank. Otherwise, we'd end up with a huge list of pending
// copies.
FlushEFBCopies();
Cleanup(g_presenter->FrameCount());
}
void TCacheEntry::DoState(PointerWrap& p)
{
p.Do(addr);
p.Do(size_in_bytes);
p.Do(base_hash);
p.Do(hash);
p.Do(format);
p.Do(memory_stride);
p.Do(is_efb_copy);
p.Do(is_custom_tex);
p.Do(may_have_overlapping_textures);
p.Do(invalidated);
p.Do(has_arbitrary_mips);
p.Do(should_force_safe_hashing);
p.Do(is_xfb_copy);
p.Do(is_xfb_container);
p.Do(id);
p.Do(reference_changed);
p.Do(native_width);
p.Do(native_height);
p.Do(native_levels);
p.Do(frameCount);
}
RcTcacheEntry TextureCacheBase::DoPartialTextureUpdates(RcTcacheEntry& entry_to_update,
const u8* palette, TLUTFormat tlutfmt)
{
// If the flag may_have_overlapping_textures is cleared, there are no overlapping EFB copies,
// which aren't applied already. It is set for new textures, and for the affected range
// on each EFB copy.
if (!entry_to_update->may_have_overlapping_textures)
return entry_to_update;
entry_to_update->may_have_overlapping_textures = false;
const bool isPaletteTexture = IsColorIndexed(entry_to_update->format.texfmt);
// EFB copies are excluded from these updates, until there's an example where a game would
// benefit from updating. This would require more work to be done.
if (entry_to_update->IsCopy())
return entry_to_update;
if (entry_to_update->IsLocked())
{
// TODO: Shouldn't be too hard, just need to clone the texture entry + texture contents.
PanicAlertFmt("TextureCache: PartialTextureUpdates of locked textures is not implemented");
return {};
}
u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format.texfmt);
u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format.texfmt);
u32 block_size = block_width * block_height *
TexDecoder_GetTexelSizeInNibbles(entry_to_update->format.texfmt) / 2;
u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width;
auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes);
while (iter.first != iter.second)
{
auto& entry = iter.first->second;
if (entry != entry_to_update && entry->IsCopy() &&
entry->references.count(entry_to_update.get()) == 0 &&
entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) &&
entry->memory_stride == numBlocksX * block_size)
{
if (entry->hash == entry->CalculateHash())
{
// If the texture formats are not compatible or convertible, skip it.
if (!IsCompatibleTextureFormat(entry_to_update->format.texfmt, entry->format.texfmt))
{
if (!CanReinterpretTextureOnGPU(entry_to_update->format.texfmt, entry->format.texfmt))
{
++iter.first;
continue;
}
auto reinterpreted_entry = ReinterpretEntry(entry, entry_to_update->format.texfmt);
if (reinterpreted_entry)
entry = reinterpreted_entry;
}
if (isPaletteTexture)
{
auto decoded_entry = ApplyPaletteToEntry(entry, palette, tlutfmt);
if (decoded_entry)
{
// Link the efb copy with the partially updated texture, so we won't apply this partial
// update again
entry->CreateReference(entry_to_update.get());
// Mark the texture update as used, as if it was loaded directly
entry->frameCount = FRAMECOUNT_INVALID;
entry = decoded_entry;
}
else
{
++iter.first;
continue;
}
}
u32 src_x, src_y, dst_x, dst_y;
// Note for understanding the math:
// Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist
if (entry->addr >= entry_to_update->addr)
{
u32 block_offset = (entry->addr - entry_to_update->addr) / block_size;
u32 block_x = block_offset % numBlocksX;
u32 block_y = block_offset / numBlocksX;
src_x = 0;
src_y = 0;
dst_x = block_x * block_width;
dst_y = block_y * block_height;
}
else
{
u32 block_offset = (entry_to_update->addr - entry->addr) / block_size;
u32 block_x = (~block_offset + 1) % numBlocksX;
u32 block_y = (block_offset + block_x) / numBlocksX;
src_x = 0;
src_y = block_y * block_height;
dst_x = block_x * block_width;
dst_y = 0;
}
u32 copy_width =
std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x);
u32 copy_height =
std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y);
// If one of the textures is scaled, scale both with the current efb scaling factor
if (entry_to_update->native_width != entry_to_update->GetWidth() ||
entry_to_update->native_height != entry_to_update->GetHeight() ||
entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight())
{
ScaleTextureCacheEntryTo(
entry_to_update, g_framebuffer_manager->EFBToScaledX(entry_to_update->native_width),
g_framebuffer_manager->EFBToScaledY(entry_to_update->native_height));
ScaleTextureCacheEntryTo(entry, g_framebuffer_manager->EFBToScaledX(entry->native_width),
g_framebuffer_manager->EFBToScaledY(entry->native_height));
src_x = g_framebuffer_manager->EFBToScaledX(src_x);
src_y = g_framebuffer_manager->EFBToScaledY(src_y);
dst_x = g_framebuffer_manager->EFBToScaledX(dst_x);
dst_y = g_framebuffer_manager->EFBToScaledY(dst_y);
copy_width = g_framebuffer_manager->EFBToScaledX(copy_width);
copy_height = g_framebuffer_manager->EFBToScaledY(copy_height);
}
// If the source rectangle is outside of what we actually have in VRAM, skip the copy.
// The backend doesn't do any clamping, so if we don't, we'd pass out-of-range coordinates
// to the graphics driver, which can cause GPU resets.
if (static_cast<u32>(src_x + copy_width) > entry->GetWidth() ||
static_cast<u32>(src_y + copy_height) > entry->GetHeight() ||
static_cast<u32>(dst_x + copy_width) > entry_to_update->GetWidth() ||
static_cast<u32>(dst_y + copy_height) > entry_to_update->GetHeight())
{
++iter.first;
continue;
}
MathUtil::Rectangle<int> srcrect, dstrect;
srcrect.left = src_x;
srcrect.top = src_y;
srcrect.right = (src_x + copy_width);
srcrect.bottom = (src_y + copy_height);
dstrect.left = dst_x;
dstrect.top = dst_y;
dstrect.right = (dst_x + copy_width);
dstrect.bottom = (dst_y + copy_height);
// If one copy is stereo, and the other isn't... not much we can do here :/
const u32 layers_to_copy = std::min(entry->GetNumLayers(), entry_to_update->GetNumLayers());
for (u32 layer = 0; layer < layers_to_copy; layer++)
{
entry_to_update->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer,
0, dstrect, layer, 0);
}
if (isPaletteTexture)
{
// Remove the temporary converted texture, it won't be used anywhere else
// TODO: It would be nice to convert and copy in one step, but this code path isn't common
iter.first = InvalidateTexture(iter.first);
continue;
}
else
{
// Link the two textures together, so we won't apply this partial update again
entry->CreateReference(entry_to_update.get());
// Mark the texture update as used, as if it was loaded directly
entry->frameCount = FRAMECOUNT_INVALID;
}
}
else
{
// If the hash does not match, this EFB copy will not be used for anything, so remove it
iter.first = InvalidateTexture(iter.first);
continue;
}
}
++iter.first;
}
return entry_to_update;
}
void TextureCacheBase::DumpTexture(RcTcacheEntry& entry, std::string basename, unsigned int level,
bool is_arbitrary)
{
std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().GetGameID();
// make sure that the directory exists
if (!File::IsDirectory(szDir))
File::CreateDir(szDir);
if (is_arbitrary)
{
basename += "_arb";
}
if (level > 0)
{
if (!g_ActiveConfig.bDumpMipmapTextures)
return;
basename += fmt::format("_mip{}", level);
}
else
{
if (!g_ActiveConfig.bDumpBaseTextures)
return;
}
const std::string filename = fmt::format("{}/{}.png", szDir, basename);
if (File::Exists(filename))
return;
entry->texture->Save(filename, level, Config::Get(Config::GFX_TEXTURE_PNG_COMPRESSION_LEVEL));
}
// Helper for checking if a BPMemory TexMode0 register is set to Point
// Filtering modes. This is used to decide whether Anisotropic enhancements
// are (mostly) safe in the VideoBackends.
// If both the minification and magnification filters are set to POINT modes
// then applying anisotropic filtering is equivalent to forced filtering. Point
// mode textures are usually some sort of 2D UI billboard which will end up
// misaligned from the correct pixels when filtered anisotropically.
static bool IsAnisostropicEnhancementSafe(const TexMode0& tm0)
{
return !(tm0.min_filter == FilterMode::Near && tm0.mag_filter == FilterMode::Near);
}
static void SetSamplerState(u32 index, float custom_tex_scale, bool custom_tex,
bool has_arbitrary_mips)
{
const TexMode0& tm0 = bpmem.tex.GetUnit(index).texMode0;
SamplerState state = {};
state.Generate(bpmem, index);
// Force texture filtering config option.
if (g_ActiveConfig.texture_filtering_mode == TextureFilteringMode::Nearest)
{
state.tm0.min_filter = FilterMode::Near;
state.tm0.mag_filter = FilterMode::Near;
state.tm0.mipmap_filter = FilterMode::Near;
}
else if (g_ActiveConfig.texture_filtering_mode == TextureFilteringMode::Linear)
{
state.tm0.min_filter = FilterMode::Linear;
state.tm0.mag_filter = FilterMode::Linear;
state.tm0.mipmap_filter =
tm0.mipmap_filter != MipMode::None ? FilterMode::Linear : FilterMode::Near;
}
// Custom textures may have a greater number of mips
if (custom_tex)
state.tm1.max_lod = 255;
// Anisotropic filtering option.
if (g_ActiveConfig.iMaxAnisotropy != 0 && IsAnisostropicEnhancementSafe(tm0))
{
// https://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt
// For predictable results on all hardware/drivers, only use one of:
// GL_LINEAR + GL_LINEAR (No Mipmaps [Bilinear])
// GL_LINEAR + GL_LINEAR_MIPMAP_LINEAR (w/ Mipmaps [Trilinear])
// Letting the game set other combinations will have varying arbitrary results;
// possibly being interpreted as equal to bilinear/trilinear, implicitly
// disabling anisotropy, or changing the anisotropic algorithm employed.
state.tm0.min_filter = FilterMode::Linear;
state.tm0.mag_filter = FilterMode::Linear;
if (tm0.mipmap_filter != MipMode::None)
state.tm0.mipmap_filter = FilterMode::Linear;
state.tm0.anisotropic_filtering = true;
}
else
{
state.tm0.anisotropic_filtering = false;
}
if (has_arbitrary_mips && tm0.mipmap_filter != MipMode::None)
{
// Apply a secondary bias calculated from the IR scale to pull inwards mipmaps
// that have arbitrary contents, eg. are used for fog effects where the
// distance they kick in at is important to preserve at any resolution.
// Correct this with the upscaling factor of custom textures.
s32 lod_offset = std::log2(g_framebuffer_manager->GetEFBScale() / custom_tex_scale) * 256.f;
state.tm0.lod_bias = std::clamp<s32>(state.tm0.lod_bias + lod_offset, -32768, 32767);
// Anisotropic also pushes mips farther away so it cannot be used either
state.tm0.anisotropic_filtering = false;
}
g_gfx->SetSamplerState(index, state);
auto& system = Core::System::GetInstance();
auto& pixel_shader_manager = system.GetPixelShaderManager();
pixel_shader_manager.SetSamplerState(index, state.tm0.hex, state.tm1.hex);
}
void TextureCacheBase::BindTextures(BitSet32 used_textures)
{
auto& system = Core::System::GetInstance();
auto& pixel_shader_manager = system.GetPixelShaderManager();
for (u32 i = 0; i < m_bound_textures.size(); i++)
{
const RcTcacheEntry& tentry = m_bound_textures[i];
if (used_textures[i] && tentry)
{
g_gfx->SetTexture(i, tentry->texture.get());
pixel_shader_manager.SetTexDims(i, tentry->native_width, tentry->native_height);
const float custom_tex_scale = tentry->GetWidth() / float(tentry->native_width);
SetSamplerState(i, custom_tex_scale, tentry->is_custom_tex, tentry->has_arbitrary_mips);
}
}
TMEM::FinalizeBinds(used_textures);
}
class ArbitraryMipmapDetector
{
private:
using PixelRGBAf = std::array<float, 4>;
using PixelRGBAu8 = std::array<u8, 4>;
public:
explicit ArbitraryMipmapDetector() = default;
void AddLevel(u32 width, u32 height, u32 row_length, const u8* buffer)
{
levels.push_back({{width, height, row_length}, buffer});
}
bool HasArbitraryMipmaps(u8* downsample_buffer) const
{
if (levels.size() < 2)
return false;
if (!g_ActiveConfig.bArbitraryMipmapDetection)
return false;
// This is the average per-pixel, per-channel difference in percent between what we
// expect a normal blurred mipmap to look like and what we actually received
// 4.5% was chosen because it's just below the lowest clearly-arbitrary texture
// I found in my tests, the background clouds in Mario Galaxy's Observatory lobby.
const auto threshold = g_ActiveConfig.fArbitraryMipmapDetectionThreshold;
auto* src = downsample_buffer;
auto* dst = downsample_buffer + levels[1].shape.row_length * levels[1].shape.height * 4;
float total_diff = 0.f;
for (std::size_t i = 0; i < levels.size() - 1; ++i)
{
const auto& level = levels[i];
const auto& mip = levels[i + 1];
u64 level_pixel_count = level.shape.width;
level_pixel_count *= level.shape.height;
// AverageDiff stores the difference sum in a u64, so make sure we can't overflow
ASSERT(level_pixel_count < (std::numeric_limits<u64>::max() / (255 * 255 * 4)));
// Manually downsample the past downsample with a simple box blur
// This is not necessarily close to whatever the original artists used, however
// It should still be closer than a thing that's not a downscale at all
Level::Downsample(i ? src : level.pixels, level.shape, dst, mip.shape);
// Find the average difference between pixels in this level but downsampled
// and the next level
auto diff = mip.AverageDiff(dst);
total_diff += diff;
std::swap(src, dst);
}
auto all_levels = total_diff / (levels.size() - 1);
return all_levels > threshold;
}
private:
struct Shape
{
u32 width;
u32 height;
u32 row_length;
};
struct Level
{
Shape shape;
const u8* pixels;
static PixelRGBAu8 SampleLinear(const u8* src, const Shape& src_shape, u32 x, u32 y)
{
const auto* p = src + (x + y * src_shape.row_length) * 4;
return {{p[0], p[1], p[2], p[3]}};
}
// Puts a downsampled image in dst. dst must be at least width*height*4
static void Downsample(const u8* src, const Shape& src_shape, u8* dst, const Shape& dst_shape)
{
for (u32 i = 0; i < dst_shape.height; ++i)
{
for (u32 j = 0; j < dst_shape.width; ++j)
{
auto x = j * 2;
auto y = i * 2;
const std::array<PixelRGBAu8, 4> samples{{
SampleLinear(src, src_shape, x, y),
SampleLinear(src, src_shape, x + 1, y),
SampleLinear(src, src_shape, x, y + 1),
SampleLinear(src, src_shape, x + 1, y + 1),
}};
auto* dst_pixel = dst + (j + i * dst_shape.row_length) * 4;
for (int channel = 0; channel < 4; channel++)
{
uint32_t channel_value = samples[0][channel] + samples[1][channel] +
samples[2][channel] + samples[3][channel];
dst_pixel[channel] = (channel_value + 2) / 4;
}
}
}
}
float AverageDiff(const u8* other) const
{
// As textures are stored in (at most) 8 bit precision, each channel can
// have a max diff of (2^8)^2, multiply by 4 channels = 2^18 per pixel.
// That means to overflow, we must have a texture with more than 2^46
// pixels - which is way beyond anything the original hardware could do,
// and likely a sane assumption going forward for some significant time.
u64 current_diff_sum = 0;
const auto* ptr1 = pixels;
const auto* ptr2 = other;
for (u32 i = 0; i < shape.height; ++i)
{
const auto* row1 = ptr1;
const auto* row2 = ptr2;
for (u32 j = 0; j < shape.width; ++j, row1 += 4, row2 += 4)
{
int pixel_diff = 0;
for (int channel = 0; channel < 4; channel++)
{
const int diff = static_cast<int>(row1[channel]) - static_cast<int>(row2[channel]);
const int diff_squared = diff * diff;
pixel_diff += diff_squared;
}
current_diff_sum += pixel_diff;
}
ptr1 += shape.row_length;
ptr2 += shape.row_length;
}
// calculate the MSE over all pixels, divide by 2.56 to make it a percent
// (IE scale to 0..100 instead of 0..256)
return std::sqrt(static_cast<float>(current_diff_sum) / (shape.width * shape.height * 4)) /
2.56f;
}
};
std::vector<Level> levels;
};
TCacheEntry* TextureCacheBase::Load(const TextureInfo& texture_info)
{
if (auto entry = LoadImpl(texture_info, false))
{
if (!DidLinkedAssetsChange(*entry))
{
return entry;
}
InvalidateTexture(GetTexCacheIter(entry));
return LoadImpl(texture_info, true);
}
return nullptr;
}
TCacheEntry* TextureCacheBase::LoadImpl(const TextureInfo& texture_info, bool force_reload)
{
// if this stage was not invalidated by changes to texture registers, keep the current texture
if (!force_reload && TMEM::IsValid(texture_info.GetStage()) &&
m_bound_textures[texture_info.GetStage()])
{
TCacheEntry* entry = m_bound_textures[texture_info.GetStage()].get();
// If the TMEM configuration is such that this texture is more or less guaranteed to still
// be in TMEM, then we know we can reuse the old entry without even hashing the memory
//
// It's possible this texture has already been overwritten in emulated memory and therfore
// invalidated from our texture cache, but we want to use it anyway to approximate the
// result of the game using an overwritten texture cached in TMEM.
//
// Spyro: A Hero's Tail is known for (deliberately?) using such overwritten textures
// in it's bloom effect, which breaks without giving it the invalidated texture.
if (TMEM::IsCached(texture_info.GetStage()))
{
return entry;
}
// Otherwise, hash the backing memory and check it's unchanged.
// FIXME: this doesn't correctly handle textures from tmem.
if (!entry->invalidated && entry->base_hash == entry->CalculateHash())
{
return entry;
}
}
auto entry = GetTexture(g_ActiveConfig.iSafeTextureCache_ColorSamples, texture_info);
if (!entry)
return nullptr;
entry->frameCount = FRAMECOUNT_INVALID;
if (entry->texture_info_name.empty() && g_ActiveConfig.bGraphicMods)
{
entry->texture_info_name = texture_info.CalculateTextureName().GetFullName();
GraphicsModActionData::TextureLoad texture_load{entry->texture_info_name};
for (const auto& action :
g_graphics_mod_manager->GetTextureLoadActions(entry->texture_info_name))
{
action->OnTextureLoad(&texture_load);
}
}
m_bound_textures[texture_info.GetStage()] = entry;
// We need to keep track of invalided textures until they have actually been replaced or
// re-loaded
TMEM::Bind(texture_info.GetStage(), entry->NumBlocksX(), entry->NumBlocksY(),
entry->GetNumLevels() > 1, entry->format == TextureFormat::RGBA8);
return entry.get();
}
RcTcacheEntry TextureCacheBase::GetTexture(const int textureCacheSafetyColorSampleSize,
const TextureInfo& texture_info)
{
// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and
// custom texture lookup)
u64 base_hash = TEXHASH_INVALID;
u64 full_hash = TEXHASH_INVALID;
TextureAndTLUTFormat full_format(texture_info.GetTextureFormat(), texture_info.GetTlutFormat());
// Reject invalid tlut format.
if (texture_info.GetPaletteSize() && !IsValidTLUTFormat(texture_info.GetTlutFormat()))
return {};
u32 bytes_per_block = (texture_info.GetBlockWidth() * texture_info.GetBlockHeight() *
TexDecoder_GetTexelSizeInNibbles(texture_info.GetTextureFormat())) /
2;
// TODO: the texture cache lookup is based on address, but a texture from tmem has no reason
// to have a unique and valid address. This could result in a regular texture and a tmem
// texture aliasing onto the same texture cache entry.
if (!texture_info.GetData())
{
ERROR_LOG_FMT(VIDEO, "Trying to use an invalid texture address {:#010x}",
texture_info.GetRawAddress());
return {};
}
// If we are recording a FifoLog, keep track of what memory we read. FifoRecorder does
// its own memory modification tracking independent of the texture hashing below.
if (OpcodeDecoder::g_record_fifo_data && !texture_info.IsFromTmem())
{
FifoRecorder::GetInstance().UseMemory(texture_info.GetRawAddress(),
texture_info.GetFullLevelSize(),
MemoryUpdate::Type::TextureMap);
}
// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data
// from the low tmem bank than it should)
base_hash = Common::GetHash64(texture_info.GetData(), texture_info.GetTextureSize(),
textureCacheSafetyColorSampleSize);
u32 palette_size = 0;
if (texture_info.GetPaletteSize())
{
palette_size = *texture_info.GetPaletteSize();
full_hash =
base_hash ^ Common::GetHash64(texture_info.GetTlutAddress(), *texture_info.GetPaletteSize(),
textureCacheSafetyColorSampleSize);
}
else
{
full_hash = base_hash;
}
// Search the texture cache for textures by address
//
// Find all texture cache entries for the current texture address, and decide whether to use one
// of them, or to create a new one
//
// In most cases, the fastest way is to use only one texture cache entry for the same address.
// Usually, when a texture changes, the old version of the texture is unlikely to be used again.
// If there were new cache entries created for normal texture updates, there would be a slowdown
// due to a huge amount of unused cache entries. Also thanks to texture pooling, overwriting an
// existing cache entry is faster than creating a new one from scratch.
//
// Some games use the same address for different textures though. If the same cache entry was used
// in this case, it would be constantly overwritten, and effectively there wouldn't be any caching
// for those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has
// multiple sets of fonts on each other stored in a single texture and uses the palette to make
// different characters visible or invisible. In Castlevania 3 some textures are used for 2
// different things or at least in 2 different ways (size 1024x1024 vs 1024x256).
//
// To determine whether to use multiple cache entries or a single entry, use the following
// heuristic: If the same texture address is used several times during the same frame, assume the
// address is used for different purposes and allow creating an additional cache entry. If there's
// at least one entry that hasn't been used for the same frame, then overwrite it, in order to
// keep the cache as small as possible. If the current texture is found in the cache, use that
// entry.
//
// For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else
// it was done in vain.
auto iter_range = m_textures_by_address.equal_range(texture_info.GetRawAddress());
TexAddrCache::iterator iter = iter_range.first;
TexAddrCache::iterator oldest_entry = iter;
int temp_frameCount = 0x7fffffff;
TexAddrCache::iterator unconverted_copy = m_textures_by_address.end();
TexAddrCache::iterator unreinterpreted_copy = m_textures_by_address.end();
while (iter != iter_range.second)
{
RcTcacheEntry& entry = iter->second;
// TODO: Some games (Rogue Squadron 3, Twin Snakes) seem to load a previously made XFB
// copy as a regular texture. You can see this particularly well in RS3 whenever the
// game freezes the image and fades it out to black on screen transitions, which fades
// out a purple screen in XFB2Tex. Check for this here and convert them if necessary.
// Do not load strided EFB copies, they are not meant to be used directly.
// Also do not directly load EFB copies, which were partly overwritten.
if (entry->IsEfbCopy() && entry->native_width == texture_info.GetRawWidth() &&
entry->native_height == texture_info.GetRawHeight() &&
entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures)
{
// EFB copies have slightly different rules as EFB copy formats have different
// meanings from texture formats.
if ((base_hash == entry->hash &&
(!texture_info.GetPaletteSize() || g_Config.backend_info.bSupportsPaletteConversion)) ||
IsPlayingBackFifologWithBrokenEFBCopies)
{
// The texture format in VRAM must match the format that the copy was created with. Some
// formats are inherently compatible, as the channel and bit layout is identical (e.g.
// I8/C8). Others have the same number of bits per texel, and can be reinterpreted on the
// GPU (e.g. IA4 and I8 or RGB565 and RGBA5). The only known game which reinteprets texels
// in this manner is Spiderman Shattered Dimensions, where it creates a copy in B8 format,
// and sets it up as a IA4 texture.
if (!IsCompatibleTextureFormat(entry->format.texfmt, texture_info.GetTextureFormat()))
{
// Can we reinterpret this in VRAM?
if (CanReinterpretTextureOnGPU(entry->format.texfmt, texture_info.GetTextureFormat()))
{
// Delay the conversion until afterwards, it's possible this texture has already been
// converted.
unreinterpreted_copy = iter++;
continue;
}
else
{
// If the EFB copies are in a different format and are not reinterpretable, use the RAM
// copy.
++iter;
continue;
}
}
else
{
// Prefer the already-converted copy.
unconverted_copy = m_textures_by_address.end();
}
// TODO: We should check width/height/levels for EFB copies. I'm not sure what effect
// checking width/height/levels would have.
if (!texture_info.GetPaletteSize() || !g_Config.backend_info.bSupportsPaletteConversion)
return entry;
// Note that we found an unconverted EFB copy, then continue. We'll
// perform the conversion later. Currently, we only convert EFB copies to
// palette textures; we could do other conversions if it proved to be
// beneficial.
unconverted_copy = iter;
}
else
{
// Aggressively prune EFB copies: if it isn't useful here, it will probably
// never be useful again. It's theoretically possible for a game to do
// something weird where the copy could become useful in the future, but in
// practice it doesn't happen.
iter = InvalidateTexture(iter);
continue;
}
}
else
{
// For normal textures, all texture parameters need to match
if (!entry->IsEfbCopy() && entry->hash == full_hash && entry->format == full_format &&
entry->native_levels >= texture_info.GetLevelCount() &&
entry->native_width == texture_info.GetRawWidth() &&
entry->native_height == texture_info.GetRawHeight())
{
entry = DoPartialTextureUpdates(iter->second, texture_info.GetTlutAddress(),
texture_info.GetTlutFormat());
if (entry)
{
entry->texture->FinishedRendering();
return entry;
}
}
}
// Find the texture which hasn't been used for the longest time. Count paletted
// textures as the same texture here, when the texture itself is the same. This
// improves the performance a lot in some games that use paletted textures.
// Example: Sonic the Fighters (inside Sonic Gems Collection)
// Skip EFB copies here, so they can be used for partial texture updates
// Also skip XFB copies, we might need to still scan them out
// or load them as regular textures later.
if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
!entry->IsCopy() && !(texture_info.GetPaletteSize() && entry->base_hash == base_hash))
{
temp_frameCount = entry->frameCount;
oldest_entry = iter;
}
++iter;
}
if (unreinterpreted_copy != m_textures_by_address.end())
{
auto decoded_entry =
ReinterpretEntry(unreinterpreted_copy->second, texture_info.GetTextureFormat());
// It's possible to combine reinterpreted textures + palettes.
if (unreinterpreted_copy == unconverted_copy && decoded_entry)
decoded_entry = ApplyPaletteToEntry(decoded_entry, texture_info.GetTlutAddress(),
texture_info.GetTlutFormat());
if (decoded_entry)
return decoded_entry;
}
if (unconverted_copy != m_textures_by_address.end())
{
auto decoded_entry = ApplyPaletteToEntry(
unconverted_copy->second, texture_info.GetTlutAddress(), texture_info.GetTlutFormat());
if (decoded_entry)
{
return decoded_entry;
}
}
// Search the texture cache for normal textures by hash
//
// If the texture was fully hashed, the address does not need to match. Identical duplicate
// textures cause unnecessary slowdowns
// Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70
// different ones
if (textureCacheSafetyColorSampleSize == 0 ||
std::max(texture_info.GetTextureSize(), palette_size) <=
(u32)textureCacheSafetyColorSampleSize * 8)
{
auto hash_range = m_textures_by_hash.equal_range(full_hash);
TexHashCache::iterator hash_iter = hash_range.first;
while (hash_iter != hash_range.second)
{
RcTcacheEntry& entry = hash_iter->second;
// All parameters, except the address, need to match here
if (entry->format == full_format && entry->native_levels >= texture_info.GetLevelCount() &&
entry->native_width == texture_info.GetRawWidth() &&
entry->native_height == texture_info.GetRawHeight())
{
entry = DoPartialTextureUpdates(hash_iter->second, texture_info.GetTlutAddress(),
texture_info.GetTlutFormat());
if (entry)
{
entry->texture->FinishedRendering();
return entry;
}
}
++hash_iter;
}
}
// If at least one entry was not used for the same frame, overwrite the oldest one
if (temp_frameCount != 0x7fffffff)
{
// pool this texture and make a new one later
InvalidateTexture(oldest_entry);
}
std::vector<VideoCommon::CachedAsset<VideoCommon::GameTextureAsset>> cached_game_assets;
std::vector<std::shared_ptr<VideoCommon::CustomTextureData>> data_for_assets;
bool has_arbitrary_mipmaps = false;
bool skip_texture_dump = false;
std::shared_ptr<HiresTexture> hires_texture;
if (g_ActiveConfig.bHiresTextures)
{
hires_texture = HiresTexture::Search(texture_info);
if (hires_texture)
{
auto asset = hires_texture->GetAsset();
const auto loaded_time = asset->GetLastLoadedTime();
cached_game_assets.push_back(
VideoCommon::CachedAsset<VideoCommon::GameTextureAsset>{std::move(asset), loaded_time});
has_arbitrary_mipmaps = hires_texture->HasArbitraryMipmaps();
skip_texture_dump = true;
}
}
std::vector<VideoCommon::CachedAsset<VideoCommon::CustomAsset>> additional_dependencies;
std::string texture_name = "";
if (g_ActiveConfig.bGraphicMods)
{
u32 height = texture_info.GetRawHeight();
u32 width = texture_info.GetRawWidth();
if (hires_texture)
{
auto asset = hires_texture->GetAsset();
if (asset)
{
auto data = asset->GetData();
if (data)
{
if (!data->m_slices.empty())
{
if (!data->m_slices[0].m_levels.empty())
{
height = data->m_slices[0].m_levels[0].height;
width = data->m_slices[0].m_levels[0].width;
}
}
}
}
}
texture_name = texture_info.CalculateTextureName().GetFullName();
GraphicsModActionData::TextureCreate texture_create{
texture_name, width, height, &cached_game_assets, &additional_dependencies};
for (const auto& action : g_graphics_mod_manager->GetTextureCreateActions(texture_name))
{
action->OnTextureCreate(&texture_create);
}
}
for (auto& cached_asset : cached_game_assets)
{
auto data = cached_asset.m_asset->GetData();
if (data)
{
if (cached_asset.m_asset->Validate(texture_info.GetRawWidth(), texture_info.GetRawHeight()))
{
data_for_assets.push_back(std::move(data));
}
}
}
auto entry =
CreateTextureEntry(TextureCreationInfo{base_hash, full_hash, bytes_per_block, palette_size},
texture_info, textureCacheSafetyColorSampleSize,
std::move(data_for_assets), has_arbitrary_mipmaps, skip_texture_dump);
entry->linked_game_texture_assets = std::move(cached_game_assets);
entry->linked_asset_dependencies = std::move(additional_dependencies);
entry->texture_info_name = std::move(texture_name);
return entry;
}
// Note: the following function assumes all CustomTextureData has a single slice. This is verified
// with the 'GameTexture::Validate' function after the data is loaded. Only a single slice is
// expected because each texture is loaded into a texture array
RcTcacheEntry TextureCacheBase::CreateTextureEntry(
const TextureCreationInfo& creation_info, const TextureInfo& texture_info,
const int safety_color_sample_size,
std::vector<std::shared_ptr<VideoCommon::CustomTextureData>> assets_data,
const bool custom_arbitrary_mipmaps, bool skip_texture_dump)
{
#ifdef __APPLE__
const bool no_mips = g_ActiveConfig.bNoMipmapping;
#else
const bool no_mips = false;
#endif
RcTcacheEntry entry;
if (!assets_data.empty())
{
const auto calculate_max_levels = [&]() {
const auto max_element = std::max_element(
assets_data.begin(), assets_data.end(), [](const auto& lhs, const auto& rhs) {
return lhs->m_slices[0].m_levels.size() < rhs->m_slices[0].m_levels.size();
});
return max_element->get()->m_slices[0].m_levels.size();
};
const u32 texLevels = no_mips ? 1 : (u32)calculate_max_levels();
const auto& first_level = assets_data[0]->m_slices[0].m_levels[0];
const TextureConfig config(first_level.width, first_level.height, texLevels,
static_cast<u32>(assets_data.size()), 1, first_level.format, 0);
entry = AllocateCacheEntry(config);
if (!entry) [[unlikely]]
return entry;
for (u32 data_index = 0; data_index < static_cast<u32>(assets_data.size()); data_index++)
{
const auto asset = assets_data[data_index];
const auto& slice = asset->m_slices[0];
for (u32 level_index = 0;
level_index < std::min(texLevels, static_cast<u32>(slice.m_levels.size()));
++level_index)
{
const auto& level = slice.m_levels[level_index];
entry->texture->Load(level_index, level.width, level.height, level.row_length,
level.data.data(), level.data.size(), data_index);
}
}
entry->has_arbitrary_mips = custom_arbitrary_mipmaps;
entry->is_custom_tex = true;
}
else
{
const u32 texLevels = no_mips ? 1 : texture_info.GetLevelCount();
const u32 expanded_width = texture_info.GetExpandedWidth();
const u32 expanded_height = texture_info.GetExpandedHeight();
const u32 width = texture_info.GetRawWidth();
const u32 height = texture_info.GetRawHeight();
const TextureConfig config(width, height, texLevels, 1, 1, AbstractTextureFormat::RGBA8, 0);
entry = AllocateCacheEntry(config);
if (!entry) [[unlikely]]
return entry;
// We can decode on the GPU if it is a supported format and the flag is enabled.
// Currently we don't decode RGBA8 textures from TMEM, as that would require copying from both
// banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since
// there's no conversion between formats. In the future this could be extended with a separate
// shader, however.
const bool decode_on_gpu =
g_ActiveConfig.UseGPUTextureDecoding() &&
!(texture_info.IsFromTmem() && texture_info.GetTextureFormat() == TextureFormat::RGBA8);
ArbitraryMipmapDetector arbitrary_mip_detector;
// Initialized to null because only software loading uses this buffer
u8* dst_buffer = nullptr;
if (!decode_on_gpu ||
!DecodeTextureOnGPU(
entry, 0, texture_info.GetData(), texture_info.GetTextureSize(),
texture_info.GetTextureFormat(), width, height, expanded_width, expanded_height,
creation_info.bytes_per_block * (expanded_width / texture_info.GetBlockWidth()),
texture_info.GetTlutAddress(), texture_info.GetTlutFormat()))
{
size_t decoded_texture_size = expanded_width * sizeof(u32) * expanded_height;
// Allocate memory for all levels at once
size_t total_texture_size = decoded_texture_size;
// For the downsample, we need 2 buffers; 1 is 1/4 of the original texture, the other 1/16
size_t mip_downsample_buffer_size = decoded_texture_size * 5 / 16;
size_t prev_level_size = decoded_texture_size;
for (u32 i = 1; i < texture_info.GetLevelCount(); ++i)
{
prev_level_size /= 4;
total_texture_size += prev_level_size;
}
// Add space for the downsampling at the end
total_texture_size += mip_downsample_buffer_size;
CheckTempSize(total_texture_size);
dst_buffer = m_temp;
if (!(texture_info.GetTextureFormat() == TextureFormat::RGBA8 && texture_info.IsFromTmem()))
{
TexDecoder_Decode(dst_buffer, texture_info.GetData(), expanded_width, expanded_height,
texture_info.GetTextureFormat(), texture_info.GetTlutAddress(),
texture_info.GetTlutFormat());
}
else
{
TexDecoder_DecodeRGBA8FromTmem(dst_buffer, texture_info.GetData(),
texture_info.GetTmemOddAddress(), expanded_width,
expanded_height);
}
entry->texture->Load(0, width, height, expanded_width, dst_buffer, decoded_texture_size);
arbitrary_mip_detector.AddLevel(width, height, expanded_width, dst_buffer);
dst_buffer += decoded_texture_size;
}
for (u32 level = 1; level != texLevels; ++level)
{
auto mip_level = texture_info.GetMipMapLevel(level - 1);
if (!mip_level)
continue;
if (!decode_on_gpu ||
!DecodeTextureOnGPU(entry, level, mip_level->GetData(), mip_level->GetTextureSize(),
texture_info.GetTextureFormat(), mip_level->GetRawWidth(),
mip_level->GetRawHeight(), mip_level->GetExpandedWidth(),
mip_level->GetExpandedHeight(),
creation_info.bytes_per_block *
(mip_level->GetExpandedWidth() / texture_info.GetBlockWidth()),
texture_info.GetTlutAddress(), texture_info.GetTlutFormat()))
{
// No need to call CheckTempSize here, as the whole buffer is preallocated at the beginning
const u32 decoded_mip_size =
mip_level->GetExpandedWidth() * sizeof(u32) * mip_level->GetExpandedHeight();
TexDecoder_Decode(dst_buffer, mip_level->GetData(), mip_level->GetExpandedWidth(),
mip_level->GetExpandedHeight(), texture_info.GetTextureFormat(),
texture_info.GetTlutAddress(), texture_info.GetTlutFormat());
entry->texture->Load(level, mip_level->GetRawWidth(), mip_level->GetRawHeight(),
mip_level->GetExpandedWidth(), dst_buffer, decoded_mip_size);
arbitrary_mip_detector.AddLevel(mip_level->GetRawWidth(), mip_level->GetRawHeight(),
mip_level->GetExpandedWidth(), dst_buffer);
dst_buffer += decoded_mip_size;
}
}
entry->has_arbitrary_mips = arbitrary_mip_detector.HasArbitraryMipmaps(dst_buffer);
if (g_ActiveConfig.bDumpTextures && !skip_texture_dump)
{
const std::string basename = texture_info.CalculateTextureName().GetFullName();
for (u32 level = 0; level < texLevels; ++level)
{
DumpTexture(entry, basename, level, entry->has_arbitrary_mips);
}
}
}
const auto iter = m_textures_by_address.emplace(texture_info.GetRawAddress(), entry);
if (safety_color_sample_size == 0 ||
std::max(texture_info.GetTextureSize(), creation_info.palette_size) <=
(u32)safety_color_sample_size * 8)
{
entry->textures_by_hash_iter = m_textures_by_hash.emplace(creation_info.full_hash, entry);
}
const TextureAndTLUTFormat full_format(texture_info.GetTextureFormat(),
texture_info.GetTlutFormat());
entry->SetGeneralParameters(texture_info.GetRawAddress(), texture_info.GetTextureSize(),
full_format, false);
entry->SetDimensions(texture_info.GetRawWidth(), texture_info.GetRawHeight(),
texture_info.GetLevelCount());
entry->SetHashes(creation_info.base_hash, creation_info.full_hash);
entry->memory_stride = entry->BytesPerRow();
entry->SetNotCopy();
INCSTAT(g_stats.num_textures_uploaded);
SETSTAT(g_stats.num_textures_alive, static_cast<int>(m_textures_by_address.size()));
entry = DoPartialTextureUpdates(iter->second, texture_info.GetTlutAddress(),
texture_info.GetTlutFormat());
// This should only be needed if the texture was updated, or used GPU decoding.
entry->texture->FinishedRendering();
return entry;
}
static void GetDisplayRectForXFBEntry(TCacheEntry* entry, u32 width, u32 height,
MathUtil::Rectangle<int>* display_rect)
{
// Scale the sub-rectangle to the full resolution of the texture.
display_rect->left = 0;
display_rect->top = 0;
display_rect->right = static_cast<int>(width * entry->GetWidth() / entry->native_width);
display_rect->bottom = static_cast<int>(height * entry->GetHeight() / entry->native_height);
}
RcTcacheEntry TextureCacheBase::GetXFBTexture(u32 address, u32 width, u32 height, u32 stride,
MathUtil::Rectangle<int>* display_rect)
{
auto& system = Core::System::GetInstance();
auto& memory = system.GetMemory();
const u8* src_data = memory.GetPointer(address);
if (!src_data)
{
ERROR_LOG_FMT(VIDEO, "Trying to load XFB texture from invalid address {:#010x}", address);
return {};
}
// Do we currently have a mutable version of this XFB copy in VRAM?
RcTcacheEntry entry = GetXFBFromCache(address, width, height, stride);
if (entry && !entry->IsLocked())
{
if (entry->is_xfb_container)
{
StitchXFBCopy(entry);
entry->texture->FinishedRendering();
}
GetDisplayRectForXFBEntry(entry.get(), width, height, display_rect);
return entry;
}
// Create a new VRAM texture, and fill it with the data from guest RAM.
entry = AllocateCacheEntry(TextureConfig(width, height, 1, 1, 1, AbstractTextureFormat::RGBA8,
AbstractTextureFlag_RenderTarget));
// Compute total texture size. XFB textures aren't tiled, so this is simple.
const u32 total_size = height * stride;
entry->SetGeneralParameters(address, total_size,
TextureAndTLUTFormat(TextureFormat::XFB, TLUTFormat::IA8), true);
entry->SetDimensions(width, height, 1);
entry->SetXfbCopy(stride);
const u64 hash = entry->CalculateHash();
entry->SetHashes(hash, hash);
entry->is_xfb_container = true;
entry->is_custom_tex = false;
entry->may_have_overlapping_textures = false;
entry->frameCount = FRAMECOUNT_INVALID;
if (!g_ActiveConfig.UseGPUTextureDecoding() ||
!DecodeTextureOnGPU(entry, 0, src_data, total_size, entry->format.texfmt, width, height,
width, height, stride, texMem, entry->format.tlutfmt))
{
const u32 decoded_size = width * height * sizeof(u32);
CheckTempSize(decoded_size);
TexDecoder_DecodeXFB(m_temp, src_data, width, height, stride);
entry->texture->Load(0, width, height, width, m_temp, decoded_size);
}
// Stitch any VRAM copies into the new RAM copy.
StitchXFBCopy(entry);
entry->texture->FinishedRendering();
// Insert into the texture cache so we can re-use it next frame, if needed.
m_textures_by_address.emplace(entry->addr, entry);
SETSTAT(g_stats.num_textures_alive, static_cast<int>(m_textures_by_address.size()));
INCSTAT(g_stats.num_textures_uploaded);
if (g_ActiveConfig.bDumpXFBTarget || g_ActiveConfig.bGraphicMods)
{
const std::string id = fmt::format("{}x{}", width, height);
if (g_ActiveConfig.bGraphicMods)
{
entry->texture_info_name = fmt::format("{}_{}", XFB_DUMP_PREFIX, id);
}
if (g_ActiveConfig.bDumpXFBTarget)
{
entry->texture->Save(fmt::format("{}{}_n{:06}_{}.png", File::GetUserPath(D_DUMPTEXTURES_IDX),
XFB_DUMP_PREFIX, xfb_count++, id),
0);
}
}
GetDisplayRectForXFBEntry(entry.get(), width, height, display_rect);
return entry;
}
RcTcacheEntry TextureCacheBase::GetXFBFromCache(u32 address, u32 width, u32 height, u32 stride)
{
auto iter_range = m_textures_by_address.equal_range(address);
TexAddrCache::iterator iter = iter_range.first;
while (iter != iter_range.second)
{
auto& entry = iter->second;
// The only thing which has to match exactly is the stride. We can use a partial rectangle if
// the VI width/height differs from that of the XFB copy.
if (entry->is_xfb_copy && entry->memory_stride == stride && entry->native_width >= width &&
entry->native_height >= height && !entry->may_have_overlapping_textures)
{
if (entry->hash == entry->CalculateHash() && !entry->reference_changed)
{
return entry;
}
else
{
// At this point, we either have an xfb copy that has changed its hash
// or an xfb created by stitching or from memory that has been changed
// we are safe to invalidate this
iter = InvalidateTexture(iter);
continue;
}
}
++iter;
}
return {};
}
void TextureCacheBase::StitchXFBCopy(RcTcacheEntry& stitched_entry)
{
// It is possible that some of the overlapping textures overlap each other. This behavior has been
// seen with XFB copies in Rogue Leader. To get the correct result, we apply the texture updates
// in the order the textures were originally loaded. This ensures that the parts of the texture
// that would have been overwritten in memory on real hardware get overwritten the same way here
// too. This should work, but it may be a better idea to keep track of partial XFB copy
// invalidations instead, which would reduce the amount of copying work here.
std::vector<TCacheEntry*> candidates;
bool create_upscaled_copy = false;
auto iter = FindOverlappingTextures(stitched_entry->addr, stitched_entry->size_in_bytes);
while (iter.first != iter.second)
{
// Currently, this checks the stride of the VRAM copy against the VI request. Therefore, for
// interlaced modes, VRAM copies won't be considered candidates. This is okay for now, because
// our force progressive hack means that an XFB copy should always have a matching stride. If
// the hack is disabled, XFB2RAM should also be enabled. Should we wish to implement interlaced
// stitching in the future, this would require a shader which grabs every second line.
auto& entry = iter.first->second;
if (entry != stitched_entry && entry->IsCopy() &&
entry->OverlapsMemoryRange(stitched_entry->addr, stitched_entry->size_in_bytes) &&
entry->memory_stride == stitched_entry->memory_stride)
{
if (entry->hash == entry->CalculateHash())
{
// Can't check the height here because of Y scaling.
if (entry->native_width != entry->GetWidth())
create_upscaled_copy = true;
candidates.emplace_back(entry.get());
}
else
{
// If the hash does not match, this EFB copy will not be used for anything, so remove it
iter.first = InvalidateTexture(iter.first);
continue;
}
}
++iter.first;
}
if (candidates.empty())
return;
std::sort(candidates.begin(), candidates.end(),
[](const TCacheEntry* a, const TCacheEntry* b) { return a->id < b->id; });
// We only upscale when necessary to preserve resolution. i.e. when there are upscaled partial
// copies to be stitched together.
if (create_upscaled_copy)
{
ScaleTextureCacheEntryTo(stitched_entry,
g_framebuffer_manager->EFBToScaledX(stitched_entry->native_width),
g_framebuffer_manager->EFBToScaledY(stitched_entry->native_height));
}
for (TCacheEntry* entry : candidates)
{
int src_x, src_y, dst_x, dst_y;
if (entry->addr >= stitched_entry->addr)
{
int pixel_offset = (entry->addr - stitched_entry->addr) / 2;
src_x = 0;
src_y = 0;
dst_x = pixel_offset % stitched_entry->native_width;
dst_y = pixel_offset / stitched_entry->native_width;
}
else
{
int pixel_offset = (stitched_entry->addr - entry->addr) / 2;
src_x = pixel_offset % entry->native_width;
src_y = pixel_offset / entry->native_width;
dst_x = 0;
dst_y = 0;
}
const int native_width =
std::min(entry->native_width - src_x, stitched_entry->native_width - dst_x);
const int native_height =
std::min(entry->native_height - src_y, stitched_entry->native_height - dst_y);
int src_width = native_width;
int src_height = native_height;
int dst_width = native_width;
int dst_height = native_height;
// Scale to internal resolution.
if (entry->native_width != entry->GetWidth())
{
src_x = g_framebuffer_manager->EFBToScaledX(src_x);
src_y = g_framebuffer_manager->EFBToScaledY(src_y);
src_width = g_framebuffer_manager->EFBToScaledX(src_width);
src_height = g_framebuffer_manager->EFBToScaledY(src_height);
}
if (create_upscaled_copy)
{
dst_x = g_framebuffer_manager->EFBToScaledX(dst_x);
dst_y = g_framebuffer_manager->EFBToScaledY(dst_y);
dst_width = g_framebuffer_manager->EFBToScaledX(dst_width);
dst_height = g_framebuffer_manager->EFBToScaledY(dst_height);
}
// If the source rectangle is outside of what we actually have in VRAM, skip the copy.
// The backend doesn't do any clamping, so if we don't, we'd pass out-of-range coordinates
// to the graphics driver, which can cause GPU resets.
if (static_cast<u32>(src_x + src_width) > entry->GetWidth() ||
static_cast<u32>(src_y + src_height) > entry->GetHeight() ||
static_cast<u32>(dst_x + dst_width) > stitched_entry->GetWidth() ||
static_cast<u32>(dst_y + dst_height) > stitched_entry->GetHeight())
{
continue;
}
MathUtil::Rectangle<int> srcrect, dstrect;
srcrect.left = src_x;
srcrect.top = src_y;
srcrect.right = (src_x + src_width);
srcrect.bottom = (src_y + src_height);
dstrect.left = dst_x;
dstrect.top = dst_y;
dstrect.right = (dst_x + dst_width);
dstrect.bottom = (dst_y + dst_height);
// We may have to scale if one of the copies is not internal resolution.
if (srcrect.GetWidth() != dstrect.GetWidth() || srcrect.GetHeight() != dstrect.GetHeight())
{
g_gfx->ScaleTexture(stitched_entry->framebuffer.get(), dstrect, entry->texture.get(),
srcrect);
}
else
{
// If one copy is stereo, and the other isn't... not much we can do here :/
const u32 layers_to_copy = std::min(entry->GetNumLayers(), stitched_entry->GetNumLayers());
for (u32 layer = 0; layer < layers_to_copy; layer++)
{
stitched_entry->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer, 0,
dstrect, layer, 0);
}
}
// Link the two textures together, so we won't apply this partial update again
entry->CreateReference(stitched_entry.get());
// Mark the texture update as used, as if it was loaded directly
entry->frameCount = FRAMECOUNT_INVALID;
}
}
std::array<u32, 3>
TextureCacheBase::GetRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients)
{
// To simplify the backend, we precalculate the three coefficients in common. Coefficients 0, 1
// are for the row above, 2, 3, 4 are for the current pixel, and 5, 6 are for the row below.
return {
static_cast<u32>(coefficients[0]) + static_cast<u32>(coefficients[1]),
static_cast<u32>(coefficients[2]) + static_cast<u32>(coefficients[3]) +
static_cast<u32>(coefficients[4]),
static_cast<u32>(coefficients[5]) + static_cast<u32>(coefficients[6]),
};
}
std::array<u32, 3>
TextureCacheBase::GetVRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients)
{
// If the user disables the copy filter, only apply it to the VRAM copy.
// This way games which are sensitive to changes to the RAM copy of the XFB will be unaffected.
std::array<u32, 3> res = GetRAMCopyFilterCoefficients(coefficients);
if (!g_ActiveConfig.bDisableCopyFilter)
return res;
// Disabling the copy filter in options should not ignore the values the game sets completely,
// as some games use the filter coefficients to control the brightness of the screen. Instead,
// add all coefficients to the middle sample, so the deflicker/vertical filter has no effect.
res[1] = res[0] + res[1] + res[2];
res[0] = 0;
res[2] = 0;
return res;
}
bool TextureCacheBase::AllCopyFilterCoefsNeeded(const std::array<u32, 3>& coefficients)
{
// If the top/bottom coefficients are zero, no point sampling/blending from these rows.
return coefficients[0] != 0 || coefficients[2] != 0;
}
bool TextureCacheBase::CopyFilterCanOverflow(const std::array<u32, 3>& coefficients)
{
// Normally, the copy filter coefficients will sum to at most 64. If the sum is higher than that,
// colors are clamped to the range [0, 255], but if the sum is higher than 128, that clamping
// breaks (as colors end up >= 512, which wraps back to 0).
return coefficients[0] + coefficients[1] + coefficients[2] >= 128;
}
void TextureCacheBase::CopyRenderTargetToTexture(
u32 dstAddr, EFBCopyFormat dstFormat, u32 width, u32 height, u32 dstStride, bool is_depth_copy,
const MathUtil::Rectangle<int>& srcRect, bool isIntensity, bool scaleByHalf, float y_scale,
float gamma, bool clamp_top, bool clamp_bottom,
const CopyFilterCoefficients::Values& filter_coefficients)
{
// Emulation methods:
//
// - EFB to RAM:
// Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
// Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being
// used as a texture again.
// Advantage: CPU can read data from the EFB copy and we don't lose any important updates to
// the texture
// Disadvantage: Encoding+decoding steps often are redundant because only some games read or
// modify EFB copies before using them as textures.
//
// - EFB to texture:
// Copies the requested EFB data to a texture object in VRAM, performing any color conversion
// using shaders.
// Advantage: Works for many games, since in most cases EFB copies aren't read or modified at
// all before being used as a texture again.
// Since we don't do any further encoding or decoding here, this method is much
// faster.
// It also allows enhancing the visual quality by doing scaled EFB copies.
//
// - Hybrid EFB copies:
// 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to
// RAM)
// 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address
// range.
// If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB
// copies.
// 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB
// copy was triggered to that address before):
// 2a) Entry doesn't exist:
// - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
// - Create a texture cache entry for the target (type = TCET_EC_VRAM)
// - Store a hash of the encoded RAM data in the texcache entry.
// 2b) Entry exists AND type is TCET_EC_VRAM:
// - Like case 2a, but reuse the old texcache entry instead of creating a new one.
// 2c) Entry exists AND type is TCET_EC_DYNAMIC:
// - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded
// data in the existing texcache entry.
// - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic,
// i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end
// up deleting it and reloading the data from RAM anyway.
// 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you
// stored when encoding the EFB data to RAM.
// 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
// 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set
// type to TCET_EC_DYNAMIC.
// Redecode the source RAM data to a VRAM object. The entry basically behaves like a
// normal texture now.
// 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
// Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
// Compatibility is as good as EFB to RAM.
// Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
// EFB copy cache depends on accurate texture hashing being enabled. However,
// with accurate hashing you end up being as slow as without a copy cache
// anyway.
//
// Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush
// which stalls any further CPU processing.
const bool is_xfb_copy = !is_depth_copy && !isIntensity && dstFormat == EFBCopyFormat::XFB;
bool copy_to_vram =
g_ActiveConfig.backend_info.bSupportsCopyToVram && !g_ActiveConfig.bDisableCopyToVRAM;
bool copy_to_ram =
!(is_xfb_copy ? g_ActiveConfig.bSkipXFBCopyToRam : g_ActiveConfig.bSkipEFBCopyToRam) ||
!copy_to_vram;
auto& system = Core::System::GetInstance();
auto& memory = system.GetMemory();
u8* dst = memory.GetPointer(dstAddr);
if (dst == nullptr)
{
ERROR_LOG_FMT(VIDEO, "Trying to copy from EFB to invalid address {:#010x}", dstAddr);
return;
}
// tex_w and tex_h are the native size of the texture in the GC memory.
// The size scaled_* represents the emulated texture. Those differ
// because of upscaling and because of yscaling of XFB copies.
// For the latter, we keep the EFB resolution for the virtual XFB blit.
u32 tex_w = width;
u32 tex_h = height;
u32 scaled_tex_w = g_framebuffer_manager->EFBToScaledX(width);
u32 scaled_tex_h = g_framebuffer_manager->EFBToScaledY(height);
if (scaleByHalf)
{
tex_w /= 2;
tex_h /= 2;
scaled_tex_w /= 2;
scaled_tex_h /= 2;
}
if (!is_xfb_copy && !g_ActiveConfig.bCopyEFBScaled)
{
// No upscaling
scaled_tex_w = tex_w;
scaled_tex_h = tex_h;
}
// Get the base (in memory) format of this efb copy.
TextureFormat baseFormat = TexDecoder_GetEFBCopyBaseFormat(dstFormat);
u32 blockH = TexDecoder_GetBlockHeightInTexels(baseFormat);
const u32 blockW = TexDecoder_GetBlockWidthInTexels(baseFormat);
// Round up source height to multiple of block size
u32 actualHeight = Common::AlignUp(tex_h, blockH);
const u32 actualWidth = Common::AlignUp(tex_w, blockW);
u32 num_blocks_y = actualHeight / blockH;
const u32 num_blocks_x = actualWidth / blockW;
// RGBA takes two cache lines per block; all others take one
const u32 bytes_per_block = baseFormat == TextureFormat::RGBA8 ? 64 : 32;
const u32 bytes_per_row = num_blocks_x * bytes_per_block;
const u32 covered_range = num_blocks_y * dstStride;
if (g_ActiveConfig.bGraphicMods)
{
FBInfo info;
info.m_width = tex_w;
info.m_height = tex_h;
info.m_texture_format = baseFormat;
if (is_xfb_copy)
{
for (const auto& action : g_graphics_mod_manager->GetXFBActions(info))
{
action->OnXFB();
}
}
else
{
bool skip = false;
GraphicsModActionData::EFB efb{tex_w, tex_h, &skip, &scaled_tex_w, &scaled_tex_h};
for (const auto& action : g_graphics_mod_manager->GetEFBActions(info))
{
action->OnEFB(&efb);
}
if (skip == true)
{
if (copy_to_ram)
UninitializeEFBMemory(dst, dstStride, bytes_per_row, num_blocks_y);
return;
}
}
}
if (dstStride < bytes_per_row)
{
// This kind of efb copy results in a scrambled image.
// I'm pretty sure no game actually wants to do this, it might be caused by a
// programming bug in the game, or a CPU/Bounding box emulation issue with dolphin.
// The copy_to_ram code path above handles this "correctly" and scrambles the image
// but the copy_to_vram code path just saves and uses unscrambled texture instead.
// To avoid a "incorrect" result, we simply skip doing the copy_to_vram code path
// so if the game does try to use the scrambled texture, dolphin will grab the scrambled
// texture (or black if copy_to_ram is also disabled) out of ram.
ERROR_LOG_FMT(VIDEO, "Memory stride too small ({} < {})", dstStride, bytes_per_row);
copy_to_vram = false;
}
// We also linear filtering for both box filtering and downsampling higher resolutions to 1x.
// TODO: This only produces perfect downsampling for 2x IR, other resolutions will need more
// complex down filtering to average all pixels and produce the correct result.
const bool linear_filter =
!is_depth_copy &&
(scaleByHalf || g_framebuffer_manager->GetEFBScale() != 1 || y_scale > 1.0f);
RcTcacheEntry entry;
if (copy_to_vram)
{
// create the texture
const TextureConfig config(scaled_tex_w, scaled_tex_h, 1, g_framebuffer_manager->GetEFBLayers(),
1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget);
entry = AllocateCacheEntry(config);
if (entry)
{
entry->SetGeneralParameters(dstAddr, 0, baseFormat, is_xfb_copy);
entry->SetDimensions(tex_w, tex_h, 1);
entry->frameCount = FRAMECOUNT_INVALID;
if (is_xfb_copy)
{
entry->should_force_safe_hashing = is_xfb_copy;
entry->SetXfbCopy(dstStride);
}
else
{
entry->SetEfbCopy(dstStride);
}
entry->may_have_overlapping_textures = false;
entry->is_custom_tex = false;
CopyEFBToCacheEntry(entry, is_depth_copy, srcRect, scaleByHalf, linear_filter, dstFormat,
isIntensity, gamma, clamp_top, clamp_bottom,
GetVRAMCopyFilterCoefficients(filter_coefficients));
if (is_xfb_copy && (g_ActiveConfig.bDumpXFBTarget || g_ActiveConfig.bGraphicMods))
{
const std::string id = fmt::format("{}x{}", tex_w, tex_h);
if (g_ActiveConfig.bGraphicMods)
{
entry->texture_info_name = fmt::format("{}_{}", XFB_DUMP_PREFIX, id);
}
if (g_ActiveConfig.bDumpXFBTarget)
{
entry->texture->Save(fmt::format("{}{}_n{:06}_{}.png",
File::GetUserPath(D_DUMPTEXTURES_IDX), XFB_DUMP_PREFIX,
xfb_count++, id),
0);
}
}
else if (g_ActiveConfig.bDumpEFBTarget || g_ActiveConfig.bGraphicMods)
{
const std::string id = fmt::format("{}x{}_{}", tex_w, tex_h, static_cast<int>(baseFormat));
if (g_ActiveConfig.bGraphicMods)
{
entry->texture_info_name = fmt::format("{}_{}", EFB_DUMP_PREFIX, id);
}
if (g_ActiveConfig.bDumpEFBTarget)
{
static int efb_count = 0;
entry->texture->Save(fmt::format("{}{}_n{:06}_{}.png",
File::GetUserPath(D_DUMPTEXTURES_IDX), EFB_DUMP_PREFIX,
efb_count++, id),
0);
}
}
}
}
if (copy_to_ram)
{
const std::array<u32, 3> coefficients = GetRAMCopyFilterCoefficients(filter_coefficients);
PixelFormat srcFormat = bpmem.zcontrol.pixel_format;
EFBCopyParams format(srcFormat, dstFormat, is_depth_copy, isIntensity,
AllCopyFilterCoefsNeeded(coefficients),
CopyFilterCanOverflow(coefficients), gamma != 1.0);
std::unique_ptr<AbstractStagingTexture> staging_texture = GetEFBCopyStagingTexture();
if (staging_texture)
{
CopyEFB(staging_texture.get(), format, tex_w, bytes_per_row, num_blocks_y, dstStride, srcRect,
scaleByHalf, linear_filter, y_scale, gamma, clamp_top, clamp_bottom, coefficients);
// We can't defer if there is no VRAM copy (since we need to update the hash).
if (!copy_to_vram || !g_ActiveConfig.bDeferEFBCopies)
{
// Immediately flush it.
WriteEFBCopyToRAM(dst, bytes_per_row / sizeof(u32), num_blocks_y, dstStride,
std::move(staging_texture));
}
else
{
// Defer the flush until later.
entry->pending_efb_copy = std::move(staging_texture);
entry->pending_efb_copy_width = bytes_per_row / sizeof(u32);
entry->pending_efb_copy_height = num_blocks_y;
m_pending_efb_copies.push_back(entry);
}
}
}
else
{
if (is_xfb_copy)
{
UninitializeXFBMemory(dst, dstStride, bytes_per_row, num_blocks_y);
}
else
{
UninitializeEFBMemory(dst, dstStride, bytes_per_row, num_blocks_y);
}
}
// Invalidate all textures, if they are either fully overwritten by our efb copy, or if they
// have a different stride than our efb copy. Partly overwritten textures with the same stride
// as our efb copy are marked to check them for partial texture updates.
// TODO: The logic to detect overlapping strided efb copies is not 100% accurate.
bool strided_efb_copy = dstStride != bytes_per_row;
auto iter = FindOverlappingTextures(dstAddr, covered_range);
while (iter.first != iter.second)
{
RcTcacheEntry& overlapping_entry = iter.first->second;
if (overlapping_entry->addr == dstAddr && overlapping_entry->is_xfb_copy)
{
for (auto& reference : overlapping_entry->references)
{
reference->reference_changed = true;
}
}
if (overlapping_entry->OverlapsMemoryRange(dstAddr, covered_range))
{
u32 overlap_range = std::min(overlapping_entry->addr + overlapping_entry->size_in_bytes,
dstAddr + covered_range) -
std::max(overlapping_entry->addr, dstAddr);
if (!copy_to_vram || overlapping_entry->memory_stride != dstStride ||
(!strided_efb_copy && overlapping_entry->size_in_bytes == overlap_range) ||
(strided_efb_copy && overlapping_entry->size_in_bytes == overlap_range &&
overlapping_entry->addr == dstAddr))
{
// Pending EFB copies which are completely covered by this new copy can simply be tossed,
// instead of having to flush them later on, since this copy will write over everything.
iter.first = InvalidateTexture(iter.first, true);
continue;
}
// We don't want to change the may_have_overlapping_textures flag on XFB container entries
// because otherwise they can't be re-used/updated, leaking textures for several frames.
if (!overlapping_entry->is_xfb_container)
overlapping_entry->may_have_overlapping_textures = true;
// There are cases (Rogue Squadron 2 / Texas Holdem on Wiiware) where
// for xfb copies the textures overlap which causes the hash of the first copy
// to be different (from when it was originally created). This has no implications
// for XFB2Tex because the underlying memory doesn't change (dummy values) but
// can affect XFB2Ram when we compare the texture cache copy hash with the
// newly computed hash
// By calculating the hash when we receive overlapping xfbs, we are able
// to mitigate this
if (overlapping_entry->is_xfb_copy && copy_to_ram)
{
overlapping_entry->hash = overlapping_entry->CalculateHash();
}
// Do not load textures by hash, if they were at least partly overwritten by an efb copy.
// In this case, comparing the hash is not enough to check, if two textures are identical.
if (overlapping_entry->textures_by_hash_iter != m_textures_by_hash.end())
{
m_textures_by_hash.erase(overlapping_entry->textures_by_hash_iter);
overlapping_entry->textures_by_hash_iter = m_textures_by_hash.end();
}
}
++iter.first;
}
if (OpcodeDecoder::g_record_fifo_data)
{
// Mark the memory behind this efb copy as dynamicly generated for the Fifo log
u32 address = dstAddr;
for (u32 i = 0; i < num_blocks_y; i++)
{
FifoRecorder::GetInstance().UseMemory(address, bytes_per_row, MemoryUpdate::Type::TextureMap,
true);
address += dstStride;
}
}
// Even if the copy is deferred, still compute the hash. This way if the copy is used as a texture
// in a subsequent draw before it is flushed, it will have the same hash.
if (entry)
{
const u64 hash = entry->CalculateHash();
entry->SetHashes(hash, hash);
m_textures_by_address.emplace(dstAddr, std::move(entry));
}
}
void TextureCacheBase::FlushEFBCopies()
{
if (m_pending_efb_copies.empty())
return;
for (auto& entry : m_pending_efb_copies)
FlushEFBCopy(entry.get());
m_pending_efb_copies.clear();
}
void TextureCacheBase::FlushStaleBinds()
{
for (u32 i = 0; i < m_bound_textures.size(); i++)
{
if (!TMEM::IsCached(i))
m_bound_textures[i].reset();
}
}
void TextureCacheBase::WriteEFBCopyToRAM(u8* dst_ptr, u32 width, u32 height, u32 stride,
std::unique_ptr<AbstractStagingTexture> staging_texture)
{
MathUtil::Rectangle<int> copy_rect(0, 0, static_cast<int>(width), static_cast<int>(height));
staging_texture->ReadTexels(copy_rect, dst_ptr, stride);
ReleaseEFBCopyStagingTexture(std::move(staging_texture));
}
void TextureCacheBase::FlushEFBCopy(TCacheEntry* entry)
{
// Copy from texture -> guest memory.
auto& system = Core::System::GetInstance();
auto& memory = system.GetMemory();
u8* const dst = memory.GetPointer(entry->addr);
WriteEFBCopyToRAM(dst, entry->pending_efb_copy_width, entry->pending_efb_copy_height,
entry->memory_stride, std::move(entry->pending_efb_copy));
// If the EFB copy was invalidated (e.g. the bloom case mentioned in InvalidateTexture), we don't
// need to do anything more. The entry will be automatically deleted by smart pointers
if (entry->invalidated)
return;
// Re-hash the texture now that the guest memory is populated.
// This should be safe because we'll catch any writes before the game can modify it.
const u64 hash = entry->CalculateHash();
entry->SetHashes(hash, hash);
// Check for any overlapping XFB copies which now need the hash recomputed.
// See the comment above regarding Rogue Squadron 2.
if (entry->is_xfb_copy)
{
const u32 covered_range = entry->pending_efb_copy_height * entry->memory_stride;
auto range = FindOverlappingTextures(entry->addr, covered_range);
for (auto iter = range.first; iter != range.second; ++iter)
{
auto& overlapping_entry = iter->second;
if (overlapping_entry->may_have_overlapping_textures && overlapping_entry->is_xfb_copy &&
overlapping_entry->OverlapsMemoryRange(entry->addr, covered_range))
{
const u64 overlapping_hash = overlapping_entry->CalculateHash();
entry->SetHashes(overlapping_hash, overlapping_hash);
}
}
}
}
std::unique_ptr<AbstractStagingTexture> TextureCacheBase::GetEFBCopyStagingTexture()
{
// Pull off the back first to re-use the most frequently used textures.
if (!m_efb_copy_staging_texture_pool.empty())
{
auto ptr = std::move(m_efb_copy_staging_texture_pool.back());
m_efb_copy_staging_texture_pool.pop_back();
return ptr;
}
std::unique_ptr<AbstractStagingTexture> tex = g_gfx->CreateStagingTexture(
StagingTextureType::Readback, m_efb_encoding_texture->GetConfig());
if (!tex)
WARN_LOG_FMT(VIDEO, "Failed to create EFB copy staging texture");
return tex;
}
void TextureCacheBase::ReleaseEFBCopyStagingTexture(std::unique_ptr<AbstractStagingTexture> tex)
{
m_efb_copy_staging_texture_pool.push_back(std::move(tex));
}
void TextureCacheBase::UninitializeEFBMemory(u8* dst, u32 stride, u32 bytes_per_row,
u32 num_blocks_y)
{
// Hack: Most games don't actually need the correct texture data in RAM
// and we can just keep a copy in VRAM. We zero the memory so we
// can check it hasn't changed before using our copy in VRAM.
u8* ptr = dst;
for (u32 i = 0; i < num_blocks_y; i++)
{
std::memset(ptr, 0, bytes_per_row);
ptr += stride;
}
}
void TextureCacheBase::UninitializeXFBMemory(u8* dst, u32 stride, u32 bytes_per_row,
u32 num_blocks_y)
{
// Originally, we planned on using a 'key color'
// for alpha to address partial xfbs (Mario Strikers / Chicken Little).
// This work was removed since it was unfinished but there
// was still a desire to differentiate between the old and the new approach
// which is why we still set uninitialized xfb memory to fuchsia
// (Y=1,U=254,V=254) instead of dark green (Y=0,U=0,V=0) in YUV
// like is done in the EFB path.
#if defined(_M_X86) || defined(_M_X86_64)
__m128i sixteenBytes = _mm_set1_epi16((s16)(u16)0xFE01);
#endif
for (u32 i = 0; i < num_blocks_y; i++)
{
u32 size = bytes_per_row;
u8* rowdst = dst;
#if defined(_M_X86) || defined(_M_X86_64)
while (size >= 16)
{
_mm_storeu_si128((__m128i*)rowdst, sixteenBytes);
size -= 16;
rowdst += 16;
}
#endif
for (u32 offset = 0; offset < size; offset++)
{
if (offset & 1)
{
rowdst[offset] = 254;
}
else
{
rowdst[offset] = 1;
}
}
dst += stride;
}
}
RcTcacheEntry TextureCacheBase::AllocateCacheEntry(const TextureConfig& config)
{
std::optional<TexPoolEntry> alloc = AllocateTexture(config);
if (!alloc)
return {};
auto cacheEntry =
std::make_shared<TCacheEntry>(std::move(alloc->texture), std::move(alloc->framebuffer));
cacheEntry->textures_by_hash_iter = m_textures_by_hash.end();
cacheEntry->id = m_last_entry_id++;
return cacheEntry;
}
std::optional<TextureCacheBase::TexPoolEntry>
TextureCacheBase::AllocateTexture(const TextureConfig& config)
{
TexPool::iterator iter = FindMatchingTextureFromPool(config);
if (iter != m_texture_pool.end())
{
auto entry = std::move(iter->second);
m_texture_pool.erase(iter);
return std::move(entry);
}
std::unique_ptr<AbstractTexture> texture = g_gfx->CreateTexture(config);
if (!texture)
{
WARN_LOG_FMT(VIDEO, "Failed to allocate a {}x{}x{} texture", config.width, config.height,
config.layers);
return {};
}
std::unique_ptr<AbstractFramebuffer> framebuffer;
if (config.IsRenderTarget())
{
framebuffer = g_gfx->CreateFramebuffer(texture.get(), nullptr);
if (!framebuffer)
{
WARN_LOG_FMT(VIDEO, "Failed to allocate a {}x{}x{} framebuffer", config.width, config.height,
config.layers);
return {};
}
}
INCSTAT(g_stats.num_textures_created);
return TexPoolEntry(std::move(texture), std::move(framebuffer));
}
TextureCacheBase::TexPool::iterator
TextureCacheBase::FindMatchingTextureFromPool(const TextureConfig& config)
{
// Find a texture from the pool that does not have a frameCount of FRAMECOUNT_INVALID.
// This prevents a texture from being used twice in a single frame with different data,
// which potentially means that a driver has to maintain two copies of the texture anyway.
// Render-target textures are fine through, as they have to be generated in a seperated pass.
// As non-render-target textures are usually static, this should not matter much.
auto range = m_texture_pool.equal_range(config);
auto matching_iter = std::find_if(range.first, range.second, [](const auto& iter) {
return iter.first.IsRenderTarget() || iter.second.frameCount != FRAMECOUNT_INVALID;
});
return matching_iter != range.second ? matching_iter : m_texture_pool.end();
}
TextureCacheBase::TexAddrCache::iterator TextureCacheBase::GetTexCacheIter(TCacheEntry* entry)
{
auto iter_range = m_textures_by_address.equal_range(entry->addr);
TexAddrCache::iterator iter = iter_range.first;
while (iter != iter_range.second)
{
if (iter->second.get() == entry)
{
return iter;
}
++iter;
}
return m_textures_by_address.end();
}
std::pair<TextureCacheBase::TexAddrCache::iterator, TextureCacheBase::TexAddrCache::iterator>
TextureCacheBase::FindOverlappingTextures(u32 addr, u32 size_in_bytes)
{
// We index by the starting address only, so there is no way to query all textures
// which end after the given addr. But the GC textures have a limited size, so we
// look for all textures which have a start address bigger than addr minus the maximal
// texture size. But this yields false-positives which must be checked later on.
// 1024 x 1024 texel times 8 nibbles per texel
constexpr u32 max_texture_size = 1024 * 1024 * 4;
u32 lower_addr = addr > max_texture_size ? addr - max_texture_size : 0;
auto begin = m_textures_by_address.lower_bound(lower_addr);
auto end = m_textures_by_address.upper_bound(addr + size_in_bytes);
return std::make_pair(begin, end);
}
TextureCacheBase::TexAddrCache::iterator
TextureCacheBase::InvalidateTexture(TexAddrCache::iterator iter, bool discard_pending_efb_copy)
{
if (iter == m_textures_by_address.end())
return m_textures_by_address.end();
RcTcacheEntry& entry = iter->second;
if (entry->textures_by_hash_iter != m_textures_by_hash.end())
{
m_textures_by_hash.erase(entry->textures_by_hash_iter);
entry->textures_by_hash_iter = m_textures_by_hash.end();
}
// If this is a pending EFB copy, we don't want to flush it here.
// Why? Because let's say a game is rendering a bloom-type effect, using EFB copies to essentially
// downscale the framebuffer. Copy from EFB->Texture, draw texture to EFB, copy EFB->Texture,
// draw, repeat. The second copy will invalidate the first, forcing a flush. Which means we lose
// any benefit of EFB copy batching. So instead, let's just leave the EFB copy pending, but remove
// it from the texture cache. This way we don't use the old VRAM copy. When the EFB copies are
// eventually flushed, they will overwrite each other, and the end result should be the same.
if (entry->pending_efb_copy)
{
if (discard_pending_efb_copy)
{
// If the RAM copy is being completely overwritten by a new EFB copy, we can discard the
// existing pending copy, and not bother waiting for it in the future. This happens in
// Xenoblade's sunset scene, where 35 copies are done per frame, and 25 of them are
// copied to the same address, and can be skipped.
ReleaseEFBCopyStagingTexture(std::move(entry->pending_efb_copy));
auto pending_it = std::find(m_pending_efb_copies.begin(), m_pending_efb_copies.end(), entry);
if (pending_it != m_pending_efb_copies.end())
m_pending_efb_copies.erase(pending_it);
}
else
{
// The texture data has already been copied into the staging texture, so it's valid to
// optimistically release the texture data. Will slightly lower VRAM usage.
if (!entry->IsLocked())
ReleaseToPool(entry.get());
}
}
entry->invalidated = true;
return m_textures_by_address.erase(iter);
}
void TextureCacheBase::ReleaseToPool(TCacheEntry* entry)
{
if (!entry->texture)
return;
auto config = entry->texture->GetConfig();
m_texture_pool.emplace(config,
TexPoolEntry(std::move(entry->texture), std::move(entry->framebuffer)));
}
bool TextureCacheBase::CreateUtilityTextures()
{
constexpr TextureConfig encoding_texture_config(
EFB_WIDTH * 4, 1024, 1, 1, 1, AbstractTextureFormat::BGRA8, AbstractTextureFlag_RenderTarget);
m_efb_encoding_texture = g_gfx->CreateTexture(encoding_texture_config, "EFB encoding texture");
if (!m_efb_encoding_texture)
return false;
m_efb_encoding_framebuffer = g_gfx->CreateFramebuffer(m_efb_encoding_texture.get(), nullptr);
if (!m_efb_encoding_framebuffer)
return false;
if (g_ActiveConfig.backend_info.bSupportsGPUTextureDecoding)
{
constexpr TextureConfig decoding_texture_config(
1024, 1024, 1, 1, 1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_ComputeImage);
m_decoding_texture =
g_gfx->CreateTexture(decoding_texture_config, "GPU texture decoding texture");
if (!m_decoding_texture)
return false;
}
return true;
}
void TextureCacheBase::CopyEFBToCacheEntry(RcTcacheEntry& entry, bool is_depth_copy,
const MathUtil::Rectangle<int>& src_rect,
bool scale_by_half, bool linear_filter,
EFBCopyFormat dst_format, bool is_intensity, float gamma,
bool clamp_top, bool clamp_bottom,
const std::array<u32, 3>& filter_coefficients)
{
// Flush EFB pokes first, as they're expected to be included.
g_framebuffer_manager->FlushEFBPokes();
// Get the pipeline which we will be using. If the compilation failed, this will be null.
const AbstractPipeline* copy_pipeline = g_shader_cache->GetEFBCopyToVRAMPipeline(
TextureConversionShaderGen::GetShaderUid(dst_format, is_depth_copy, is_intensity,
scale_by_half, 1.0f / gamma, filter_coefficients));
if (!copy_pipeline)
{
WARN_LOG_FMT(VIDEO, "Skipping EFB copy to VRAM due to missing pipeline.");
return;
}
const auto scaled_src_rect = g_framebuffer_manager->ConvertEFBRectangle(src_rect);
const auto framebuffer_rect = g_gfx->ConvertFramebufferRectangle(
scaled_src_rect, g_framebuffer_manager->GetEFBFramebuffer());
AbstractTexture* src_texture =
is_depth_copy ? g_framebuffer_manager->ResolveEFBDepthTexture(framebuffer_rect) :
g_framebuffer_manager->ResolveEFBColorTexture(framebuffer_rect);
src_texture->FinishedRendering();
g_gfx->BeginUtilityDrawing();
// Fill uniform buffer.
struct Uniforms
{
float src_left, src_top, src_width, src_height;
std::array<u32, 3> filter_coefficients;
float gamma_rcp;
float clamp_top;
float clamp_bottom;
float pixel_height;
u32 padding;
};
Uniforms uniforms;
const float rcp_efb_width = 1.0f / static_cast<float>(g_framebuffer_manager->GetEFBWidth());
const u32 efb_height = g_framebuffer_manager->GetEFBHeight();
const float rcp_efb_height = 1.0f / static_cast<float>(efb_height);
uniforms.src_left = framebuffer_rect.left * rcp_efb_width;
uniforms.src_top = framebuffer_rect.top * rcp_efb_height;
uniforms.src_width = framebuffer_rect.GetWidth() * rcp_efb_width;
uniforms.src_height = framebuffer_rect.GetHeight() * rcp_efb_height;
uniforms.filter_coefficients = filter_coefficients;
uniforms.gamma_rcp = 1.0f / gamma;
// NOTE: when the clamp bits aren't set, the hardware will happily read beyond the EFB,
// which returns random garbage from the empty bus (confirmed by hardware tests).
//
// In our implementation, the garbage just so happens to be the top or bottom row.
// Statistically, that could happen.
const u32 top_coord = clamp_top ? framebuffer_rect.top : 0;
uniforms.clamp_top = (static_cast<float>(top_coord) + .5f) * rcp_efb_height;
const u32 bottom_coord = (clamp_bottom ? framebuffer_rect.bottom : efb_height) - 1;
uniforms.clamp_bottom = (static_cast<float>(bottom_coord) + .5f) * rcp_efb_height;
uniforms.pixel_height = g_ActiveConfig.bCopyEFBScaled ? rcp_efb_height : 1.0f / EFB_HEIGHT;
uniforms.padding = 0;
g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
// Use the copy pipeline to render the VRAM copy.
g_gfx->SetAndDiscardFramebuffer(entry->framebuffer.get());
g_gfx->SetViewportAndScissor(entry->framebuffer->GetRect());
g_gfx->SetPipeline(copy_pipeline);
g_gfx->SetTexture(0, src_texture);
g_gfx->SetSamplerState(0, linear_filter ? RenderState::GetLinearSamplerState() :
RenderState::GetPointSamplerState());
g_gfx->Draw(0, 3);
g_gfx->EndUtilityDrawing();
entry->texture->FinishedRendering();
}
void TextureCacheBase::CopyEFB(AbstractStagingTexture* dst, const EFBCopyParams& params,
u32 native_width, u32 bytes_per_row, u32 num_blocks_y,
u32 memory_stride, const MathUtil::Rectangle<int>& src_rect,
bool scale_by_half, bool linear_filter, float y_scale, float gamma,
bool clamp_top, bool clamp_bottom,
const std::array<u32, 3>& filter_coefficients)
{
// Flush EFB pokes first, as they're expected to be included.
g_framebuffer_manager->FlushEFBPokes();
// Get the pipeline which we will be using. If the compilation failed, this will be null.
const AbstractPipeline* copy_pipeline = g_shader_cache->GetEFBCopyToRAMPipeline(params);
if (!copy_pipeline)
{
WARN_LOG_FMT(VIDEO, "Skipping EFB copy to VRAM due to missing pipeline.");
return;
}
const auto scaled_src_rect = g_framebuffer_manager->ConvertEFBRectangle(src_rect);
const auto framebuffer_rect = g_gfx->ConvertFramebufferRectangle(
scaled_src_rect, g_framebuffer_manager->GetEFBFramebuffer());
AbstractTexture* src_texture =
params.depth ? g_framebuffer_manager->ResolveEFBDepthTexture(framebuffer_rect) :
g_framebuffer_manager->ResolveEFBColorTexture(framebuffer_rect);
src_texture->FinishedRendering();
g_gfx->BeginUtilityDrawing();
// Fill uniform buffer.
struct Uniforms
{
std::array<s32, 4> position_uniform;
float y_scale;
float gamma_rcp;
float clamp_top;
float clamp_bottom;
std::array<u32, 3> filter_coefficients;
u32 padding;
};
Uniforms encoder_params;
const u32 efb_height = g_framebuffer_manager->GetEFBHeight();
const float rcp_efb_height = 1.0f / static_cast<float>(efb_height);
encoder_params.position_uniform[0] = src_rect.left;
encoder_params.position_uniform[1] = src_rect.top;
encoder_params.position_uniform[2] = static_cast<s32>(native_width);
encoder_params.position_uniform[3] = scale_by_half ? 2 : 1;
encoder_params.y_scale = y_scale;
encoder_params.gamma_rcp = 1.0f / gamma;
// NOTE: when the clamp bits aren't set, the hardware will happily read beyond the EFB,
// which returns random garbage from the empty bus (confirmed by hardware tests).
//
// In our implementation, the garbage just so happens to be the top or bottom row.
// Statistically, that could happen.
const u32 top_coord = clamp_top ? framebuffer_rect.top : 0;
encoder_params.clamp_top = (static_cast<float>(top_coord) + .5f) * rcp_efb_height;
const u32 bottom_coord = (clamp_bottom ? framebuffer_rect.bottom : efb_height) - 1;
encoder_params.clamp_bottom = (static_cast<float>(bottom_coord) + .5f) * rcp_efb_height;
encoder_params.filter_coefficients = filter_coefficients;
g_vertex_manager->UploadUtilityUniforms(&encoder_params, sizeof(encoder_params));
// Because the shader uses gl_FragCoord and we read it back, we must render to the lower-left.
const u32 render_width = bytes_per_row / sizeof(u32);
const u32 render_height = num_blocks_y;
const auto encode_rect = MathUtil::Rectangle<int>(0, 0, render_width, render_height);
// Render to GPU texture, and then copy to CPU-accessible texture.
g_gfx->SetAndDiscardFramebuffer(m_efb_encoding_framebuffer.get());
g_gfx->SetViewportAndScissor(encode_rect);
g_gfx->SetPipeline(copy_pipeline);
g_gfx->SetTexture(0, src_texture);
g_gfx->SetSamplerState(0, linear_filter ? RenderState::GetLinearSamplerState() :
RenderState::GetPointSamplerState());
g_gfx->Draw(0, 3);
dst->CopyFromTexture(m_efb_encoding_texture.get(), encode_rect, 0, 0, encode_rect);
g_gfx->EndUtilityDrawing();
// Flush if there's sufficient draws between this copy and the last.
g_vertex_manager->OnEFBCopyToRAM();
}
bool TextureCacheBase::DecodeTextureOnGPU(RcTcacheEntry& entry, u32 dst_level, const u8* data,
u32 data_size, TextureFormat format, u32 width,
u32 height, u32 aligned_width, u32 aligned_height,
u32 row_stride, const u8* palette,
TLUTFormat palette_format)
{
const auto* info = TextureConversionShaderTiled::GetDecodingShaderInfo(format);
if (!info)
return false;
const AbstractShader* shader = g_shader_cache->GetTextureDecodingShader(
format, info->palette_size != 0 ? std::make_optional(palette_format) : std::nullopt);
if (!shader)
return false;
// Copy to GPU-visible buffer, aligned to the data type.
const u32 bytes_per_buffer_elem =
VertexManagerBase::GetTexelBufferElementSize(info->buffer_format);
// Allocate space in stream buffer, and copy texture + palette across.
u32 src_offset = 0, palette_offset = 0;
if (info->palette_size > 0)
{
if (!g_vertex_manager->UploadTexelBuffer(data, data_size, info->buffer_format, &src_offset,
palette, info->palette_size,
TEXEL_BUFFER_FORMAT_R16_UINT, &palette_offset))
{
return false;
}
}
else
{
if (!g_vertex_manager->UploadTexelBuffer(data, data_size, info->buffer_format, &src_offset))
return false;
}
// Set up uniforms.
struct Uniforms
{
u32 dst_width, dst_height;
u32 src_width, src_height;
u32 src_offset, src_row_stride;
u32 palette_offset, unused;
} uniforms = {width, height, aligned_width,
aligned_height, src_offset, row_stride / bytes_per_buffer_elem,
palette_offset};
g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
g_gfx->SetComputeImageTexture(0, m_decoding_texture.get(), false, true);
auto dispatch_groups =
TextureConversionShaderTiled::GetDispatchCount(info, aligned_width, aligned_height);
g_gfx->DispatchComputeShader(shader, info->group_size_x, info->group_size_y, 1,
dispatch_groups.first, dispatch_groups.second, 1);
// Copy from decoding texture -> final texture
// This is because we don't want to have to create compute view for every layer
const auto copy_rect = entry->texture->GetConfig().GetMipRect(dst_level);
entry->texture->CopyRectangleFromTexture(m_decoding_texture.get(), copy_rect, 0, 0, copy_rect, 0,
dst_level);
entry->texture->FinishedRendering();
return true;
}
u32 TCacheEntry::BytesPerRow() const
{
// RGBA takes two cache lines per block; all others take one
const u32 bytes_per_block = format == TextureFormat::RGBA8 ? 64 : 32;
return NumBlocksX() * bytes_per_block;
}
u32 TCacheEntry::NumBlocksX() const
{
const u32 blockW = TexDecoder_GetBlockWidthInTexels(format.texfmt);
// Round up source height to multiple of block size
const u32 actualWidth = Common::AlignUp(native_width, blockW);
return actualWidth / blockW;
}
u32 TCacheEntry::NumBlocksY() const
{
u32 blockH = TexDecoder_GetBlockHeightInTexels(format.texfmt);
// Round up source height to multiple of block size
u32 actualHeight = Common::AlignUp(native_height, blockH);
return actualHeight / blockH;
}
void TCacheEntry::SetXfbCopy(u32 stride)
{
is_efb_copy = false;
is_xfb_copy = true;
is_xfb_container = false;
memory_stride = stride;
ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
size_in_bytes = memory_stride * NumBlocksY();
}
void TCacheEntry::SetEfbCopy(u32 stride)
{
is_efb_copy = true;
is_xfb_copy = false;
is_xfb_container = false;
memory_stride = stride;
ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small");
size_in_bytes = memory_stride * NumBlocksY();
}
void TCacheEntry::SetNotCopy()
{
is_efb_copy = false;
is_xfb_copy = false;
is_xfb_container = false;
}
int TCacheEntry::HashSampleSize() const
{
if (should_force_safe_hashing)
{
return 0;
}
return g_ActiveConfig.iSafeTextureCache_ColorSamples;
}
u64 TCacheEntry::CalculateHash() const
{
const u32 bytes_per_row = BytesPerRow();
const u32 hash_sample_size = HashSampleSize();
// FIXME: textures from tmem won't get the correct hash.
auto& system = Core::System::GetInstance();
auto& memory = system.GetMemory();
u8* ptr = memory.GetPointer(addr);
if (memory_stride == bytes_per_row)
{
return Common::GetHash64(ptr, size_in_bytes, hash_sample_size);
}
else
{
const u32 num_blocks_y = NumBlocksY();
u64 temp_hash = size_in_bytes;
u32 samples_per_row = 0;
if (hash_sample_size != 0)
{
// Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left
// side of the efb copy
samples_per_row = std::max(hash_sample_size / num_blocks_y, 4u);
}
for (u32 i = 0; i < num_blocks_y; i++)
{
// Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from
// canceling each other out
temp_hash = (temp_hash * 397) ^ Common::GetHash64(ptr, bytes_per_row, samples_per_row);
ptr += memory_stride;
}
return temp_hash;
}
}
TextureCacheBase::TexPoolEntry::TexPoolEntry(std::unique_ptr<AbstractTexture> tex,
std::unique_ptr<AbstractFramebuffer> fb)
: texture(std::move(tex)), framebuffer(std::move(fb))
{
}