dolphin/Source/Core/VideoCommon/RenderBase.h

224 lines
8.0 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#pragma once
#include <condition_variable>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/Flag.h"
#include "Common/MathUtil.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoCommon.h"
class PostProcessingShaderImplementation;
struct EfbPokeData
{
u16 x, y;
u32 data;
};
// TODO: Move these out of here.
extern int frameCount;
extern int OSDChoice;
// Renderer really isn't a very good name for this class - it's more like "Misc".
// The long term goal is to get rid of this class and replace it with others that make
// more sense.
class Renderer
{
public:
Renderer();
virtual ~Renderer();
enum PixelPerfQuery
{
PP_ZCOMP_INPUT_ZCOMPLOC,
PP_ZCOMP_OUTPUT_ZCOMPLOC,
PP_ZCOMP_INPUT,
PP_ZCOMP_OUTPUT,
PP_BLEND_INPUT,
PP_EFB_COPY_CLOCKS
};
virtual void SetColorMask() {}
virtual void SetBlendMode(bool forceUpdate) {}
virtual void SetScissorRect(const EFBRectangle& rc) {}
virtual void SetGenerationMode() {}
virtual void SetDepthMode() {}
virtual void SetLogicOpMode() {}
virtual void SetDitherMode() {}
virtual void SetSamplerState(int stage, int texindex, bool custom_tex) {}
virtual void SetInterlacingMode() {}
virtual void SetViewport() {}
virtual void SetFullscreen(bool enable_fullscreen) {}
virtual bool IsFullscreen() const { return false; }
virtual void ApplyState() {}
virtual void RestoreState() {}
virtual void ResetAPIState() {}
virtual void RestoreAPIState() {}
// Ideal internal resolution - determined by display resolution (automatic scaling) and/or a
// multiple of the native EFB resolution
static int GetTargetWidth() { return s_target_width; }
static int GetTargetHeight() { return s_target_height; }
// Display resolution
static int GetBackbufferWidth() { return s_backbuffer_width; }
static int GetBackbufferHeight() { return s_backbuffer_height; }
static void SetWindowSize(int width, int height);
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0;
static const TargetRectangle& GetTargetRectangle() { return target_rc; }
static float CalculateDrawAspectRatio(int target_width, int target_height);
static TargetRectangle CalculateFrameDumpDrawRectangle();
static void UpdateDrawRectangle();
// Use this to convert a single target rectangle to two stereo rectangles
static void ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc,
TargetRectangle& rightRc);
// Use this to upscale native EFB coordinates to IDEAL internal resolution
static int EFBToScaledX(int x);
static int EFBToScaledY(int y);
// Floating point versions of the above - only use them if really necessary
static float EFBToScaledXf(float x) { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); }
static float EFBToScaledYf(float y) { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); }
// Random utilities
static void SetScreenshot(const std::string& filename);
static void DrawDebugText();
virtual void RenderText(const std::string& text, int left, int top, u32 color) = 0;
virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable,
u32 color, u32 z) = 0;
virtual void ReinterpretPixelData(unsigned int convtype) = 0;
static void RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
float Gamma = 1.0f);
virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0;
virtual void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) = 0;
virtual u16 BBoxRead(int index) = 0;
virtual void BBoxWrite(int index, u16 value) = 0;
// Finish up the current frame, print some stats
static void Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
u64 ticks, float Gamma = 1.0f);
virtual void SwapImpl(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight,
const EFBRectangle& rc, u64 ticks, float Gamma = 1.0f) = 0;
static PEControl::PixelFormat GetPrevPixelFormat() { return prev_efb_format; }
static void StorePixelFormat(PEControl::PixelFormat new_format) { prev_efb_format = new_format; }
PostProcessingShaderImplementation* GetPostProcessor() { return m_post_processor.get(); }
// Max height/width
virtual u32 GetMaxTextureSize() = 0;
static Common::Event s_screenshotCompleted;
// Final surface changing
// This is called when the surface is resized (WX) or the window changes (Android).
virtual void ChangeSurface(void* new_surface_handle) {}
protected:
static void CalculateTargetScale(int x, int y, int* scaledX, int* scaledY);
bool CalculateTargetSize();
static void CheckFifoRecording();
static void RecordVideoMemory();
bool IsFrameDumping();
void DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state,
bool swap_upside_down = false);
void FinishFrameData();
static Common::Flag s_screenshot;
static std::mutex s_criticalScreenshot;
static std::string s_sScreenshotName;
// The framebuffer size
static int s_target_width;
static int s_target_height;
// TODO: Add functionality to reinit all the render targets when the window is resized.
static int s_backbuffer_width;
static int s_backbuffer_height;
static TargetRectangle target_rc;
// TODO: Can probably eliminate this static var.
static int s_last_efb_scale;
static bool XFBWrited;
FPSCounter m_fps_counter;
static std::unique_ptr<PostProcessingShaderImplementation> m_post_processor;
static const float GX_MAX_DEPTH;
static Common::Flag s_surface_needs_change;
static Common::Event s_surface_changed;
static void* s_new_surface_handle;
private:
void RunFrameDumps();
void ShutdownFrameDumping();
static PEControl::PixelFormat prev_efb_format;
static unsigned int efb_scale_numeratorX;
static unsigned int efb_scale_numeratorY;
static unsigned int efb_scale_denominatorX;
static unsigned int efb_scale_denominatorY;
// frame dumping
std::thread m_frame_dump_thread;
Common::Event m_frame_dump_start;
Common::Event m_frame_dump_done;
Common::Flag m_frame_dump_thread_running;
u32 m_frame_dump_image_counter = 0;
bool m_frame_dump_frame_running = false;
struct FrameDumpConfig
{
const u8* data;
int width;
int height;
int stride;
bool upside_down;
AVIDump::Frame state;
} m_frame_dump_config;
// NOTE: The methods below are called on the framedumping thread.
bool StartFrameDumpToAVI(const FrameDumpConfig& config);
void DumpFrameToAVI(const FrameDumpConfig& config);
void StopFrameDumpToAVI();
std::string GetFrameDumpNextImageFileName() const;
bool StartFrameDumpToImage(const FrameDumpConfig& config);
void DumpFrameToImage(const FrameDumpConfig& config);
};
extern std::unique_ptr<Renderer> g_renderer;