dolphin/Source/Core/DSPCore/Src/DspIntMultiplier.cpp

625 lines
16 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// Additional copyrights go to Duddie and Tratax (c) 2004
// Multiplier and product register control
#include "DSPInterpreter.h"
#include "DSPIntCCUtil.h"
#include "DSPIntUtil.h"
namespace DSPInterpreter {
// Only MULX family instructions have unsigned/mixed support.
inline s64 dsp_get_multiply_prod(u16 a, u16 b, u8 sign)
{
s64 prod;
if ((sign == 1) && (g_dsp.r[DSP_REG_SR] & SR_MUL_UNSIGNED)) //unsigned
prod = (u64)a * (u64)b;
else if ((sign == 2) && (g_dsp.r[DSP_REG_SR] & SR_MUL_UNSIGNED)) //mixed
prod = (u64)a * (s64)(s16)b;
else
prod = (s64)(s16)a * (s64)(s16)b; //signed
// Conditionally multiply by 2.
if ((g_dsp.r[DSP_REG_SR] & SR_MUL_MODIFY) == 0)
prod <<= 1;
return prod;
}
s64 dsp_multiply(u16 a, u16 b, u8 sign = 0)
{
s64 prod = dsp_get_multiply_prod(a, b, sign);
return prod;
}
s64 dsp_multiply_add(u16 a, u16 b, u8 sign = 0)
{
s64 prod = dsp_get_long_prod() + dsp_get_multiply_prod(a, b, sign);
return prod;
}
s64 dsp_multiply_sub(u16 a, u16 b, u8 sign = 0)
{
s64 prod = dsp_get_long_prod() - dsp_get_multiply_prod(a, b, sign);
return prod;
}
s64 dsp_multiply_mulx(u8 axh0, u8 axh1, u16 val1, u16 val2)
{
s64 result;
if ((axh0==0) && (axh1==0)) // axl.0 * axl.1
{
result = dsp_multiply(val1, val2, 1); // unsigned support ON if both ax?.l regs are used
}
else if ((axh0==0) && (axh1==1)) // axl.0 * axh.1
{
if ((val1 >= 0x8000) && (val2 >= 0x8000))
result = dsp_multiply(val1, val2, 2);
else if ((val1 >= 0x8000) && (val2 < 0x8000))
result = dsp_multiply(val1, val2, 1);
else
result = dsp_multiply(val1, val2, 0);
}
else if ((axh0==1) && (axh1==0)) // axh.0 * axl.1
{
if ((val2 >= 0x8000) && (val1 >= 0x8000))
result = dsp_multiply(val2, val1, 2);
else if ((val2 >= 0x8000) && (val1 < 0x8000))
result = dsp_multiply(val2, val1, 1);
else
result = dsp_multiply(val2, val1, 0);
}
else // axh.0 * axh.1
{
result = dsp_multiply(val1, val2, 0); // unsigned support OFF if both ax?.h regs are used
}
return result;
}
//----
// CLRP
// 1000 0100 xxxx xxxx
// Clears product register $prod.
void clrp(const UDSPInstruction opc)
{
// Magic numbers taken from duddie's doc
// These are probably a bad idea to put here.
zeroWriteBackLog();
/*
g_dsp.r[DSP_REG_PRODL] = 0x0000;
g_dsp.r[DSP_REG_PRODM] = 0xfff0;
g_dsp.r[DSP_REG_PRODH] = 0x00ff;
g_dsp.r[DSP_REG_PRODM2] = 0x0010;
*/
// 00ff_(fff0 + 0010)_0000 = 0100_0000_0000, conveniently, lower 40bits = 0
dsp_set_long_prod(0); // if we are doing it wrong then let's be consistent
}
// TSTPROD
// 1000 0101 xxxx xxxx
// Test prod regs value.
//
// flags out: xx xx0x <- CF??
void tstprod(const UDSPInstruction opc)
{
s64 prod = dsp_get_long_prod();
Update_SR_Register64(prod);
zeroWriteBackLog();
}
//----
// MOVP $acD
// 0110 111d xxxx xxxx
// Moves multiply product from $prod register to accumulator $acD register.
//
// flags out: xx xx00
void movp(const UDSPInstruction opc)
{
u8 dreg = (opc >> 8) & 0x1;
s64 acc = dsp_get_long_prod();
zeroWriteBackLog();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// MOVNP $acD
// 0111 111d xxxx xxxx
// Moves negative of multiply product from $prod register to accumulator
// $acD register.
//
// flags out: xx xx0x <- CF??
void movnp(const UDSPInstruction opc)
{
u8 dreg = (opc >> 8) & 0x1;
s64 acc = -dsp_get_long_prod();
zeroWriteBackLog();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// MOVPZ $acD
// 1111 111d xxxx xxxx
// Moves multiply product from $prod register to accumulator $acD
// register and sets $acD.l to 0
//
// flags out: xx xx0x <- CF??
void movpz(const UDSPInstruction opc)
{
u8 dreg = (opc >> 8) & 0x01;
s64 acc = dsp_get_long_prod_round_prodl();
zeroWriteBackLog();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// ADDPAXZ $acD, $axS
// 1111 10sd xxxx xxxx
// Adds secondary accumulator $axS to product register and stores result
// in accumulator register. Low 16-bits of $acD ($acD.l) are set to 0.
//
// flags out: ?-xx xx??
void addpaxz(const UDSPInstruction opc)
{
u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1;
s64 prod = dsp_get_long_prod_round_prodl();
s64 ax = dsp_get_long_acx(sreg);
s64 res = prod + (ax & ~0xffff);
zeroWriteBackLog();
dsp_set_long_acc(dreg, res);
res = dsp_get_long_acc(dreg);
Update_SR_Register64(res);
}
//----
// MULAXH
// 1000 0011 xxxx xxxx
// Multiply $ax0.h by $ax0.h
void mulaxh(const UDSPInstruction opc)
{
s64 prod = dsp_multiply(dsp_get_ax_h(0), dsp_get_ax_h(0));
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
//----
// MUL $axS.l, $axS.h
// 1001 s000 xxxx xxxx
// Multiply low part $axS.l of secondary accumulator $axS by high part
// $axS.h of secondary accumulator $axS (treat them both as signed).
void mul(const UDSPInstruction opc)
{
u8 sreg = (opc >> 11) & 0x1;
u16 axl = dsp_get_ax_l(sreg);
u16 axh = dsp_get_ax_h(sreg);
s64 prod = dsp_multiply(axh, axl);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MULAC $axS.l, $axS.h, $acR
// 1001 s10r xxxx xxxx
// Add product register to accumulator register $acR. Multiply low part
// $axS.l of secondary accumulator $axS by high part $axS.h of secondary
// accumulator $axS (treat them both as signed).
//
// flags out: xx xx00
void mulac(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 11) & 0x1;
s64 acc = dsp_get_long_acc(rreg) + dsp_get_long_prod();
u16 axl = dsp_get_ax_l(sreg);
u16 axh = dsp_get_ax_h(sreg);
s64 prod = dsp_multiply(axl, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
// MULMV $axS.l, $axS.h, $acR
// 1001 s11r xxxx xxxx
// Move product register to accumulator register $acR. Multiply low part
// $axS.l of secondary accumulator $axS by high part $axS.h of secondary
// accumulator $axS (treat them both as signed).
//
// flags out: xx xx00
void mulmv(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 sreg = ((opc >> 11) & 0x1);
s64 acc = dsp_get_long_prod();
u16 axl = dsp_get_ax_l(sreg);
u16 axh = dsp_get_ax_h(sreg);
s64 prod = dsp_multiply(axl, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
// MULMVZ $axS.l, $axS.h, $acR
// 1001 s01r xxxx xxxx
// Move product register to accumulator register $acR and clear low part
// of accumulator register $acR.l. Multiply low part $axS.l of secondary
// accumulator $axS by high part $axS.h of secondary accumulator $axS (treat
// them both as signed).
//
// flags out: xx xx0x
void mulmvz(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 11) & 0x1;
s64 acc = dsp_get_long_prod_round_prodl();
u16 axl = dsp_get_ax_l(sreg);
u16 axh = dsp_get_ax_h(sreg);
s64 prod = dsp_multiply(axl, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
//----
// MULX $ax0.S, $ax1.T
// 101s t000 xxxx xxxx
// Multiply one part $ax0 by one part $ax1.
// Part is selected by S and T bits. Zero selects low part, one selects high part.
void mulx(const UDSPInstruction opc)
{
u8 treg = ((opc >> 11) & 0x1);
u8 sreg = ((opc >> 12) & 0x1);
u16 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
u16 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_multiply_mulx(sreg, treg, val1, val2);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MULXAC $ax0.S, $ax1.T, $acR
// 101s t01r xxxx xxxx
// Add product register to accumulator register $acR. Multiply one part
// $ax0 by one part $ax1. Part is selected by S and
// T bits. Zero selects low part, one selects high part.
//
// flags out: xx xx00
void mulxac(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1;
s64 acc = dsp_get_long_acc(rreg) + dsp_get_long_prod();
u16 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
u16 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_multiply_mulx(sreg, treg, val1, val2);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
// MULXMV $ax0.S, $ax1.T, $acR
// 101s t11r xxxx xxxx
// Move product register to accumulator register $acR. Multiply one part
// $ax0 by one part $ax1. Part is selected by S and
// T bits. Zero selects low part, one selects high part.
//
// flags out: xx xx00
void mulxmv(const UDSPInstruction opc)
{
u8 rreg = ((opc >> 8) & 0x1);
u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1;
s64 acc = dsp_get_long_prod();
u16 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
u16 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_multiply_mulx(sreg, treg, val1, val2);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
// MULXMV $ax0.S, $ax1.T, $acR
// 101s t01r xxxx xxxx
// Move product register to accumulator register $acR and clear low part
// of accumulator register $acR.l. Multiply one part $ax0 by one part $ax1
// Part is selected by S and T bits. Zero selects low part,
// one selects high part.
//
// flags out: xx xx00
void mulxmvz(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1;
s64 acc = dsp_get_long_prod_round_prodl();
u16 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
u16 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_multiply_mulx(sreg, treg, val1, val2);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
//----
// MULC $acS.m, $axT.h
// 110s t000 xxxx xxxx
// Multiply mid part of accumulator register $acS.m by high part $axS.h of
// secondary accumulator $axS (treat them both as signed).
void mulc(const UDSPInstruction opc)
{
u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1;
u16 accm = dsp_get_acc_m(sreg);
u16 axh = dsp_get_ax_h(treg);
s64 prod = dsp_multiply(accm, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MULCAC $acS.m, $axT.h, $acR
// 110s t10r xxxx xxxx
// Multiply mid part of accumulator register $acS.m by high part $axS.h of
// secondary accumulator $axS (treat them both as signed). Add product
// register before multiplication to accumulator $acR.
//
// flags out: xx xx00
void mulcac(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1;
s64 acc = dsp_get_long_acc(rreg) + dsp_get_long_prod();
u16 accm = dsp_get_acc_m(sreg);
u16 axh = dsp_get_ax_h(treg);
s64 prod = dsp_multiply(accm, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
// MULCMV $acS.m, $axT.h, $acR
// 110s t11r xxxx xxxx
// Multiply mid part of accumulator register $acS.m by high part $axT.h of
// secondary accumulator $axT (treat them both as signed). Move product
// register before multiplication to accumulator $acR.
// possible mistake in duddie's doc axT.h rather than axS.h
//
// flags out: xx xx00
void mulcmv(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1;
s64 acc = dsp_get_long_prod();
u16 accm = dsp_get_acc_m(sreg);
u16 axh = dsp_get_ax_h(treg);
s64 prod = dsp_multiply(accm, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
// MULCMVZ $acS.m, $axT.h, $acR
// 110s t01r xxxx xxxx
// (fixed possible bug in duddie's description, s->t)
// Multiply mid part of accumulator register $acS.m by high part $axT.h of
// secondary accumulator $axT (treat them both as signed). Move product
// register before multiplication to accumulator $acR, set low part of
// accumulator $acR.l to zero.
//
// flags out: xx xx00
void mulcmvz(const UDSPInstruction opc)
{
u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1;
s64 acc = dsp_get_long_prod_round_prodl();
u16 accm = dsp_get_acc_m(sreg);
u16 axh = dsp_get_ax_h(treg);
s64 prod = dsp_multiply(accm, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
dsp_set_long_acc(rreg, acc);
Update_SR_Register64(dsp_get_long_acc(rreg));
}
//----
// MADDX ax0.S ax1.T
// 1110 00st xxxx xxxx
// Multiply one part of secondary accumulator $ax0 (selected by S) by
// one part of secondary accumulator $ax1 (selected by T) (treat them both as
// signed) and add result to product register.
void maddx(const UDSPInstruction opc)
{
u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1;
u16 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
u16 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_multiply_add(val1, val2);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MSUBX $(0x18+S*2), $(0x19+T*2)
// 1110 01st xxxx xxxx
// Multiply one part of secondary accumulator $ax0 (selected by S) by
// one part of secondary accumulator $ax1 (selected by T) (treat them both as
// signed) and subtract result from product register.
void msubx(const UDSPInstruction opc)
{
u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1;
u16 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0);
u16 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1);
s64 prod = dsp_multiply_sub(val1, val2);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MADDC $acS.m, $axT.h
// 1110 10st xxxx xxxx
// Multiply middle part of accumulator $acS.m by high part of secondary
// accumulator $axT.h (treat them both as signed) and add result to product
// register.
void maddc(const UDSPInstruction opc)
{
u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1;
u16 accm = dsp_get_acc_m(sreg);
u16 axh = dsp_get_ax_h(treg);
s64 prod = dsp_multiply_add(accm, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MSUBC $acS.m, $axT.h
// 1110 11st xxxx xxxx
// Multiply middle part of accumulator $acS.m by high part of secondary
// accumulator $axT.h (treat them both as signed) and subtract result from
// product register.
void msubc(const UDSPInstruction opc)
{
u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1;
u16 accm = dsp_get_acc_m(sreg);
u16 axh = dsp_get_ax_h(treg);
s64 prod = dsp_multiply_sub(accm, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MADD $axS.l, $axS.h
// 1111 001s xxxx xxxx
// Multiply low part $axS.l of secondary accumulator $axS by high part
// $axS.h of secondary accumulator $axS (treat them both as signed) and add
// result to product register.
void madd(const UDSPInstruction opc)
{
u8 sreg = (opc >> 8) & 0x1;
u16 axl = dsp_get_ax_l(sreg);
u16 axh = dsp_get_ax_h(sreg);
s64 prod = dsp_multiply_add(axl, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
// MSUB $axS.l, $axS.h
// 1111 011s xxxx xxxx
// Multiply low part $axS.l of secondary accumulator $axS by high part
// $axS.h of secondary accumulator $axS (treat them both as signed) and
// subtract result from product register.
void msub(const UDSPInstruction opc)
{
u8 sreg = (opc >> 8) & 0x1;
u16 axl = dsp_get_ax_l(sreg);
u16 axh = dsp_get_ax_h(sreg);
s64 prod = dsp_multiply_sub(axl, axh);
zeroWriteBackLog();
dsp_set_long_prod(prod);
}
} // namespace