dolphin/Source/Core/VideoCommon/Src/CommandProcessor.cpp

690 lines
20 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
#include "VideoCommon.h"
#include "VideoConfig.h"
#include "MathUtil.h"
#include "Thread.h"
#include "Atomic.h"
#include "OpcodeDecoding.h"
#include "Fifo.h"
#include "ChunkFile.h"
#include "CommandProcessor.h"
#include "PixelEngine.h"
#include "CoreTiming.h"
#include "ConfigManager.h"
#include "HW/ProcessorInterface.h"
#include "HW/GPFifo.h"
#include "HW/Memmap.h"
#include "DLCache.h"
namespace CommandProcessor
{
int et_UpdateInterrupts;
// TODO(ector): Warn on bbox read/write
// STATE_TO_SAVE
SCPFifoStruct fifo;
UCPStatusReg m_CPStatusReg;
UCPCtrlReg m_CPCtrlReg;
UCPClearReg m_CPClearReg;
int m_bboxleft;
int m_bboxtop;
int m_bboxright;
int m_bboxbottom;
u16 m_tokenReg;
static bool bProcessFifoToLoWatermark = false;
static bool bProcessFifoAllDistance = false;
volatile bool isPossibleWaitingSetDrawDone = false;
volatile bool interruptSet= false;
volatile bool interruptWaiting= false;
volatile bool interruptTokenWaiting = false;
volatile bool interruptFinishWaiting = false;
volatile bool OnOverflow = false;
bool IsOnThread()
{
return SConfig::GetInstance().m_LocalCoreStartupParameter.bCPUThread;
}
void UpdateInterrupts_Wrapper(u64 userdata, int cyclesLate)
{
UpdateInterrupts(userdata);
}
void DoState(PointerWrap &p)
{
p.Do(m_CPStatusReg);
p.Do(m_CPCtrlReg);
p.Do(m_CPClearReg);
p.Do(m_bboxleft);
p.Do(m_bboxtop);
p.Do(m_bboxright);
p.Do(m_bboxbottom);
p.Do(m_tokenReg);
p.Do(fifo);
p.Do(bProcessFifoToLoWatermark);
p.Do(bProcessFifoAllDistance);
p.Do(isPossibleWaitingSetDrawDone);
p.Do(interruptSet);
p.Do(interruptWaiting);
p.Do(interruptTokenWaiting);
p.Do(interruptFinishWaiting);
p.Do(OnOverflow);
}
inline void WriteLow (volatile u32& _reg, u16 lowbits) {Common::AtomicStore(_reg,(_reg & 0xFFFF0000) | lowbits);}
inline void WriteHigh(volatile u32& _reg, u16 highbits) {Common::AtomicStore(_reg,(_reg & 0x0000FFFF) | ((u32)highbits << 16));}
inline u16 ReadLow (u32 _reg) {return (u16)(_reg & 0xFFFF);}
inline u16 ReadHigh (u32 _reg) {return (u16)(_reg >> 16);}
void Init()
{
m_CPStatusReg.Hex = 0;
m_CPStatusReg.CommandIdle = 1;
m_CPStatusReg.ReadIdle = 1;
m_CPCtrlReg.Hex = 0;
m_CPClearReg.Hex = 0;
m_bboxleft = 0;
m_bboxtop = 0;
m_bboxright = 640;
m_bboxbottom = 480;
m_tokenReg = 0;
memset(&fifo,0,sizeof(fifo));
fifo.CPCmdIdle = 1 ;
fifo.CPReadIdle = 1;
fifo.bFF_Breakpoint = 0;
fifo.bFF_HiWatermark = 0;
fifo.bFF_HiWatermarkInt = 0;
fifo.bFF_LoWatermark = 0;
fifo.bFF_LoWatermarkInt = 0;
interruptSet = false;
interruptWaiting = false;
interruptFinishWaiting = false;
interruptTokenWaiting = false;
bProcessFifoToLoWatermark = false;
bProcessFifoAllDistance = false;
isPossibleWaitingSetDrawDone = false;
OnOverflow = false;
et_UpdateInterrupts = CoreTiming::RegisterEvent("UpdateInterrupts", UpdateInterrupts_Wrapper);
}
void Read16(u16& _rReturnValue, const u32 _Address)
{
INFO_LOG(COMMANDPROCESSOR, "(r): 0x%08x", _Address);
ProcessFifoEvents();
switch (_Address & 0xFFF)
{
case STATUS_REGISTER:
SetCpStatusRegister();
_rReturnValue = m_CPStatusReg.Hex;
return;
case CTRL_REGISTER: _rReturnValue = m_CPCtrlReg.Hex; return;
case CLEAR_REGISTER:
_rReturnValue = m_CPClearReg.Hex;
PanicAlert("CommandProcessor:: CPU reads from CLEAR_REGISTER!");
ERROR_LOG(COMMANDPROCESSOR, "(r) clear: 0x%04x", _rReturnValue);
return;
case FIFO_TOKEN_REGISTER: _rReturnValue = m_tokenReg; return;
case FIFO_BOUNDING_BOX_LEFT: _rReturnValue = m_bboxleft; return;
case FIFO_BOUNDING_BOX_RIGHT: _rReturnValue = m_bboxright; return;
case FIFO_BOUNDING_BOX_TOP: _rReturnValue = m_bboxtop; return;
case FIFO_BOUNDING_BOX_BOTTOM: _rReturnValue = m_bboxbottom; return;
case FIFO_BASE_LO: _rReturnValue = ReadLow (fifo.CPBase); return;
case FIFO_BASE_HI: _rReturnValue = ReadHigh(fifo.CPBase); return;
case FIFO_END_LO: _rReturnValue = ReadLow (fifo.CPEnd); return;
case FIFO_END_HI: _rReturnValue = ReadHigh(fifo.CPEnd); return;
case FIFO_HI_WATERMARK_LO: _rReturnValue = ReadLow (fifo.CPHiWatermark); return;
case FIFO_HI_WATERMARK_HI: _rReturnValue = ReadHigh(fifo.CPHiWatermark); return;
case FIFO_LO_WATERMARK_LO: _rReturnValue = ReadLow (fifo.CPLoWatermark); return;
case FIFO_LO_WATERMARK_HI: _rReturnValue = ReadHigh(fifo.CPLoWatermark); return;
case FIFO_RW_DISTANCE_LO:
_rReturnValue = ReadLow (fifo.CPReadWriteDistance);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_RW_DISTANCE_LO : %04x", _rReturnValue);
return;
case FIFO_RW_DISTANCE_HI:
_rReturnValue = ReadHigh(fifo.CPReadWriteDistance);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_RW_DISTANCE_HI : %04x", _rReturnValue);
return;
case FIFO_WRITE_POINTER_LO:
_rReturnValue = ReadLow (fifo.CPWritePointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_WRITE_POINTER_LO : %04x", _rReturnValue);
return;
case FIFO_WRITE_POINTER_HI:
_rReturnValue = ReadHigh(fifo.CPWritePointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_WRITE_POINTER_HI : %04x", _rReturnValue);
return;
case FIFO_READ_POINTER_LO:
if (IsOnThread())
_rReturnValue = ReadLow (fifo.SafeCPReadPointer);
else
_rReturnValue = ReadLow (fifo.CPReadPointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_READ_POINTER_LO : %04x", _rReturnValue);
return;
case FIFO_READ_POINTER_HI:
if (IsOnThread())
_rReturnValue = ReadHigh (fifo.SafeCPReadPointer);
else
_rReturnValue = ReadHigh (fifo.CPReadPointer);
DEBUG_LOG(COMMANDPROCESSOR, "read FIFO_READ_POINTER_HI : %04x", _rReturnValue);
return;
case FIFO_BP_LO: _rReturnValue = ReadLow (fifo.CPBreakpoint); return;
case FIFO_BP_HI: _rReturnValue = ReadHigh(fifo.CPBreakpoint); return;
case XF_RASBUSY_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_RASBUSY_L: %04x", _rReturnValue);
return;
case XF_RASBUSY_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_RASBUSY_H: %04x", _rReturnValue);
return;
case XF_CLKS_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_CLKS_L: %04x", _rReturnValue);
return;
case XF_CLKS_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_CLKS_H: %04x", _rReturnValue);
return;
case XF_WAIT_IN_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_IN_L: %04x", _rReturnValue);
return;
case XF_WAIT_IN_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_IN_H: %04x", _rReturnValue);
return;
case XF_WAIT_OUT_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_OUT_L: %04x", _rReturnValue);
return;
case XF_WAIT_OUT_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from XF_WAIT_OUT_H: %04x", _rReturnValue);
return;
case VCACHE_METRIC_CHECK_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_CHECK_L: %04x", _rReturnValue);
return;
case VCACHE_METRIC_CHECK_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_CHECK_H: %04x", _rReturnValue);
return;
case VCACHE_METRIC_MISS_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_MISS_L: %04x", _rReturnValue);
return;
case VCACHE_METRIC_MISS_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_MISS_H: %04x", _rReturnValue);
return;
case VCACHE_METRIC_STALL_L:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_STALL_L: %04x", _rReturnValue);
return;
case VCACHE_METRIC_STALL_H:
_rReturnValue = 0; // TODO: Figure out the true value
DEBUG_LOG(COMMANDPROCESSOR, "Read from VCACHE_METRIC_STALL_H: %04x", _rReturnValue);
return;
case CLKS_PER_VTX_OUT:
_rReturnValue = 4; //Number of clocks per vertex.. TODO: Calculate properly
DEBUG_LOG(COMMANDPROCESSOR, "Read from CLKS_PER_VTX_OUT: %04x", _rReturnValue);
return;
default:
_rReturnValue = 0;
WARN_LOG(COMMANDPROCESSOR, "(r16) unknown CP reg @ %08x", _Address);
return;
}
return;
}
void Write16(const u16 _Value, const u32 _Address)
{
INFO_LOG(COMMANDPROCESSOR, "(write16): 0x%04x @ 0x%08x",_Value,_Address);
switch (_Address & 0xFFF)
{
case STATUS_REGISTER:
{
// This should be Read-Only
ERROR_LOG(COMMANDPROCESSOR,"\t write to STATUS_REGISTER : %04x", _Value);
PanicAlert("CommandProcessor:: CPU writes to STATUS_REGISTER!");
}
break;
case CTRL_REGISTER:
{
UCPCtrlReg tmpCtrl(_Value);
m_CPCtrlReg.Hex = tmpCtrl.Hex;
INFO_LOG(COMMANDPROCESSOR,"\t Write to CTRL_REGISTER : %04x", _Value);
SetCpControlRegister();
}
break;
case CLEAR_REGISTER:
{
UCPClearReg tmpCtrl(_Value);
m_CPClearReg.Hex = tmpCtrl.Hex;
DEBUG_LOG(COMMANDPROCESSOR,"\t write to CLEAR_REGISTER : %04x", _Value);
}
break;
case PERF_SELECT:
// Seems to select which set of perf registers should be exposed.
DEBUG_LOG(COMMANDPROCESSOR, "write to PERF_SELECT: %04x", _Value);
break;
// Fifo Registers
case FIFO_TOKEN_REGISTER:
m_tokenReg = _Value;
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_TOKEN_REGISTER : %04x", _Value);
break;
case FIFO_BASE_LO:
WriteLow ((u32 &)fifo.CPBase, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_BASE_LO : %04x", _Value);
break;
case FIFO_BASE_HI:
WriteHigh((u32 &)fifo.CPBase, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_BASE_HI : %04x", _Value);
break;
case FIFO_END_LO:
WriteLow ((u32 &)fifo.CPEnd, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_END_LO : %04x", _Value);
break;
case FIFO_END_HI:
WriteHigh((u32 &)fifo.CPEnd, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_END_HI : %04x", _Value);
break;
case FIFO_WRITE_POINTER_LO:
WriteLow ((u32 &)fifo.CPWritePointer, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_WRITE_POINTER_LO : %04x", _Value);
break;
case FIFO_WRITE_POINTER_HI:
WriteHigh((u32 &)fifo.CPWritePointer, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_WRITE_POINTER_HI : %04x", _Value);
break;
case FIFO_READ_POINTER_LO:
WriteLow ((u32 &)fifo.CPReadPointer, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_READ_POINTER_LO : %04x", _Value);
break;
case FIFO_READ_POINTER_HI:
WriteHigh((u32 &)fifo.CPReadPointer, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_READ_POINTER_HI : %04x", _Value);
break;
case FIFO_HI_WATERMARK_LO:
WriteLow ((u32 &)fifo.CPHiWatermark, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_HI_WATERMARK_LO : %04x", _Value);
break;
case FIFO_HI_WATERMARK_HI:
WriteHigh((u32 &)fifo.CPHiWatermark, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_HI_WATERMARK_HI : %04x", _Value);
break;
case FIFO_LO_WATERMARK_LO:
WriteLow ((u32 &)fifo.CPLoWatermark, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_LO_WATERMARK_LO : %04x", _Value);
break;
case FIFO_LO_WATERMARK_HI:
WriteHigh((u32 &)fifo.CPLoWatermark, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"\t write to FIFO_LO_WATERMARK_HI : %04x", _Value);
break;
case FIFO_BP_LO:
WriteLow ((u32 &)fifo.CPBreakpoint, _Value & 0xFFE0);
DEBUG_LOG(COMMANDPROCESSOR,"write to FIFO_BP_LO : %04x", _Value);
break;
case FIFO_BP_HI:
WriteHigh((u32 &)fifo.CPBreakpoint, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"write to FIFO_BP_HI : %04x", _Value);
break;
case FIFO_RW_DISTANCE_HI:
WriteHigh((u32 &)fifo.CPReadWriteDistance, _Value);
DEBUG_LOG(COMMANDPROCESSOR,"try to write to FIFO_RW_DISTANCE_HI : %04x", _Value);
break;
case FIFO_RW_DISTANCE_LO:
WriteLow((u32 &)fifo.CPReadWriteDistance, _Value & 0xFFE0);
if (fifo.CPReadWriteDistance == 0)
{
GPFifo::ResetGatherPipe();
ResetVideoBuffer();
}else
{
ResetVideoBuffer();
}
IncrementCheckContextId();
DEBUG_LOG(COMMANDPROCESSOR,"try to write to FIFO_RW_DISTANCE_LO : %04x", _Value);
break;
default:
WARN_LOG(COMMANDPROCESSOR, "(w16) unknown CP reg write %04x @ %08x", _Value, _Address);
}
if (!IsOnThread())
RunGpu();
ProcessFifoEvents();
}
void Read32(u32& _rReturnValue, const u32 _Address)
{
_rReturnValue = 0;
_dbg_assert_msg_(COMMANDPROCESSOR, 0, "Read32 from CommandProccessor at 0x%08x", _Address);
}
void Write32(const u32 _Data, const u32 _Address)
{
_dbg_assert_msg_(COMMANDPROCESSOR, 0, "Write32 at CommandProccessor at 0x%08x", _Address);
}
void STACKALIGN GatherPipeBursted()
{
ProcessFifoEvents();
// if we aren't linked, we don't care about gather pipe data
if (!m_CPCtrlReg.GPLinkEnable)
{
if (!IsOnThread())
RunGpu();
return;
}
if (IsOnThread())
SetOverflowStatusFromGatherPipe();
// update the fifo-pointer
if (fifo.CPWritePointer >= fifo.CPEnd)
fifo.CPWritePointer = fifo.CPBase;
else
fifo.CPWritePointer += GATHER_PIPE_SIZE;
Common::AtomicAdd(fifo.CPReadWriteDistance, GATHER_PIPE_SIZE);
if (!IsOnThread())
{
RunGpu();
}
else
{
if(fifo.CPReadWriteDistance == fifo.CPEnd - fifo.CPBase - 32)
{
if(!OnOverflow)
NOTICE_LOG(COMMANDPROCESSOR,"FIFO is almost in overflown, BreakPoint: %i", fifo.bFF_Breakpoint);
OnOverflow = true;
while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable &&
fifo.CPReadWriteDistance > fifo.CPEnd - fifo.CPBase - 64)
Common::YieldCPU();
}
else
{
OnOverflow = false;
}
}
_assert_msg_(COMMANDPROCESSOR, fifo.CPReadWriteDistance <= fifo.CPEnd - fifo.CPBase,
"FIFO is overflown by GatherPipe !\nCPU thread is too fast!");
// check if we are in sync
_assert_msg_(COMMANDPROCESSOR, fifo.CPWritePointer == ProcessorInterface::Fifo_CPUWritePointer, "FIFOs linked but out of sync");
_assert_msg_(COMMANDPROCESSOR, fifo.CPBase == ProcessorInterface::Fifo_CPUBase, "FIFOs linked but out of sync");
_assert_msg_(COMMANDPROCESSOR, fifo.CPEnd == ProcessorInterface::Fifo_CPUEnd, "FIFOs linked but out of sync");
}
void UpdateInterrupts(u64 userdata)
{
if (userdata)
{
interruptSet = true;
INFO_LOG(COMMANDPROCESSOR,"Interrupt set");
ProcessorInterface::SetInterrupt(INT_CAUSE_CP, true);
}
else
{
interruptSet = false;
INFO_LOG(COMMANDPROCESSOR,"Interrupt cleared");
ProcessorInterface::SetInterrupt(INT_CAUSE_CP, false);
}
interruptWaiting = false;
}
void UpdateInterruptsFromVideoBackend(u64 userdata)
{
CoreTiming::ScheduleEvent_Threadsafe(0, et_UpdateInterrupts, userdata);
}
// This is called by the ProcessorInterface when PI_FIFO_RESET is written to.
void AbortFrame()
{
}
void SetOverflowStatusFromGatherPipe()
{
if (!fifo.bFF_HiWatermarkInt) return;
fifo.bFF_HiWatermark = (fifo.CPReadWriteDistance > fifo.CPHiWatermark);
fifo.bFF_LoWatermark = (fifo.CPReadWriteDistance < fifo.CPLoWatermark);
bool interrupt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt &&
m_CPCtrlReg.GPLinkEnable && m_CPCtrlReg.GPReadEnable;
if (interrupt != interruptSet && interrupt)
CommandProcessor::UpdateInterrupts(true);
}
void SetCpStatus()
{
// overflow & underflow check
fifo.bFF_HiWatermark = (fifo.CPReadWriteDistance > fifo.CPHiWatermark);
fifo.bFF_LoWatermark = (fifo.CPReadWriteDistance < fifo.CPLoWatermark);
// breakpoint
if (fifo.bFF_BPEnable)
{
if (fifo.CPBreakpoint == fifo.CPReadPointer)
{
if (!fifo.bFF_Breakpoint)
{
INFO_LOG(COMMANDPROCESSOR, "Hit breakpoint at %i", fifo.CPReadPointer);
fifo.bFF_Breakpoint = true;
IncrementCheckContextId();
}
}
else
{
if (fifo.bFF_Breakpoint)
INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer);
fifo.bFF_Breakpoint = false;
}
}
else
{
if (fifo.bFF_Breakpoint)
INFO_LOG(COMMANDPROCESSOR, "Cleared breakpoint at %i", fifo.CPReadPointer);
fifo.bFF_Breakpoint = false;
}
bool bpInt = fifo.bFF_Breakpoint && fifo.bFF_BPInt;
bool ovfInt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt;
bool undfInt = fifo.bFF_LoWatermark && fifo.bFF_LoWatermarkInt;
bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable;
if (interrupt != interruptSet && !interruptWaiting)
{
u64 userdata = interrupt?1:0;
if (IsOnThread())
{
interruptWaiting = true;
CommandProcessor::UpdateInterruptsFromVideoBackend(userdata);
}
else
CommandProcessor::UpdateInterrupts(userdata);
}
}
void ProcessFifoToLoWatermark()
{
if (IsOnThread())
{
while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable &&
fifo.CPReadWriteDistance > fifo.CPLoWatermark && !AtBreakpoint())
Common::YieldCPU();
}
bProcessFifoToLoWatermark = false;
}
void ProcessFifoAllDistance()
{
if (IsOnThread())
{
while (!CommandProcessor::interruptWaiting && fifo.bFF_GPReadEnable &&
fifo.CPReadWriteDistance && !AtBreakpoint())
Common::YieldCPU();
}
bProcessFifoAllDistance = false;
}
void ProcessFifoEvents()
{
if (IsOnThread() && (interruptWaiting || interruptFinishWaiting || interruptTokenWaiting))
CoreTiming::ProcessFifoWaitEvents();
}
void Shutdown()
{
}
void SetCpStatusRegister()
{
// Here always there is one fifo attached to the GPU
m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint;
m_CPStatusReg.ReadIdle = (fifo.CPReadPointer == fifo.CPWritePointer) || (fifo.CPReadPointer == fifo.CPBreakpoint);
m_CPStatusReg.CommandIdle = !fifo.CPReadWriteDistance;
m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark;
m_CPStatusReg.OverflowHiWatermark = fifo.bFF_HiWatermark;
INFO_LOG(COMMANDPROCESSOR,"\t Read from STATUS_REGISTER : %04x", m_CPStatusReg.Hex);
DEBUG_LOG(COMMANDPROCESSOR, "(r) status: iBP %s | fReadIdle %s | fCmdIdle %s | iOvF %s | iUndF %s"
, m_CPStatusReg.Breakpoint ? "ON" : "OFF"
, m_CPStatusReg.ReadIdle ? "ON" : "OFF"
, m_CPStatusReg.CommandIdle ? "ON" : "OFF"
, m_CPStatusReg.OverflowHiWatermark ? "ON" : "OFF"
, m_CPStatusReg.UnderflowLoWatermark ? "ON" : "OFF"
);
}
void SetCpControlRegister()
{
// If the new fifo is being attached We make sure there wont be SetFinish event pending.
// This protection fix eternal darkness booting, because the second SetFinish event when it is booting
// seems invalid or has a bug and hang the game.
if (!fifo.bFF_GPReadEnable && m_CPCtrlReg.GPReadEnable && !m_CPCtrlReg.BPEnable)
{
PixelEngine::ResetSetFinish();
}
fifo.bFF_BPInt = m_CPCtrlReg.BPInt;
fifo.bFF_BPEnable = m_CPCtrlReg.BPEnable;
fifo.bFF_HiWatermarkInt = m_CPCtrlReg.FifoOverflowIntEnable;
fifo.bFF_LoWatermarkInt = m_CPCtrlReg.FifoUnderflowIntEnable;
fifo.bFF_GPLinkEnable = m_CPCtrlReg.GPLinkEnable;
if(m_CPCtrlReg.GPReadEnable && m_CPCtrlReg.GPLinkEnable)
{
ProcessorInterface::Fifo_CPUWritePointer = fifo.CPWritePointer;
ProcessorInterface::Fifo_CPUBase = fifo.CPBase;
ProcessorInterface::Fifo_CPUEnd = fifo.CPEnd;
}
// If overflown happens process the fifo to LoWatemark
if (bProcessFifoToLoWatermark)
ProcessFifoToLoWatermark();
if(fifo.bFF_GPReadEnable && !m_CPCtrlReg.GPReadEnable)
{
fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable;
while(fifo.isGpuReadingData) Common::YieldCPU();
}
else
{
fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable;
}
DEBUG_LOG(COMMANDPROCESSOR, "\t GPREAD %s | BP %s | Int %s | OvF %s | UndF %s | LINK %s"
, fifo.bFF_GPReadEnable ? "ON" : "OFF"
, fifo.bFF_BPEnable ? "ON" : "OFF"
, fifo.bFF_BPInt ? "ON" : "OFF"
, m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF"
, m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF"
, m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF"
);
}
void SetCpClearRegister()
{
if (IsOnThread())
{
if (!m_CPClearReg.ClearFifoUnderflow && m_CPClearReg.ClearFifoOverflow)
bProcessFifoToLoWatermark = true;
}
}
} // end of namespace CommandProcessor