dolphin/Source/Core/VideoCommon/VideoCommon.h

135 lines
3.6 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "VideoCommon/BPMemory.h"
// These are accurate (disregarding AA modes).
constexpr u32 EFB_WIDTH = 640;
constexpr u32 EFB_HEIGHT = 528;
// Max XFB width is 720. You can only copy out 640 wide areas of efb to XFB
// so you need multiple copies to do the full width.
// The VI can do horizontal scaling (TODO: emulate).
constexpr u32 MAX_XFB_WIDTH = 720;
// Although EFB height is 528, 576-line XFB's can be created either with
// vertical scaling by the EFB copy operation or copying to multiple XFB's
// that are next to each other in memory (TODO: handle that situation).
constexpr u32 MAX_XFB_HEIGHT = 576;
#define PRIM_LOG(...) DEBUG_LOG_FMT(VIDEO, ##__VA_ARGS__)
// warning: mapping buffer should be disabled to use this
// #define LOG_VTX() DEBUG_LOG_FMT(VIDEO, "vtx: {} {} {}, ",
// ((float*)g_vertex_manager_write_ptr)[-3],
// ((float*)g_vertex_manager_write_ptr)[-2],
// ((float*)g_vertex_manager_write_ptr)[-1]);
#define LOG_VTX()
enum class APIType
{
OpenGL,
D3D,
Vulkan,
Nothing
};
inline u32 RGBA8ToRGBA6ToRGBA8(u32 src)
{
u32 color = src;
color &= 0xFCFCFCFC;
color |= (color >> 6) & 0x03030303;
return color;
}
inline u32 RGBA8ToRGB565ToRGBA8(u32 src)
{
u32 color = (src & 0xF8FCF8);
color |= (color >> 5) & 0x070007;
color |= (color >> 6) & 0x000300;
color |= 0xFF000000;
return color;
}
inline u32 Z24ToZ16ToZ24(u32 src)
{
return (src & 0xFFFF00) | (src >> 16);
}
inline u32 CompressZ16(u32 z24depth, DepthFormat format)
{
// Flipper offers a number of choices for 16bit Z formats that adjust
// where the bulk of the precision lies.
if (format == DepthFormat::ZLINEAR)
{
// This is just a linear depth buffer with 16 bits of precision
return z24depth >> 8;
}
// ZNEAR/ZMID/ZFAR are custom floating point formats with 2/3/4 bits of exponent
// The exponent is simply the number of leading ones that have been removed
// The first zero bit is skipped and not stored. The mantissa contains the next 14/13/12 bits
// If exponent is at the MAX (3, 7, or 12) then the next bit might still be a one, and can't
// be skipped, so the mantissa simply contains the next 14/13/12 bits
u32 leading_ones = Common::CountLeadingZeros((~z24depth) << 8);
bool next_bit_is_one = false; // AKA: Did we clamp leading_ones?
u32 exp_bits;
switch (format)
{
case DepthFormat::ZNEAR:
exp_bits = 2;
if (leading_ones >= 3u)
{
leading_ones = 3u;
next_bit_is_one = true;
}
break;
case DepthFormat::ZMID:
exp_bits = 3;
if (leading_ones >= 7u)
{
leading_ones = 7u;
next_bit_is_one = true;
}
break;
case DepthFormat::ZFAR:
exp_bits = 4;
if (leading_ones >= 12u)
{
// The hardware implementation only uses values 0 to 12 in the exponent
leading_ones = 12u;
next_bit_is_one = true;
}
break;
default:
return z24depth >> 8;
}
u32 mantissa_bits = 16 - exp_bits;
// Calculate which bits we need to extract from z24depth for our mantissa
u32 top = std::max<u32>(24 - leading_ones, mantissa_bits);
if (!next_bit_is_one)
{
top -= 1; // We know the next bit is zero, so we don't need to include it.
}
u32 bottom = top - mantissa_bits;
u32 exponent = leading_ones << mantissa_bits; // Upper bits contain exponent
u32 mantissa = Common::ExtractBits(z24depth, bottom, top - 1);
return exponent | mantissa;
}