dolphin/Source/Core/VideoCommon/VertexManagerBase.cpp

834 lines
28 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/VertexManagerBase.h"
#include <array>
#include <cmath>
#include <memory>
#include "Common/BitSet.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Core/Analytics.h"
#include "Core/ConfigManager.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/GeometryShaderManager.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/SamplerCommon.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
std::unique_ptr<VertexManagerBase> g_vertex_manager;
// GX primitive -> RenderState primitive, no primitive restart
constexpr std::array<PrimitiveType, 8> primitive_from_gx{{
PrimitiveType::Triangles, // GX_DRAW_QUADS
PrimitiveType::Triangles, // GX_DRAW_QUADS_2
PrimitiveType::Triangles, // GX_DRAW_TRIANGLES
PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_STRIP
PrimitiveType::Triangles, // GX_DRAW_TRIANGLE_FAN
PrimitiveType::Lines, // GX_DRAW_LINES
PrimitiveType::Lines, // GX_DRAW_LINE_STRIP
PrimitiveType::Points, // GX_DRAW_POINTS
}};
// GX primitive -> RenderState primitive, using primitive restart
constexpr std::array<PrimitiveType, 8> primitive_from_gx_pr{{
PrimitiveType::TriangleStrip, // GX_DRAW_QUADS
PrimitiveType::TriangleStrip, // GX_DRAW_QUADS_2
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLES
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_STRIP
PrimitiveType::TriangleStrip, // GX_DRAW_TRIANGLE_FAN
PrimitiveType::Lines, // GX_DRAW_LINES
PrimitiveType::Lines, // GX_DRAW_LINE_STRIP
PrimitiveType::Points, // GX_DRAW_POINTS
}};
// Due to the BT.601 standard which the GameCube is based on being a compromise
// between PAL and NTSC, neither standard gets square pixels. They are each off
// by ~9% in opposite directions.
// Just in case any game decides to take this into account, we do both these
// tests with a large amount of slop.
static constexpr float ASPECT_RATIO_SLOP = 0.11f;
static bool IsAnamorphicProjection(const Projection::Raw& projection, const Viewport& viewport)
{
// If ratio between our projection and viewport aspect ratios is similar to 16:9 / 4:3
// we have an anamorphic projection.
static constexpr float IDEAL_RATIO = (16 / 9.f) / (4 / 3.f);
const float projection_ar = projection[2] / projection[0];
const float viewport_ar = viewport.wd / viewport.ht;
return std::abs(std::abs(projection_ar / viewport_ar) - IDEAL_RATIO) <
IDEAL_RATIO * ASPECT_RATIO_SLOP;
}
static bool IsNormalProjection(const Projection::Raw& projection, const Viewport& viewport)
{
const float projection_ar = projection[2] / projection[0];
const float viewport_ar = viewport.wd / viewport.ht;
return std::abs(std::abs(projection_ar / viewport_ar) - 1) < ASPECT_RATIO_SLOP;
}
VertexManagerBase::VertexManagerBase()
: m_cpu_vertex_buffer(MAXVBUFFERSIZE), m_cpu_index_buffer(MAXIBUFFERSIZE)
{
}
VertexManagerBase::~VertexManagerBase() = default;
bool VertexManagerBase::Initialize()
{
m_index_generator.Init();
return true;
}
u32 VertexManagerBase::GetRemainingSize() const
{
return static_cast<u32>(m_end_buffer_pointer - m_cur_buffer_pointer);
}
void VertexManagerBase::AddIndices(int primitive, u32 num_vertices)
{
m_index_generator.AddIndices(primitive, num_vertices);
}
DataReader VertexManagerBase::PrepareForAdditionalData(int primitive, u32 count, u32 stride,
bool cullall)
{
// Flush all EFB pokes. Since the buffer is shared, we can't draw pokes+primitives concurrently.
g_framebuffer_manager->FlushEFBPokes();
// The SSE vertex loader can write up to 4 bytes past the end
u32 const needed_vertex_bytes = count * stride + 4;
// We can't merge different kinds of primitives, so we have to flush here
PrimitiveType new_primitive_type = g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ?
primitive_from_gx_pr[primitive] :
primitive_from_gx[primitive];
if (m_current_primitive_type != new_primitive_type)
{
Flush();
// Have to update the rasterization state for point/line cull modes.
m_current_primitive_type = new_primitive_type;
SetRasterizationStateChanged();
}
// Check for size in buffer, if the buffer gets full, call Flush()
if (!m_is_flushed &&
(count > m_index_generator.GetRemainingIndices() || count > GetRemainingIndices(primitive) ||
needed_vertex_bytes > GetRemainingSize()))
{
Flush();
if (count > m_index_generator.GetRemainingIndices())
{
ERROR_LOG_FMT(VIDEO, "Too little remaining index values. Use 32-bit or reset them on flush.");
}
if (count > GetRemainingIndices(primitive))
{
ERROR_LOG_FMT(VIDEO, "VertexManager: Buffer not large enough for all indices! "
"Increase MAXIBUFFERSIZE or we need primitive breaking after all.");
}
if (needed_vertex_bytes > GetRemainingSize())
{
ERROR_LOG_FMT(VIDEO, "VertexManager: Buffer not large enough for all vertices! "
"Increase MAXVBUFFERSIZE or we need primitive breaking after all.");
}
}
m_cull_all = cullall;
// need to alloc new buffer
if (m_is_flushed)
{
if (cullall)
{
// This buffer isn't getting sent to the GPU. Just allocate it on the cpu.
m_cur_buffer_pointer = m_base_buffer_pointer = m_cpu_vertex_buffer.data();
m_end_buffer_pointer = m_base_buffer_pointer + m_cpu_vertex_buffer.size();
m_index_generator.Start(m_cpu_index_buffer.data());
}
else
{
ResetBuffer(stride);
}
m_is_flushed = false;
}
return DataReader(m_cur_buffer_pointer, m_end_buffer_pointer);
}
void VertexManagerBase::FlushData(u32 count, u32 stride)
{
m_cur_buffer_pointer += count * stride;
}
u32 VertexManagerBase::GetRemainingIndices(int primitive) const
{
const u32 index_len = MAXIBUFFERSIZE - m_index_generator.GetIndexLen();
if (g_Config.backend_info.bSupportsPrimitiveRestart)
{
switch (primitive)
{
case OpcodeDecoder::GX_DRAW_QUADS:
case OpcodeDecoder::GX_DRAW_QUADS_2:
return index_len / 5 * 4;
case OpcodeDecoder::GX_DRAW_TRIANGLES:
return index_len / 4 * 3;
case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP:
return index_len / 1 - 1;
case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN:
return index_len / 6 * 4 + 1;
case OpcodeDecoder::GX_DRAW_LINES:
return index_len;
case OpcodeDecoder::GX_DRAW_LINE_STRIP:
return index_len / 2 + 1;
case OpcodeDecoder::GX_DRAW_POINTS:
return index_len;
default:
return 0;
}
}
else
{
switch (primitive)
{
case OpcodeDecoder::GX_DRAW_QUADS:
case OpcodeDecoder::GX_DRAW_QUADS_2:
return index_len / 6 * 4;
case OpcodeDecoder::GX_DRAW_TRIANGLES:
return index_len;
case OpcodeDecoder::GX_DRAW_TRIANGLE_STRIP:
return index_len / 3 + 2;
case OpcodeDecoder::GX_DRAW_TRIANGLE_FAN:
return index_len / 3 + 2;
case OpcodeDecoder::GX_DRAW_LINES:
return index_len;
case OpcodeDecoder::GX_DRAW_LINE_STRIP:
return index_len / 2 + 1;
case OpcodeDecoder::GX_DRAW_POINTS:
return index_len;
default:
return 0;
}
}
}
auto VertexManagerBase::ResetFlushAspectRatioCount() -> FlushStatistics
{
const auto result = m_flush_statistics;
m_flush_statistics = {};
return result;
}
void VertexManagerBase::ResetBuffer(u32 vertex_stride)
{
m_base_buffer_pointer = m_cpu_vertex_buffer.data();
m_cur_buffer_pointer = m_cpu_vertex_buffer.data();
m_end_buffer_pointer = m_base_buffer_pointer + m_cpu_vertex_buffer.size();
m_index_generator.Start(m_cpu_index_buffer.data());
}
void VertexManagerBase::CommitBuffer(u32 num_vertices, u32 vertex_stride, u32 num_indices,
u32* out_base_vertex, u32* out_base_index)
{
*out_base_vertex = 0;
*out_base_index = 0;
}
void VertexManagerBase::DrawCurrentBatch(u32 base_index, u32 num_indices, u32 base_vertex)
{
// If bounding box is enabled, we need to flush any changes first, then invalidate what we have.
if (BoundingBox::IsEnabled() && g_ActiveConfig.bBBoxEnable &&
g_ActiveConfig.backend_info.bSupportsBBox)
{
g_renderer->BBoxFlush();
}
g_renderer->DrawIndexed(base_index, num_indices, base_vertex);
}
void VertexManagerBase::UploadUniforms()
{
}
void VertexManagerBase::InvalidateConstants()
{
VertexShaderManager::dirty = true;
GeometryShaderManager::dirty = true;
PixelShaderManager::dirty = true;
}
void VertexManagerBase::UploadUtilityUniforms(const void* uniforms, u32 uniforms_size)
{
}
void VertexManagerBase::UploadUtilityVertices(const void* vertices, u32 vertex_stride,
u32 num_vertices, const u16* indices, u32 num_indices,
u32* out_base_vertex, u32* out_base_index)
{
// The GX vertex list should be flushed before any utility draws occur.
ASSERT(m_is_flushed);
// Copy into the buffers usually used for GX drawing.
ResetBuffer(std::max(vertex_stride, 1u));
if (vertices)
{
const u32 copy_size = vertex_stride * num_vertices;
ASSERT((m_cur_buffer_pointer + copy_size) <= m_end_buffer_pointer);
std::memcpy(m_cur_buffer_pointer, vertices, copy_size);
m_cur_buffer_pointer += copy_size;
}
if (indices)
m_index_generator.AddExternalIndices(indices, num_indices, num_vertices);
CommitBuffer(num_vertices, vertex_stride, num_indices, out_base_vertex, out_base_index);
}
u32 VertexManagerBase::GetTexelBufferElementSize(TexelBufferFormat buffer_format)
{
// R8 - 1, R16 - 2, RGBA8 - 4, R32G32 - 8
return 1u << static_cast<u32>(buffer_format);
}
bool VertexManagerBase::UploadTexelBuffer(const void* data, u32 data_size, TexelBufferFormat format,
u32* out_offset)
{
return false;
}
bool VertexManagerBase::UploadTexelBuffer(const void* data, u32 data_size, TexelBufferFormat format,
u32* out_offset, const void* palette_data,
u32 palette_size, TexelBufferFormat palette_format,
u32* palette_offset)
{
return false;
}
void VertexManagerBase::LoadTextures()
{
BitSet32 usedtextures;
for (u32 i = 0; i < bpmem.genMode.numtevstages + 1u; ++i)
if (bpmem.tevorders[i / 2].getEnable(i & 1))
usedtextures[bpmem.tevorders[i / 2].getTexMap(i & 1)] = true;
if (bpmem.genMode.numindstages > 0)
for (unsigned int i = 0; i < bpmem.genMode.numtevstages + 1u; ++i)
if (bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages)
usedtextures[bpmem.tevindref.getTexMap(bpmem.tevind[i].bt)] = true;
for (unsigned int i : usedtextures)
g_texture_cache->Load(i);
g_texture_cache->BindTextures();
}
void VertexManagerBase::Flush()
{
if (m_is_flushed)
return;
m_is_flushed = true;
if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens ||
xfmem.numChan.numColorChans != bpmem.genMode.numcolchans)
{
ERROR_LOG_FMT(
VIDEO,
"Mismatched configuration between XF and BP stages - {}/{} texgens, {}/{} colors. "
"Skipping draw. Please report on the issue tracker.",
xfmem.numTexGen.numTexGens, bpmem.genMode.numtexgens.Value(), xfmem.numChan.numColorChans,
bpmem.genMode.numcolchans.Value());
// Analytics reporting so we can discover which games have this problem, that way when we
// eventually simulate the behavior we have test cases for it.
if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens)
{
DolphinAnalytics::Instance().ReportGameQuirk(
GameQuirk::MISMATCHED_GPU_TEXGENS_BETWEEN_XF_AND_BP);
}
if (xfmem.numChan.numColorChans != bpmem.genMode.numcolchans)
{
DolphinAnalytics::Instance().ReportGameQuirk(
GameQuirk::MISMATCHED_GPU_COLORS_BETWEEN_XF_AND_BP);
}
return;
}
#if defined(_DEBUG) || defined(DEBUGFAST)
PRIM_LOG("frame{}:\n texgen={}, numchan={}, dualtex={}, ztex={}, cole={}, alpe={}, ze={}",
g_ActiveConfig.iSaveTargetId, xfmem.numTexGen.numTexGens, xfmem.numChan.numColorChans,
xfmem.dualTexTrans.enabled, bpmem.ztex2.op.Value(), bpmem.blendmode.colorupdate.Value(),
bpmem.blendmode.alphaupdate.Value(), bpmem.zmode.updateenable.Value());
for (u32 i = 0; i < xfmem.numChan.numColorChans; ++i)
{
LitChannel* ch = &xfmem.color[i];
PRIM_LOG("colchan{}: matsrc={}, light={:#x}, ambsrc={}, diffunc={}, attfunc={}", i,
ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(),
ch->diffusefunc.Value(), ch->attnfunc.Value());
ch = &xfmem.alpha[i];
PRIM_LOG("alpchan{}: matsrc={}, light={:#x}, ambsrc={}, diffunc={}, attfunc={}", i,
ch->matsource.Value(), ch->GetFullLightMask(), ch->ambsource.Value(),
ch->diffusefunc.Value(), ch->attnfunc.Value());
}
for (u32 i = 0; i < xfmem.numTexGen.numTexGens; ++i)
{
TexMtxInfo tinfo = xfmem.texMtxInfo[i];
if (tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP)
tinfo.hex &= 0x7ff;
if (tinfo.texgentype != XF_TEXGEN_REGULAR)
tinfo.projection = 0;
PRIM_LOG("txgen{}: proj={}, input={}, gentype={}, srcrow={}, embsrc={}, emblght={}, "
"postmtx={}, postnorm={}",
i, tinfo.projection.Value(), tinfo.inputform.Value(), tinfo.texgentype.Value(),
tinfo.sourcerow.Value(), tinfo.embosssourceshift.Value(),
tinfo.embosslightshift.Value(), xfmem.postMtxInfo[i].index.Value(),
xfmem.postMtxInfo[i].normalize.Value());
}
PRIM_LOG("pixel: tev={}, ind={}, texgen={}, dstalpha={}, alphatest={:#x}",
bpmem.genMode.numtevstages.Value() + 1, bpmem.genMode.numindstages.Value(),
bpmem.genMode.numtexgens.Value(), bpmem.dstalpha.enable.Value(),
(bpmem.alpha_test.hex >> 16) & 0xff);
#endif
// Track some stats used elsewhere by the anamorphic widescreen heuristic.
if (!SConfig::GetInstance().bWii)
{
const bool is_perspective = xfmem.projection.type == GX_PERSPECTIVE;
auto& counts =
is_perspective ? m_flush_statistics.perspective : m_flush_statistics.orthographic;
if (IsAnamorphicProjection(xfmem.projection.rawProjection, xfmem.viewport))
{
++counts.anamorphic_flush_count;
counts.anamorphic_vertex_count += m_index_generator.GetIndexLen();
}
else if (IsNormalProjection(xfmem.projection.rawProjection, xfmem.viewport))
{
++counts.normal_flush_count;
counts.normal_vertex_count += m_index_generator.GetIndexLen();
}
else
{
++counts.other_flush_count;
counts.other_vertex_count += m_index_generator.GetIndexLen();
}
}
// Calculate ZSlope for zfreeze
VertexShaderManager::SetConstants();
if (!bpmem.genMode.zfreeze)
{
// Must be done after VertexShaderManager::SetConstants()
CalculateZSlope(VertexLoaderManager::GetCurrentVertexFormat());
}
else if (m_zslope.dirty && !m_cull_all) // or apply any dirty ZSlopes
{
PixelShaderManager::SetZSlope(m_zslope.dfdx, m_zslope.dfdy, m_zslope.f0);
m_zslope.dirty = false;
}
if (!m_cull_all)
{
// Now the vertices can be flushed to the GPU. Everything following the CommitBuffer() call
// must be careful to not upload any utility vertices, as the binding will be lost otherwise.
const u32 num_indices = m_index_generator.GetIndexLen();
u32 base_vertex, base_index;
CommitBuffer(m_index_generator.GetNumVerts(),
VertexLoaderManager::GetCurrentVertexFormat()->GetVertexStride(), num_indices,
&base_vertex, &base_index);
// Texture loading can cause palettes to be applied (-> uniforms -> draws).
// Palette application does not use vertices, only a full-screen quad, so this is okay.
// Same with GPU texture decoding, which uses compute shaders.
LoadTextures();
// Now we can upload uniforms, as nothing else will override them.
GeometryShaderManager::SetConstants();
PixelShaderManager::SetConstants();
UploadUniforms();
// Update the pipeline, or compile one if needed.
UpdatePipelineConfig();
UpdatePipelineObject();
if (m_current_pipeline_object)
{
g_renderer->SetPipeline(m_current_pipeline_object);
if (PerfQueryBase::ShouldEmulate())
g_perf_query->EnableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP);
DrawCurrentBatch(base_index, num_indices, base_vertex);
INCSTAT(g_stats.this_frame.num_draw_calls);
if (PerfQueryBase::ShouldEmulate())
g_perf_query->DisableQuery(bpmem.zcontrol.early_ztest ? PQG_ZCOMP_ZCOMPLOC : PQG_ZCOMP);
OnDraw();
// The EFB cache is now potentially stale.
g_framebuffer_manager->FlagPeekCacheAsOutOfDate();
}
}
if (xfmem.numTexGen.numTexGens != bpmem.genMode.numtexgens)
{
ERROR_LOG_FMT(VIDEO,
"xf.numtexgens ({}) does not match bp.numtexgens ({}). Error in command stream.",
xfmem.numTexGen.numTexGens, bpmem.genMode.numtexgens.Value());
}
}
void VertexManagerBase::DoState(PointerWrap& p)
{
if (p.GetMode() == PointerWrap::MODE_READ)
{
// Flush old vertex data before loading state.
Flush();
// Clear all caches that touch RAM
// (? these don't appear to touch any emulation state that gets saved. moved to on load only.)
VertexLoaderManager::MarkAllDirty();
}
p.Do(m_zslope);
}
void VertexManagerBase::CalculateZSlope(NativeVertexFormat* format)
{
float out[12];
float viewOffset[2] = {xfmem.viewport.xOrig - bpmem.scissorOffset.x * 2,
xfmem.viewport.yOrig - bpmem.scissorOffset.y * 2};
if (m_current_primitive_type != PrimitiveType::Triangles &&
m_current_primitive_type != PrimitiveType::TriangleStrip)
{
return;
}
// Global matrix ID.
u32 mtxIdx = g_main_cp_state.matrix_index_a.PosNormalMtxIdx;
const PortableVertexDeclaration vert_decl = format->GetVertexDeclaration();
// Make sure the buffer contains at least 3 vertices.
if ((m_cur_buffer_pointer - m_base_buffer_pointer) < (vert_decl.stride * 3))
return;
// Lookup vertices of the last rendered triangle and software-transform them
// This allows us to determine the depth slope, which will be used if z-freeze
// is enabled in the following flush.
for (unsigned int i = 0; i < 3; ++i)
{
// If this vertex format has per-vertex position matrix IDs, look it up.
if (vert_decl.posmtx.enable)
mtxIdx = VertexLoaderManager::position_matrix_index[3 - i];
if (vert_decl.position.components == 2)
VertexLoaderManager::position_cache[2 - i][2] = 0;
VertexShaderManager::TransformToClipSpace(&VertexLoaderManager::position_cache[2 - i][0],
&out[i * 4], mtxIdx);
// Transform to Screenspace
float inv_w = 1.0f / out[3 + i * 4];
out[0 + i * 4] = out[0 + i * 4] * inv_w * xfmem.viewport.wd + viewOffset[0];
out[1 + i * 4] = out[1 + i * 4] * inv_w * xfmem.viewport.ht + viewOffset[1];
out[2 + i * 4] = out[2 + i * 4] * inv_w * xfmem.viewport.zRange + xfmem.viewport.farZ;
}
float dx31 = out[8] - out[0];
float dx12 = out[0] - out[4];
float dy12 = out[1] - out[5];
float dy31 = out[9] - out[1];
float DF31 = out[10] - out[2];
float DF21 = out[6] - out[2];
float a = DF31 * -dy12 - DF21 * dy31;
float b = dx31 * DF21 + dx12 * DF31;
float c = -dx12 * dy31 - dx31 * -dy12;
// Sometimes we process de-generate triangles. Stop any divide by zeros
if (c == 0)
return;
m_zslope.dfdx = -a / c;
m_zslope.dfdy = -b / c;
m_zslope.f0 = out[2] - (out[0] * m_zslope.dfdx + out[1] * m_zslope.dfdy);
m_zslope.dirty = true;
}
void VertexManagerBase::UpdatePipelineConfig()
{
NativeVertexFormat* vertex_format = VertexLoaderManager::GetCurrentVertexFormat();
if (vertex_format != m_current_pipeline_config.vertex_format)
{
m_current_pipeline_config.vertex_format = vertex_format;
m_current_uber_pipeline_config.vertex_format =
VertexLoaderManager::GetUberVertexFormat(vertex_format->GetVertexDeclaration());
m_pipeline_config_changed = true;
}
VertexShaderUid vs_uid = GetVertexShaderUid();
if (vs_uid != m_current_pipeline_config.vs_uid)
{
m_current_pipeline_config.vs_uid = vs_uid;
m_current_uber_pipeline_config.vs_uid = UberShader::GetVertexShaderUid();
m_pipeline_config_changed = true;
}
PixelShaderUid ps_uid = GetPixelShaderUid();
if (ps_uid != m_current_pipeline_config.ps_uid)
{
m_current_pipeline_config.ps_uid = ps_uid;
m_current_uber_pipeline_config.ps_uid = UberShader::GetPixelShaderUid();
m_pipeline_config_changed = true;
}
GeometryShaderUid gs_uid = GetGeometryShaderUid(GetCurrentPrimitiveType());
if (gs_uid != m_current_pipeline_config.gs_uid)
{
m_current_pipeline_config.gs_uid = gs_uid;
m_current_uber_pipeline_config.gs_uid = gs_uid;
m_pipeline_config_changed = true;
}
if (m_rasterization_state_changed)
{
m_rasterization_state_changed = false;
RasterizationState new_rs = {};
new_rs.Generate(bpmem, m_current_primitive_type);
if (new_rs != m_current_pipeline_config.rasterization_state)
{
m_current_pipeline_config.rasterization_state = new_rs;
m_current_uber_pipeline_config.rasterization_state = new_rs;
m_pipeline_config_changed = true;
}
}
if (m_depth_state_changed)
{
m_depth_state_changed = false;
DepthState new_ds = {};
new_ds.Generate(bpmem);
if (new_ds != m_current_pipeline_config.depth_state)
{
m_current_pipeline_config.depth_state = new_ds;
m_current_uber_pipeline_config.depth_state = new_ds;
m_pipeline_config_changed = true;
}
}
if (m_blending_state_changed)
{
m_blending_state_changed = false;
BlendingState new_bs = {};
new_bs.Generate(bpmem);
if (new_bs != m_current_pipeline_config.blending_state)
{
m_current_pipeline_config.blending_state = new_bs;
m_current_uber_pipeline_config.blending_state = new_bs;
m_pipeline_config_changed = true;
}
}
}
void VertexManagerBase::UpdatePipelineObject()
{
if (!m_pipeline_config_changed)
return;
m_current_pipeline_object = nullptr;
m_pipeline_config_changed = false;
switch (g_ActiveConfig.iShaderCompilationMode)
{
case ShaderCompilationMode::Synchronous:
{
// Ubershaders disabled? Block and compile the specialized shader.
m_current_pipeline_object = g_shader_cache->GetPipelineForUid(m_current_pipeline_config);
}
break;
case ShaderCompilationMode::SynchronousUberShaders:
{
// Exclusive ubershader mode, always use ubershaders.
m_current_pipeline_object =
g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config);
}
break;
case ShaderCompilationMode::AsynchronousUberShaders:
case ShaderCompilationMode::AsynchronousSkipRendering:
{
// Can we background compile shaders? If so, get the pipeline asynchronously.
auto res = g_shader_cache->GetPipelineForUidAsync(m_current_pipeline_config);
if (res)
{
// Specialized shaders are ready, prefer these.
m_current_pipeline_object = *res;
return;
}
if (g_ActiveConfig.iShaderCompilationMode == ShaderCompilationMode::AsynchronousUberShaders)
{
// Specialized shaders not ready, use the ubershaders.
m_current_pipeline_object =
g_shader_cache->GetUberPipelineForUid(m_current_uber_pipeline_config);
}
else
{
// Ensure we try again next draw. Otherwise, if no registers change between frames, the
// object will never be drawn, even when the shader is ready.
m_pipeline_config_changed = true;
}
}
break;
}
}
void VertexManagerBase::OnDraw()
{
m_draw_counter++;
// If we didn't have any CPU access last frame, do nothing.
if (m_scheduled_command_buffer_kicks.empty() || !m_allow_background_execution)
return;
// Check if this draw is scheduled to kick a command buffer.
// The draw counters will always be sorted so a binary search is possible here.
if (std::binary_search(m_scheduled_command_buffer_kicks.begin(),
m_scheduled_command_buffer_kicks.end(), m_draw_counter))
{
// Kick a command buffer on the background thread.
g_renderer->Flush();
}
}
void VertexManagerBase::OnCPUEFBAccess()
{
// Check this isn't another access without any draws inbetween.
if (!m_cpu_accesses_this_frame.empty() && m_cpu_accesses_this_frame.back() == m_draw_counter)
return;
// Store the current draw counter for scheduling in OnEndFrame.
m_cpu_accesses_this_frame.emplace_back(m_draw_counter);
}
void VertexManagerBase::OnEFBCopyToRAM()
{
// If we're not deferring, try to preempt it next frame.
if (!g_ActiveConfig.bDeferEFBCopies)
{
OnCPUEFBAccess();
return;
}
// Otherwise, only execute if we have at least 10 objects between us and the last copy.
const u32 diff = m_draw_counter - m_last_efb_copy_draw_counter;
m_last_efb_copy_draw_counter = m_draw_counter;
if (diff < MINIMUM_DRAW_CALLS_PER_COMMAND_BUFFER_FOR_READBACK)
return;
g_renderer->Flush();
}
void VertexManagerBase::OnEndFrame()
{
m_draw_counter = 0;
m_last_efb_copy_draw_counter = 0;
m_scheduled_command_buffer_kicks.clear();
// If we have no CPU access at all, leave everything in the one command buffer for maximum
// parallelism between CPU/GPU, at the cost of slightly higher latency.
if (m_cpu_accesses_this_frame.empty())
return;
// In order to reduce CPU readback latency, we want to kick a command buffer roughly halfway
// between the draw counters that invoked the readback, or every 250 draws, whichever is smaller.
if (g_ActiveConfig.iCommandBufferExecuteInterval > 0)
{
u32 last_draw_counter = 0;
u32 interval = static_cast<u32>(g_ActiveConfig.iCommandBufferExecuteInterval);
for (u32 draw_counter : m_cpu_accesses_this_frame)
{
// We don't want to waste executing command buffers for only a few draws, so set a minimum.
// Leave last_draw_counter as-is, so we get the correct number of draws between submissions.
u32 draw_count = draw_counter - last_draw_counter;
if (draw_count < MINIMUM_DRAW_CALLS_PER_COMMAND_BUFFER_FOR_READBACK)
continue;
if (draw_count <= interval)
{
u32 mid_point = draw_count / 2;
m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + mid_point);
}
else
{
u32 counter = interval;
while (counter < draw_count)
{
m_scheduled_command_buffer_kicks.emplace_back(last_draw_counter + counter);
counter += interval;
}
}
last_draw_counter = draw_counter;
}
}
#if 0
{
std::ostringstream ss;
std::for_each(m_cpu_accesses_this_frame.begin(), m_cpu_accesses_this_frame.end(), [&ss](u32 idx) { ss << idx << ","; });
WARN_LOG_FMT(VIDEO, "CPU EFB accesses in last frame: {}", ss.str());
}
{
std::ostringstream ss;
std::for_each(m_scheduled_command_buffer_kicks.begin(), m_scheduled_command_buffer_kicks.end(), [&ss](u32 idx) { ss << idx << ","; });
WARN_LOG_FMT(VIDEO, "Scheduled command buffer kicks: {}", ss.str());
}
#endif
m_cpu_accesses_this_frame.clear();
}