3368 lines
114 KiB
C++
3368 lines
114 KiB
C++
/*
|
|
* Copyright © 2011 Mozilla Foundation
|
|
*
|
|
* This program is made available under an ISC-style license. See the
|
|
* accompanying file LICENSE for details.
|
|
*/
|
|
#undef NDEBUG
|
|
|
|
#include <TargetConditionals.h>
|
|
#include <assert.h>
|
|
#include <mach/mach_time.h>
|
|
#include <pthread.h>
|
|
#include <stdlib.h>
|
|
#include <AudioUnit/AudioUnit.h>
|
|
#if !TARGET_OS_IPHONE
|
|
#include <AvailabilityMacros.h>
|
|
#include <CoreAudio/AudioHardware.h>
|
|
#include <CoreAudio/HostTime.h>
|
|
#include <CoreFoundation/CoreFoundation.h>
|
|
#endif
|
|
#include <CoreAudio/CoreAudioTypes.h>
|
|
#include <AudioToolbox/AudioToolbox.h>
|
|
#include "cubeb/cubeb.h"
|
|
#include "cubeb-internal.h"
|
|
#include "cubeb_mixer.h"
|
|
#include "cubeb_panner.h"
|
|
#if !TARGET_OS_IPHONE
|
|
#include "cubeb_osx_run_loop.h"
|
|
#endif
|
|
#include "cubeb_resampler.h"
|
|
#include "cubeb_ring_array.h"
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <vector>
|
|
#include <sys/time.h>
|
|
|
|
#if MAC_OS_X_VERSION_MIN_REQUIRED < 101000
|
|
typedef UInt32 AudioFormatFlags;
|
|
#endif
|
|
|
|
#define AU_OUT_BUS 0
|
|
#define AU_IN_BUS 1
|
|
|
|
const char * DISPATCH_QUEUE_LABEL = "org.mozilla.cubeb";
|
|
|
|
#ifdef ALOGV
|
|
#undef ALOGV
|
|
#endif
|
|
#define ALOGV(msg, ...) dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{LOGV(msg, ##__VA_ARGS__);})
|
|
|
|
#ifdef ALOG
|
|
#undef ALOG
|
|
#endif
|
|
#define ALOG(msg, ...) dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{LOG(msg, ##__VA_ARGS__);})
|
|
|
|
/* Testing empirically, some headsets report a minimal latency that is very
|
|
* low, but this does not work in practice. Lie and say the minimum is 256
|
|
* frames. */
|
|
const uint32_t SAFE_MIN_LATENCY_FRAMES = 256;
|
|
const uint32_t SAFE_MAX_LATENCY_FRAMES = 512;
|
|
|
|
void audiounit_stream_stop_internal(cubeb_stream * stm);
|
|
void audiounit_stream_start_internal(cubeb_stream * stm);
|
|
static void audiounit_close_stream(cubeb_stream *stm);
|
|
static int audiounit_setup_stream(cubeb_stream *stm);
|
|
static std::vector<AudioObjectID>
|
|
audiounit_get_devices_of_type(cubeb_device_type devtype);
|
|
|
|
extern cubeb_ops const audiounit_ops;
|
|
|
|
struct cubeb {
|
|
cubeb_ops const * ops = &audiounit_ops;
|
|
owned_critical_section mutex;
|
|
std::atomic<int> active_streams{ 0 };
|
|
uint32_t global_latency_frames = 0;
|
|
cubeb_device_collection_changed_callback collection_changed_callback = nullptr;
|
|
void * collection_changed_user_ptr = nullptr;
|
|
/* Differentiate input from output devices. */
|
|
cubeb_device_type collection_changed_devtype = CUBEB_DEVICE_TYPE_UNKNOWN;
|
|
std::vector<AudioObjectID> devtype_device_array;
|
|
// The queue is asynchronously deallocated once all references to it are released
|
|
dispatch_queue_t serial_queue = dispatch_queue_create(DISPATCH_QUEUE_LABEL, DISPATCH_QUEUE_SERIAL);
|
|
// Current used channel layout
|
|
std::atomic<cubeb_channel_layout> layout{ CUBEB_LAYOUT_UNDEFINED };
|
|
};
|
|
|
|
static std::unique_ptr<AudioChannelLayout, decltype(&free)>
|
|
make_sized_audio_channel_layout(size_t sz)
|
|
{
|
|
assert(sz >= sizeof(AudioChannelLayout));
|
|
AudioChannelLayout * acl = reinterpret_cast<AudioChannelLayout *>(calloc(1, sz));
|
|
assert(acl); // Assert the allocation works.
|
|
return std::unique_ptr<AudioChannelLayout, decltype(&free)>(acl, free);
|
|
}
|
|
|
|
enum io_side {
|
|
INPUT,
|
|
OUTPUT,
|
|
};
|
|
|
|
static char const *
|
|
to_string(io_side side)
|
|
{
|
|
switch (side) {
|
|
case INPUT:
|
|
return "input";
|
|
case OUTPUT:
|
|
return "output";
|
|
}
|
|
}
|
|
|
|
typedef uint32_t device_flags_value;
|
|
|
|
enum device_flags {
|
|
DEV_UKNOWN = 0x00, /* Unkown */
|
|
DEV_INPUT = 0x01, /* Record device like mic */
|
|
DEV_OUTPUT = 0x02, /* Playback device like speakers */
|
|
DEV_SYSTEM_DEFAULT = 0x04, /* System default device */
|
|
DEV_SELECTED_DEFAULT = 0x08, /* User selected to use the system default device */
|
|
};
|
|
|
|
struct device_info {
|
|
AudioDeviceID id = kAudioObjectUnknown;
|
|
device_flags_value flags = DEV_UKNOWN;
|
|
};
|
|
|
|
struct cubeb_stream {
|
|
explicit cubeb_stream(cubeb * context);
|
|
|
|
cubeb * context;
|
|
cubeb_data_callback data_callback = nullptr;
|
|
cubeb_state_callback state_callback = nullptr;
|
|
cubeb_device_changed_callback device_changed_callback = nullptr;
|
|
owned_critical_section device_changed_callback_lock;
|
|
/* Stream creation parameters */
|
|
cubeb_stream_params input_stream_params = { CUBEB_SAMPLE_FLOAT32NE, 0, 0, CUBEB_LAYOUT_UNDEFINED };
|
|
cubeb_stream_params output_stream_params = { CUBEB_SAMPLE_FLOAT32NE, 0, 0, CUBEB_LAYOUT_UNDEFINED };
|
|
device_info input_device;
|
|
device_info output_device;
|
|
/* User pointer of data_callback */
|
|
void * user_ptr = nullptr;
|
|
/* Format descriptions */
|
|
AudioStreamBasicDescription input_desc;
|
|
AudioStreamBasicDescription output_desc;
|
|
/* I/O AudioUnits */
|
|
AudioUnit input_unit = nullptr;
|
|
AudioUnit output_unit = nullptr;
|
|
/* I/O device sample rate */
|
|
Float64 input_hw_rate = 0;
|
|
Float64 output_hw_rate = 0;
|
|
/* Expected I/O thread interleave,
|
|
* calculated from I/O hw rate. */
|
|
int expected_output_callbacks_in_a_row = 0;
|
|
owned_critical_section mutex;
|
|
/* Hold the input samples in every
|
|
* input callback iteration */
|
|
std::unique_ptr<auto_array_wrapper> input_linear_buffer;
|
|
owned_critical_section input_linear_buffer_lock;
|
|
// After the resampling some input data remains stored inside
|
|
// the resampler. This number is used in order to calculate
|
|
// the number of extra silence frames in input.
|
|
std::atomic<uint32_t> available_input_frames{ 0 };
|
|
/* Frames on input buffer */
|
|
std::atomic<uint32_t> input_buffer_frames{ 0 };
|
|
/* Frame counters */
|
|
std::atomic<uint64_t> frames_played{ 0 };
|
|
uint64_t frames_queued = 0;
|
|
std::atomic<int64_t> frames_read{ 0 };
|
|
std::atomic<bool> shutdown{ true };
|
|
std::atomic<bool> draining{ false };
|
|
/* Latency requested by the user. */
|
|
uint32_t latency_frames = 0;
|
|
std::atomic<uint64_t> current_latency_frames{ 0 };
|
|
uint64_t hw_latency_frames = UINT64_MAX;
|
|
std::atomic<float> panning{ 0 };
|
|
std::unique_ptr<cubeb_resampler, decltype(&cubeb_resampler_destroy)> resampler;
|
|
/* This is true if a device change callback is currently running. */
|
|
std::atomic<bool> switching_device{ false };
|
|
std::atomic<bool> buffer_size_change_state{ false };
|
|
AudioDeviceID aggregate_device_id = 0; // the aggregate device id
|
|
AudioObjectID plugin_id = 0; // used to create aggregate device
|
|
/* Mixer interface */
|
|
std::unique_ptr<cubeb_mixer, decltype(&cubeb_mixer_destroy)> mixer;
|
|
};
|
|
|
|
bool has_input(cubeb_stream * stm)
|
|
{
|
|
return stm->input_stream_params.rate != 0;
|
|
}
|
|
|
|
bool has_output(cubeb_stream * stm)
|
|
{
|
|
return stm->output_stream_params.rate != 0;
|
|
}
|
|
|
|
cubeb_channel
|
|
channel_label_to_cubeb_channel(UInt32 label)
|
|
{
|
|
switch (label) {
|
|
case kAudioChannelLabel_Mono: return CHANNEL_MONO;
|
|
case kAudioChannelLabel_Left: return CHANNEL_LEFT;
|
|
case kAudioChannelLabel_Right: return CHANNEL_RIGHT;
|
|
case kAudioChannelLabel_Center: return CHANNEL_CENTER;
|
|
case kAudioChannelLabel_LFEScreen: return CHANNEL_LFE;
|
|
case kAudioChannelLabel_LeftSurround: return CHANNEL_LS;
|
|
case kAudioChannelLabel_RightSurround: return CHANNEL_RS;
|
|
case kAudioChannelLabel_RearSurroundLeft: return CHANNEL_RLS;
|
|
case kAudioChannelLabel_RearSurroundRight: return CHANNEL_RRS;
|
|
case kAudioChannelLabel_CenterSurround: return CHANNEL_RCENTER;
|
|
case kAudioChannelLabel_Unknown: return CHANNEL_UNMAPPED;
|
|
default: return CHANNEL_INVALID;
|
|
}
|
|
}
|
|
|
|
AudioChannelLabel
|
|
cubeb_channel_to_channel_label(cubeb_channel channel)
|
|
{
|
|
switch (channel) {
|
|
case CHANNEL_MONO: return kAudioChannelLabel_Mono;
|
|
case CHANNEL_LEFT: return kAudioChannelLabel_Left;
|
|
case CHANNEL_RIGHT: return kAudioChannelLabel_Right;
|
|
case CHANNEL_CENTER: return kAudioChannelLabel_Center;
|
|
case CHANNEL_LFE: return kAudioChannelLabel_LFEScreen;
|
|
case CHANNEL_LS: return kAudioChannelLabel_LeftSurround;
|
|
case CHANNEL_RS: return kAudioChannelLabel_RightSurround;
|
|
case CHANNEL_RLS: return kAudioChannelLabel_RearSurroundLeft;
|
|
case CHANNEL_RRS: return kAudioChannelLabel_RearSurroundRight;
|
|
case CHANNEL_RCENTER: return kAudioChannelLabel_CenterSurround;
|
|
case CHANNEL_UNMAPPED: return kAudioChannelLabel_Unknown;
|
|
default: return kAudioChannelLabel_Unknown;
|
|
}
|
|
}
|
|
|
|
#if TARGET_OS_IPHONE
|
|
typedef UInt32 AudioDeviceID;
|
|
typedef UInt32 AudioObjectID;
|
|
|
|
#define AudioGetCurrentHostTime mach_absolute_time
|
|
|
|
uint64_t
|
|
AudioConvertHostTimeToNanos(uint64_t host_time)
|
|
{
|
|
static struct mach_timebase_info timebase_info;
|
|
static bool initialized = false;
|
|
if (!initialized) {
|
|
mach_timebase_info(&timebase_info);
|
|
initialized = true;
|
|
}
|
|
|
|
long double answer = host_time;
|
|
if (timebase_info.numer != timebase_info.denom) {
|
|
answer *= timebase_info.numer;
|
|
answer /= timebase_info.denom;
|
|
}
|
|
return (uint64_t)answer;
|
|
}
|
|
#endif
|
|
|
|
static int64_t
|
|
audiotimestamp_to_latency(AudioTimeStamp const * tstamp, cubeb_stream * stream)
|
|
{
|
|
if (!(tstamp->mFlags & kAudioTimeStampHostTimeValid)) {
|
|
return 0;
|
|
}
|
|
|
|
uint64_t pres = AudioConvertHostTimeToNanos(tstamp->mHostTime);
|
|
uint64_t now = AudioConvertHostTimeToNanos(AudioGetCurrentHostTime());
|
|
|
|
return ((pres - now) * stream->output_desc.mSampleRate) / 1000000000LL;
|
|
}
|
|
|
|
static void
|
|
audiounit_set_global_latency(cubeb_stream * stm, uint32_t latency_frames)
|
|
{
|
|
stm->mutex.assert_current_thread_owns();
|
|
assert(stm->context->active_streams == 1);
|
|
stm->context->global_latency_frames = latency_frames;
|
|
}
|
|
|
|
static void
|
|
audiounit_make_silent(AudioBuffer * ioData)
|
|
{
|
|
assert(ioData);
|
|
assert(ioData->mData);
|
|
memset(ioData->mData, 0, ioData->mDataByteSize);
|
|
}
|
|
|
|
static OSStatus
|
|
audiounit_render_input(cubeb_stream * stm,
|
|
AudioUnitRenderActionFlags * flags,
|
|
AudioTimeStamp const * tstamp,
|
|
UInt32 bus,
|
|
UInt32 input_frames)
|
|
{
|
|
/* Create the AudioBufferList to store input. */
|
|
AudioBufferList input_buffer_list;
|
|
input_buffer_list.mBuffers[0].mDataByteSize =
|
|
stm->input_desc.mBytesPerFrame * input_frames;
|
|
input_buffer_list.mBuffers[0].mData = nullptr;
|
|
input_buffer_list.mBuffers[0].mNumberChannels = stm->input_desc.mChannelsPerFrame;
|
|
input_buffer_list.mNumberBuffers = 1;
|
|
|
|
/* Render input samples */
|
|
OSStatus r = AudioUnitRender(stm->input_unit,
|
|
flags,
|
|
tstamp,
|
|
bus,
|
|
input_frames,
|
|
&input_buffer_list);
|
|
|
|
if (r != noErr) {
|
|
LOG("AudioUnitRender rv=%d", r);
|
|
return r;
|
|
}
|
|
|
|
/* Copy input data in linear buffer. */
|
|
{
|
|
auto_lock l(stm->input_linear_buffer_lock);
|
|
stm->input_linear_buffer->push(input_buffer_list.mBuffers[0].mData,
|
|
input_frames * stm->input_desc.mChannelsPerFrame);
|
|
}
|
|
|
|
/* Advance input frame counter. */
|
|
assert(input_frames > 0);
|
|
stm->frames_read += input_frames;
|
|
stm->available_input_frames += input_frames;
|
|
|
|
ALOGV("(%p) input: buffers %u, size %u, channels %u, rendered frames %d, total frames %d.",
|
|
stm,
|
|
(unsigned int) input_buffer_list.mNumberBuffers,
|
|
(unsigned int) input_buffer_list.mBuffers[0].mDataByteSize,
|
|
(unsigned int) input_buffer_list.mBuffers[0].mNumberChannels,
|
|
(unsigned int) input_frames,
|
|
stm->available_input_frames.load());
|
|
|
|
return noErr;
|
|
}
|
|
|
|
static OSStatus
|
|
audiounit_input_callback(void * user_ptr,
|
|
AudioUnitRenderActionFlags * flags,
|
|
AudioTimeStamp const * tstamp,
|
|
UInt32 bus,
|
|
UInt32 input_frames,
|
|
AudioBufferList * /* bufs */)
|
|
{
|
|
cubeb_stream * stm = static_cast<cubeb_stream *>(user_ptr);
|
|
|
|
assert(stm->input_unit != NULL);
|
|
assert(AU_IN_BUS == bus);
|
|
|
|
if (stm->shutdown) {
|
|
ALOG("(%p) input shutdown", stm);
|
|
return noErr;
|
|
}
|
|
|
|
OSStatus r = audiounit_render_input(stm, flags, tstamp, bus, input_frames);
|
|
if (r != noErr) {
|
|
return r;
|
|
}
|
|
|
|
// Full Duplex. We'll call data_callback in the AudioUnit output callback.
|
|
if (stm->output_unit != NULL) {
|
|
return noErr;
|
|
}
|
|
|
|
/* Input only. Call the user callback through resampler.
|
|
Resampler will deliver input buffer in the correct rate. */
|
|
{
|
|
auto_lock l(stm->input_linear_buffer_lock);
|
|
assert(input_frames <= stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame);
|
|
long total_input_frames = stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame;
|
|
long outframes = cubeb_resampler_fill(stm->resampler.get(),
|
|
stm->input_linear_buffer->data(),
|
|
&total_input_frames,
|
|
NULL,
|
|
0);
|
|
assert(outframes >= 0);
|
|
|
|
// Reset input buffer
|
|
stm->input_linear_buffer->clear();
|
|
}
|
|
|
|
return noErr;
|
|
}
|
|
|
|
static uint32_t
|
|
minimum_resampling_input_frames(cubeb_stream *stm)
|
|
{
|
|
return ceilf(stm->input_hw_rate / stm->output_hw_rate * stm->input_buffer_frames);
|
|
}
|
|
|
|
static bool
|
|
is_extra_input_needed(cubeb_stream * stm)
|
|
{
|
|
/* If the output callback came first and this is a duplex stream, we need to
|
|
* fill in some additional silence in the resampler.
|
|
* Otherwise, if we had more than expected callbacks in a row, or we're currently
|
|
* switching, we add some silence as well to compensate for the fact that
|
|
* we're lacking some input data. */
|
|
return stm->frames_read == 0 ||
|
|
stm->available_input_frames.load() < minimum_resampling_input_frames(stm);
|
|
}
|
|
|
|
static void
|
|
audiounit_mix_output_buffer(cubeb_stream * stm,
|
|
long output_frames,
|
|
void * output_buffer,
|
|
unsigned long output_buffer_length)
|
|
{
|
|
cubeb_stream_params output_mixer_params = {
|
|
stm->output_stream_params.format,
|
|
stm->output_stream_params.rate,
|
|
CUBEB_CHANNEL_LAYOUT_MAPS[stm->context->layout].channels,
|
|
stm->context->layout
|
|
};
|
|
|
|
// The downmixing(from 5.1) supports in-place conversion, so we can use
|
|
// the same buffer for both input and output of the mixer.
|
|
cubeb_mixer_mix(stm->mixer.get(), output_frames,
|
|
output_buffer, output_buffer_length,
|
|
output_buffer, output_buffer_length,
|
|
&stm->output_stream_params, &output_mixer_params);
|
|
}
|
|
|
|
static OSStatus
|
|
audiounit_output_callback(void * user_ptr,
|
|
AudioUnitRenderActionFlags * /* flags */,
|
|
AudioTimeStamp const * tstamp,
|
|
UInt32 bus,
|
|
UInt32 output_frames,
|
|
AudioBufferList * outBufferList)
|
|
{
|
|
assert(AU_OUT_BUS == bus);
|
|
assert(outBufferList->mNumberBuffers == 1);
|
|
|
|
cubeb_stream * stm = static_cast<cubeb_stream *>(user_ptr);
|
|
|
|
ALOGV("(%p) output: buffers %u, size %u, channels %u, frames %u, total input frames %d.",
|
|
stm,
|
|
(unsigned int) outBufferList->mNumberBuffers,
|
|
(unsigned int) outBufferList->mBuffers[0].mDataByteSize,
|
|
(unsigned int) outBufferList->mBuffers[0].mNumberChannels,
|
|
(unsigned int) output_frames,
|
|
stm->available_input_frames.load());
|
|
|
|
long input_frames = 0, input_frames_before_fill = 0;
|
|
void * output_buffer = NULL, * input_buffer = NULL;
|
|
|
|
if (stm->shutdown) {
|
|
ALOG("(%p) output shutdown.", stm);
|
|
audiounit_make_silent(&outBufferList->mBuffers[0]);
|
|
return noErr;
|
|
}
|
|
|
|
stm->current_latency_frames = audiotimestamp_to_latency(tstamp, stm);
|
|
if (stm->draining) {
|
|
OSStatus r = AudioOutputUnitStop(stm->output_unit);
|
|
assert(r == 0);
|
|
if (stm->input_unit) {
|
|
r = AudioOutputUnitStop(stm->input_unit);
|
|
assert(r == 0);
|
|
}
|
|
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_DRAINED);
|
|
audiounit_make_silent(&outBufferList->mBuffers[0]);
|
|
return noErr;
|
|
}
|
|
/* Get output buffer. */
|
|
output_buffer = outBufferList->mBuffers[0].mData;
|
|
/* If Full duplex get also input buffer */
|
|
if (stm->input_unit != NULL) {
|
|
if (is_extra_input_needed(stm)) {
|
|
uint32_t min_input_frames = minimum_resampling_input_frames(stm);
|
|
{
|
|
auto_lock l(stm->input_linear_buffer_lock);
|
|
stm->input_linear_buffer->push_silence(min_input_frames * stm->input_desc.mChannelsPerFrame);
|
|
}
|
|
stm->available_input_frames += min_input_frames;
|
|
|
|
ALOG("(%p) %s pushed %u frames of input silence.", stm, stm->frames_read == 0 ? "Input hasn't started," :
|
|
stm->switching_device ? "Device switching," : "Drop out,", min_input_frames);
|
|
}
|
|
input_buffer = stm->input_linear_buffer->data();
|
|
// Number of input frames in the buffer. It will change to actually used frames
|
|
// inside fill
|
|
input_frames = stm->input_linear_buffer->length() / stm->input_desc.mChannelsPerFrame;
|
|
// Number of input frames pushed inside resampler.
|
|
input_frames_before_fill = input_frames;
|
|
}
|
|
|
|
/* Call user callback through resampler. */
|
|
long outframes = cubeb_resampler_fill(stm->resampler.get(),
|
|
input_buffer,
|
|
input_buffer ? &input_frames : NULL,
|
|
output_buffer,
|
|
output_frames);
|
|
|
|
if (input_buffer) {
|
|
// Decrease counter by the number of frames used by resampler
|
|
stm->available_input_frames -= input_frames;
|
|
assert(stm->available_input_frames.load() >= 0);
|
|
// Pop from the buffer the frames pushed to the resampler.
|
|
auto_lock l(stm->input_linear_buffer_lock);
|
|
stm->input_linear_buffer->pop(input_frames_before_fill * stm->input_desc.mChannelsPerFrame);
|
|
}
|
|
|
|
if (outframes < 0 || outframes > output_frames) {
|
|
stm->shutdown = true;
|
|
OSStatus r = AudioOutputUnitStop(stm->output_unit);
|
|
assert(r == 0);
|
|
if (stm->input_unit) {
|
|
r = AudioOutputUnitStop(stm->input_unit);
|
|
assert(r == 0);
|
|
}
|
|
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_ERROR);
|
|
audiounit_make_silent(&outBufferList->mBuffers[0]);
|
|
return noErr;
|
|
}
|
|
|
|
size_t outbpf = stm->output_desc.mBytesPerFrame;
|
|
stm->draining = (UInt32) outframes < output_frames;
|
|
stm->frames_played = stm->frames_queued;
|
|
stm->frames_queued += outframes;
|
|
|
|
AudioFormatFlags outaff = stm->output_desc.mFormatFlags;
|
|
float panning = (stm->output_desc.mChannelsPerFrame == 2) ?
|
|
stm->panning.load(std::memory_order_relaxed) : 0.0f;
|
|
|
|
/* Post process output samples. */
|
|
if (stm->draining) {
|
|
/* Clear missing frames (silence) */
|
|
memset((uint8_t*)output_buffer + outframes * outbpf, 0, (output_frames - outframes) * outbpf);
|
|
}
|
|
/* Pan stereo. */
|
|
if (panning != 0.0f) {
|
|
if (outaff & kAudioFormatFlagIsFloat) {
|
|
cubeb_pan_stereo_buffer_float((float*)output_buffer, outframes, panning);
|
|
} else if (outaff & kAudioFormatFlagIsSignedInteger) {
|
|
cubeb_pan_stereo_buffer_int((short*)output_buffer, outframes, panning);
|
|
}
|
|
}
|
|
|
|
/* Mixing */
|
|
if (stm->output_stream_params.layout != CUBEB_LAYOUT_UNDEFINED) {
|
|
unsigned long output_buffer_length = outBufferList->mBuffers[0].mDataByteSize;
|
|
audiounit_mix_output_buffer(stm, output_frames, output_buffer, output_buffer_length);
|
|
}
|
|
|
|
return noErr;
|
|
}
|
|
|
|
extern "C" {
|
|
int
|
|
audiounit_init(cubeb ** context, char const * /* context_name */)
|
|
{
|
|
#if !TARGET_OS_IPHONE
|
|
cubeb_set_coreaudio_notification_runloop();
|
|
#endif
|
|
|
|
*context = new cubeb;
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
}
|
|
|
|
static char const *
|
|
audiounit_get_backend_id(cubeb * /* ctx */)
|
|
{
|
|
return "audiounit";
|
|
}
|
|
|
|
#if !TARGET_OS_IPHONE
|
|
|
|
static int audiounit_stream_get_volume(cubeb_stream * stm, float * volume);
|
|
static int audiounit_stream_set_volume(cubeb_stream * stm, float volume);
|
|
static int audiounit_uninstall_device_changed_callback(cubeb_stream * stm);
|
|
static AudioObjectID audiounit_get_default_device_id(cubeb_device_type type);
|
|
|
|
static int
|
|
audiounit_set_device_info(cubeb_stream * stm, AudioDeviceID id, io_side side)
|
|
{
|
|
assert(stm);
|
|
|
|
device_info * info = nullptr;
|
|
cubeb_device_type type = CUBEB_DEVICE_TYPE_UNKNOWN;
|
|
|
|
if (side == INPUT) {
|
|
info = &stm->input_device;
|
|
type = CUBEB_DEVICE_TYPE_INPUT;
|
|
} else if (side == OUTPUT) {
|
|
info = &stm->output_device;
|
|
type = CUBEB_DEVICE_TYPE_OUTPUT;
|
|
}
|
|
memset(info, 0, sizeof(device_info));
|
|
info->id = id;
|
|
|
|
if (side == INPUT) {
|
|
info->flags |= DEV_INPUT;
|
|
} else if (side == OUTPUT) {
|
|
info->flags |= DEV_OUTPUT;
|
|
}
|
|
|
|
AudioDeviceID default_device_id = audiounit_get_default_device_id(type);
|
|
if (default_device_id == kAudioObjectUnknown) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
if (id == kAudioObjectUnknown) {
|
|
info->id = default_device_id;
|
|
info->flags |= DEV_SELECTED_DEFAULT;
|
|
}
|
|
|
|
if (info->id == default_device_id) {
|
|
info->flags |= DEV_SYSTEM_DEFAULT;
|
|
}
|
|
|
|
assert(info->id);
|
|
assert(info->flags & DEV_INPUT && !(info->flags & DEV_OUTPUT) ||
|
|
!(info->flags & DEV_INPUT) && info->flags & DEV_OUTPUT);
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
|
|
static int
|
|
audiounit_reinit_stream(cubeb_stream * stm, device_flags_value flags)
|
|
{
|
|
auto_lock context_lock(stm->context->mutex);
|
|
assert((flags & DEV_INPUT && stm->input_unit) ||
|
|
(flags & DEV_OUTPUT && stm->output_unit));
|
|
if (!stm->shutdown) {
|
|
audiounit_stream_stop_internal(stm);
|
|
}
|
|
|
|
int r = audiounit_uninstall_device_changed_callback(stm);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Could not uninstall all device change listeners.", stm);
|
|
}
|
|
|
|
{
|
|
auto_lock lock(stm->mutex);
|
|
float volume = 0.0;
|
|
int vol_rv = CUBEB_ERROR;
|
|
if (stm->output_unit) {
|
|
vol_rv = audiounit_stream_get_volume(stm, &volume);
|
|
}
|
|
|
|
audiounit_close_stream(stm);
|
|
|
|
/* Reinit occurs in 2 cases. When the device is not alive any more and when the
|
|
* default system device change. In both cases cubeb switch on the new default
|
|
* device. This is considered the most expected behavior for the user. */
|
|
if (flags & DEV_INPUT) {
|
|
r = audiounit_set_device_info(stm, 0, INPUT);
|
|
assert(r == CUBEB_OK);
|
|
}
|
|
/* Always use the default output on reinit. This is not correct in every case
|
|
* but it is sufficient for Firefox and prevent reinit from reporting failures.
|
|
* It will change soon when reinit mechanism will be updated. */
|
|
r = audiounit_set_device_info(stm, 0, OUTPUT);
|
|
assert(r == CUBEB_OK);
|
|
|
|
if (audiounit_setup_stream(stm) != CUBEB_OK) {
|
|
LOG("(%p) Stream reinit failed.", stm);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
if (vol_rv == CUBEB_OK) {
|
|
audiounit_stream_set_volume(stm, volume);
|
|
}
|
|
|
|
// Reset input frames to force new stream pre-buffer
|
|
// silence if needed, check `is_extra_input_needed()`
|
|
stm->frames_read = 0;
|
|
|
|
// If the stream was running, start it again.
|
|
if (!stm->shutdown) {
|
|
audiounit_stream_start_internal(stm);
|
|
}
|
|
}
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static char const *
|
|
event_addr_to_string(AudioObjectPropertySelector selector)
|
|
{
|
|
switch(selector) {
|
|
case kAudioHardwarePropertyDefaultOutputDevice:
|
|
return "kAudioHardwarePropertyDefaultOutputDevice";
|
|
case kAudioHardwarePropertyDefaultInputDevice:
|
|
return "kAudioHardwarePropertyDefaultInputDevice";
|
|
case kAudioDevicePropertyDeviceIsAlive:
|
|
return "kAudioDevicePropertyDeviceIsAlive";
|
|
case kAudioDevicePropertyDataSource:
|
|
return "kAudioDevicePropertyDataSource";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
static OSStatus
|
|
audiounit_property_listener_callback(AudioObjectID id, UInt32 address_count,
|
|
const AudioObjectPropertyAddress * addresses,
|
|
void * user)
|
|
{
|
|
cubeb_stream * stm = (cubeb_stream*) user;
|
|
if (stm->switching_device) {
|
|
LOG("Switching is already taking place. Skip Event %s for id=%d", event_addr_to_string(addresses[0].mSelector), id);
|
|
return noErr;
|
|
}
|
|
stm->switching_device = true;
|
|
device_flags_value switch_side = DEV_UKNOWN;
|
|
|
|
LOG("(%p) Audio device changed, %u events.", stm, (unsigned int) address_count);
|
|
for (UInt32 i = 0; i < address_count; i++) {
|
|
switch(addresses[i].mSelector) {
|
|
case kAudioHardwarePropertyDefaultOutputDevice: {
|
|
LOG("Event[%u] - mSelector == kAudioHardwarePropertyDefaultOutputDevice for id=%d", (unsigned int) i, id);
|
|
// Allow restart to choose the new default
|
|
switch_side |= DEV_OUTPUT;
|
|
}
|
|
break;
|
|
case kAudioHardwarePropertyDefaultInputDevice: {
|
|
LOG("Event[%u] - mSelector == kAudioHardwarePropertyDefaultInputDevice for id=%d", (unsigned int) i, id);
|
|
// Allow restart to choose the new default
|
|
switch_side |= DEV_INPUT;
|
|
}
|
|
break;
|
|
case kAudioDevicePropertyDeviceIsAlive: {
|
|
LOG("Event[%u] - mSelector == kAudioDevicePropertyDeviceIsAlive for id=%d", (unsigned int) i, id);
|
|
// If this is the default input device ignore the event,
|
|
// kAudioHardwarePropertyDefaultInputDevice will take care of the switch
|
|
if (stm->input_device.flags & DEV_SYSTEM_DEFAULT) {
|
|
LOG("It's the default input device, ignore the event");
|
|
stm->switching_device = false;
|
|
return noErr;
|
|
}
|
|
// Allow restart to choose the new default. Event register only for input.
|
|
switch_side |= DEV_INPUT;
|
|
}
|
|
break;
|
|
case kAudioDevicePropertyDataSource: {
|
|
LOG("Event[%u] - mSelector == kAudioHardwarePropertyDataSource for id=%d", (unsigned int) i, id);
|
|
if (stm->input_unit) {
|
|
switch_side |= DEV_INPUT;
|
|
}
|
|
if (stm->output_unit) {
|
|
switch_side |= DEV_OUTPUT;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
LOG("Event[%u] - mSelector == Unexpected Event id %d, return", (unsigned int) i, addresses[i].mSelector);
|
|
stm->switching_device = false;
|
|
return noErr;
|
|
}
|
|
}
|
|
|
|
for (UInt32 i = 0; i < address_count; i++) {
|
|
switch(addresses[i].mSelector) {
|
|
case kAudioHardwarePropertyDefaultOutputDevice:
|
|
case kAudioHardwarePropertyDefaultInputDevice:
|
|
case kAudioDevicePropertyDeviceIsAlive:
|
|
/* fall through */
|
|
case kAudioDevicePropertyDataSource: {
|
|
auto_lock dev_cb_lock(stm->device_changed_callback_lock);
|
|
if (stm->device_changed_callback) {
|
|
stm->device_changed_callback(stm->user_ptr);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Use a new thread, through the queue, to avoid deadlock when calling
|
|
// Get/SetProperties method from inside notify callback
|
|
dispatch_async(stm->context->serial_queue, ^() {
|
|
if (audiounit_reinit_stream(stm, switch_side) != CUBEB_OK) {
|
|
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STOPPED);
|
|
LOG("(%p) Could not reopen the stream after switching.", stm);
|
|
}
|
|
stm->switching_device = false;
|
|
});
|
|
|
|
return noErr;
|
|
}
|
|
|
|
OSStatus
|
|
audiounit_add_listener(cubeb_stream * stm, AudioDeviceID id, AudioObjectPropertySelector selector,
|
|
AudioObjectPropertyScope scope, AudioObjectPropertyListenerProc listener)
|
|
{
|
|
AudioObjectPropertyAddress address = {
|
|
selector,
|
|
scope,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
return AudioObjectAddPropertyListener(id, &address, listener, stm);
|
|
}
|
|
|
|
OSStatus
|
|
audiounit_remove_listener(cubeb_stream * stm, AudioDeviceID id,
|
|
AudioObjectPropertySelector selector,
|
|
AudioObjectPropertyScope scope,
|
|
AudioObjectPropertyListenerProc listener)
|
|
{
|
|
AudioObjectPropertyAddress address = {
|
|
selector,
|
|
scope,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
return AudioObjectRemovePropertyListener(id, &address, listener, stm);
|
|
}
|
|
|
|
static int
|
|
audiounit_install_device_changed_callback(cubeb_stream * stm)
|
|
{
|
|
OSStatus rv;
|
|
int r = CUBEB_OK;
|
|
|
|
if (stm->output_unit) {
|
|
/* This event will notify us when the data source on the same device changes,
|
|
* for example when the user plugs in a normal (non-usb) headset in the
|
|
* headphone jack. */
|
|
rv = audiounit_add_listener(stm, stm->output_device.id, kAudioDevicePropertyDataSource,
|
|
kAudioDevicePropertyScopeOutput, &audiounit_property_listener_callback);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectAddPropertyListener/output/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->output_device.id);
|
|
r = CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
if (stm->input_unit) {
|
|
/* This event will notify us when the data source on the input device changes. */
|
|
rv = audiounit_add_listener(stm, stm->input_device.id, kAudioDevicePropertyDataSource,
|
|
kAudioDevicePropertyScopeInput, &audiounit_property_listener_callback);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectAddPropertyListener/input/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->input_device.id);
|
|
r = CUBEB_ERROR;
|
|
}
|
|
|
|
/* Event to notify when the input is going away. */
|
|
rv = audiounit_add_listener(stm, stm->input_device.id, kAudioDevicePropertyDeviceIsAlive,
|
|
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectAddPropertyListener/input/kAudioDevicePropertyDeviceIsAlive rv=%d, device id =%d", rv, stm->input_device.id);
|
|
r = CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
audiounit_install_system_changed_callback(cubeb_stream * stm)
|
|
{
|
|
OSStatus r;
|
|
|
|
if (stm->output_unit) {
|
|
/* This event will notify us when the default audio device changes,
|
|
* for example when the user plugs in a USB headset and the system chooses it
|
|
* automatically as the default, or when another device is chosen in the
|
|
* dropdown list. */
|
|
r = audiounit_add_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultOutputDevice,
|
|
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
|
|
if (r != noErr) {
|
|
LOG("AudioObjectAddPropertyListener/output/kAudioHardwarePropertyDefaultOutputDevice rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
if (stm->input_unit) {
|
|
/* This event will notify us when the default input device changes. */
|
|
r = audiounit_add_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultInputDevice,
|
|
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
|
|
if (r != noErr) {
|
|
LOG("AudioObjectAddPropertyListener/input/kAudioHardwarePropertyDefaultInputDevice rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_uninstall_device_changed_callback(cubeb_stream * stm)
|
|
{
|
|
OSStatus rv;
|
|
// Failing to uninstall listeners is not a fatal error.
|
|
int r = CUBEB_OK;
|
|
|
|
if (stm->output_unit) {
|
|
rv = audiounit_remove_listener(stm, stm->output_device.id, kAudioDevicePropertyDataSource,
|
|
kAudioDevicePropertyScopeOutput, &audiounit_property_listener_callback);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectRemovePropertyListener/output/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->output_device.id);
|
|
r = CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
if (stm->input_unit) {
|
|
rv = audiounit_remove_listener(stm, stm->input_device.id, kAudioDevicePropertyDataSource,
|
|
kAudioDevicePropertyScopeInput, &audiounit_property_listener_callback);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectRemovePropertyListener/input/kAudioDevicePropertyDataSource rv=%d, device id=%d", rv, stm->input_device.id);
|
|
r = CUBEB_ERROR;
|
|
}
|
|
|
|
rv = audiounit_remove_listener(stm, stm->input_device.id, kAudioDevicePropertyDeviceIsAlive,
|
|
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectRemovePropertyListener/input/kAudioDevicePropertyDeviceIsAlive rv=%d, device id=%d", rv, stm->input_device.id);
|
|
r = CUBEB_ERROR;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
audiounit_uninstall_system_changed_callback(cubeb_stream * stm)
|
|
{
|
|
OSStatus r;
|
|
|
|
if (stm->output_unit) {
|
|
r = audiounit_remove_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultOutputDevice,
|
|
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
|
|
if (r != noErr) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
if (stm->input_unit) {
|
|
r = audiounit_remove_listener(stm, kAudioObjectSystemObject, kAudioHardwarePropertyDefaultInputDevice,
|
|
kAudioObjectPropertyScopeGlobal, &audiounit_property_listener_callback);
|
|
if (r != noErr) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
}
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
/* Get the acceptable buffer size (in frames) that this device can work with. */
|
|
static int
|
|
audiounit_get_acceptable_latency_range(AudioValueRange * latency_range)
|
|
{
|
|
UInt32 size;
|
|
OSStatus r;
|
|
AudioDeviceID output_device_id;
|
|
AudioObjectPropertyAddress output_device_buffer_size_range = {
|
|
kAudioDevicePropertyBufferFrameSizeRange,
|
|
kAudioDevicePropertyScopeOutput,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
if (output_device_id == kAudioObjectUnknown) {
|
|
LOG("Could not get default output device id.");
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
/* Get the buffer size range this device supports */
|
|
size = sizeof(*latency_range);
|
|
|
|
r = AudioObjectGetPropertyData(output_device_id,
|
|
&output_device_buffer_size_range,
|
|
0,
|
|
NULL,
|
|
&size,
|
|
latency_range);
|
|
if (r != noErr) {
|
|
LOG("AudioObjectGetPropertyData/buffer size range rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
#endif /* !TARGET_OS_IPHONE */
|
|
|
|
static AudioObjectID
|
|
audiounit_get_default_device_id(cubeb_device_type type)
|
|
{
|
|
AudioObjectPropertyAddress adr = { 0, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
|
|
AudioDeviceID devid;
|
|
UInt32 size;
|
|
|
|
if (type == CUBEB_DEVICE_TYPE_OUTPUT) {
|
|
adr.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
|
|
} else if (type == CUBEB_DEVICE_TYPE_INPUT) {
|
|
adr.mSelector = kAudioHardwarePropertyDefaultInputDevice;
|
|
} else {
|
|
return kAudioObjectUnknown;
|
|
}
|
|
|
|
size = sizeof(AudioDeviceID);
|
|
if (AudioObjectGetPropertyData(kAudioObjectSystemObject, &adr, 0, NULL, &size, &devid) != noErr) {
|
|
return kAudioObjectUnknown;
|
|
}
|
|
|
|
return devid;
|
|
}
|
|
|
|
int
|
|
audiounit_get_max_channel_count(cubeb * ctx, uint32_t * max_channels)
|
|
{
|
|
#if TARGET_OS_IPHONE
|
|
//TODO: [[AVAudioSession sharedInstance] maximumOutputNumberOfChannels]
|
|
*max_channels = 2;
|
|
#else
|
|
UInt32 size;
|
|
OSStatus r;
|
|
AudioDeviceID output_device_id;
|
|
AudioStreamBasicDescription stream_format;
|
|
AudioObjectPropertyAddress stream_format_address = {
|
|
kAudioDevicePropertyStreamFormat,
|
|
kAudioDevicePropertyScopeOutput,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
assert(ctx && max_channels);
|
|
|
|
output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
if (output_device_id == kAudioObjectUnknown) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
size = sizeof(stream_format);
|
|
|
|
r = AudioObjectGetPropertyData(output_device_id,
|
|
&stream_format_address,
|
|
0,
|
|
NULL,
|
|
&size,
|
|
&stream_format);
|
|
if (r != noErr) {
|
|
LOG("AudioObjectPropertyAddress/StreamFormat rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
*max_channels = stream_format.mChannelsPerFrame;
|
|
#endif
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_get_min_latency(cubeb * /* ctx */,
|
|
cubeb_stream_params /* params */,
|
|
uint32_t * latency_frames)
|
|
{
|
|
#if TARGET_OS_IPHONE
|
|
//TODO: [[AVAudioSession sharedInstance] inputLatency]
|
|
return CUBEB_ERROR_NOT_SUPPORTED;
|
|
#else
|
|
AudioValueRange latency_range;
|
|
if (audiounit_get_acceptable_latency_range(&latency_range) != CUBEB_OK) {
|
|
LOG("Could not get acceptable latency range.");
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
*latency_frames = std::max<uint32_t>(latency_range.mMinimum,
|
|
SAFE_MIN_LATENCY_FRAMES);
|
|
#endif
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_get_preferred_sample_rate(cubeb * /* ctx */, uint32_t * rate)
|
|
{
|
|
#if TARGET_OS_IPHONE
|
|
//TODO
|
|
return CUBEB_ERROR_NOT_SUPPORTED;
|
|
#else
|
|
UInt32 size;
|
|
OSStatus r;
|
|
Float64 fsamplerate;
|
|
AudioDeviceID output_device_id;
|
|
AudioObjectPropertyAddress samplerate_address = {
|
|
kAudioDevicePropertyNominalSampleRate,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
if (output_device_id == kAudioObjectUnknown) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
size = sizeof(fsamplerate);
|
|
r = AudioObjectGetPropertyData(output_device_id,
|
|
&samplerate_address,
|
|
0,
|
|
NULL,
|
|
&size,
|
|
&fsamplerate);
|
|
|
|
if (r != noErr) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
*rate = static_cast<uint32_t>(fsamplerate);
|
|
#endif
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static cubeb_channel_layout
|
|
audiounit_convert_channel_layout(AudioChannelLayout * layout)
|
|
{
|
|
if (layout->mChannelLayoutTag != kAudioChannelLayoutTag_UseChannelDescriptions) {
|
|
// kAudioChannelLayoutTag_UseChannelBitmap
|
|
// kAudioChannelLayoutTag_Mono
|
|
// kAudioChannelLayoutTag_Stereo
|
|
// ....
|
|
LOG("Only handle UseChannelDescriptions for now.\n");
|
|
return CUBEB_LAYOUT_UNDEFINED;
|
|
}
|
|
|
|
// This devices has more channels that we can support, bail out.
|
|
if (layout->mNumberChannelDescriptions >= CHANNEL_MAX) {
|
|
LOG("Audio device has more than %d channels, bailing out.", CHANNEL_MAX);
|
|
return CUBEB_LAYOUT_UNDEFINED;
|
|
}
|
|
|
|
cubeb_channel_map cm;
|
|
cm.channels = layout->mNumberChannelDescriptions;
|
|
for (UInt32 i = 0; i < layout->mNumberChannelDescriptions; ++i) {
|
|
cm.map[i] = channel_label_to_cubeb_channel(layout->mChannelDescriptions[i].mChannelLabel);
|
|
}
|
|
|
|
return cubeb_channel_map_to_layout(&cm);
|
|
}
|
|
|
|
static cubeb_channel_layout
|
|
audiounit_get_current_channel_layout(AudioUnit output_unit)
|
|
{
|
|
OSStatus rv = noErr;
|
|
UInt32 size = 0;
|
|
rv = AudioUnitGetPropertyInfo(output_unit,
|
|
kAudioUnitProperty_AudioChannelLayout,
|
|
kAudioUnitScope_Output,
|
|
AU_OUT_BUS,
|
|
&size,
|
|
nullptr);
|
|
if (rv != noErr) {
|
|
LOG("AudioUnitGetPropertyInfo/kAudioUnitProperty_AudioChannelLayout rv=%d", rv);
|
|
return CUBEB_LAYOUT_UNDEFINED;
|
|
}
|
|
assert(size > 0);
|
|
|
|
auto layout = make_sized_audio_channel_layout(size);
|
|
rv = AudioUnitGetProperty(output_unit,
|
|
kAudioUnitProperty_AudioChannelLayout,
|
|
kAudioUnitScope_Output,
|
|
AU_OUT_BUS,
|
|
layout.get(),
|
|
&size);
|
|
if (rv != noErr) {
|
|
LOG("AudioUnitGetProperty/kAudioUnitProperty_AudioChannelLayout rv=%d", rv);
|
|
return CUBEB_LAYOUT_UNDEFINED;
|
|
}
|
|
|
|
return audiounit_convert_channel_layout(layout.get());
|
|
}
|
|
|
|
static cubeb_channel_layout
|
|
audiounit_get_preferred_channel_layout()
|
|
{
|
|
OSStatus rv = noErr;
|
|
UInt32 size = 0;
|
|
AudioDeviceID id;
|
|
|
|
id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
if (id == kAudioObjectUnknown) {
|
|
return CUBEB_LAYOUT_UNDEFINED;
|
|
}
|
|
|
|
AudioObjectPropertyAddress adr = { kAudioDevicePropertyPreferredChannelLayout,
|
|
kAudioDevicePropertyScopeOutput,
|
|
kAudioObjectPropertyElementMaster };
|
|
rv = AudioObjectGetPropertyDataSize(id, &adr, 0, NULL, &size);
|
|
if (rv != noErr) {
|
|
return CUBEB_LAYOUT_UNDEFINED;
|
|
}
|
|
assert(size > 0);
|
|
|
|
auto layout = make_sized_audio_channel_layout(size);
|
|
rv = AudioObjectGetPropertyData(id, &adr, 0, NULL, &size, layout.get());
|
|
if (rv != noErr) {
|
|
return CUBEB_LAYOUT_UNDEFINED;
|
|
}
|
|
|
|
return audiounit_convert_channel_layout(layout.get());
|
|
}
|
|
|
|
static int audiounit_create_unit(AudioUnit * unit, device_info * device);
|
|
|
|
static int
|
|
audiounit_get_preferred_channel_layout(cubeb * ctx, cubeb_channel_layout * layout)
|
|
{
|
|
// The preferred layout is only returned when the connected sound device
|
|
// (e.g. ASUS Xonar U7), has preferred layout setting.
|
|
// For default output on Mac, there is no preferred channel layout,
|
|
// so it might return UNDEFINED.
|
|
*layout = audiounit_get_preferred_channel_layout();
|
|
|
|
// If the preferred channel layout is UNDEFINED, then we try to access the
|
|
// current applied channel layout.
|
|
if (*layout == CUBEB_LAYOUT_UNDEFINED) {
|
|
// If we already have at least one cubeb stream, then the current channel
|
|
// layout must be updated. We can return it directly.
|
|
if (ctx->active_streams) {
|
|
*layout = ctx->layout;
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
// If there is no existed stream, then we create a default ouput unit and
|
|
// use it to get the current used channel layout.
|
|
AudioUnit output_unit = nullptr;
|
|
device_info default_out_device;
|
|
default_out_device.id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
default_out_device.flags = (DEV_OUTPUT | DEV_SYSTEM_DEFAULT);
|
|
if (default_out_device.id != kAudioObjectUnknown) {
|
|
audiounit_create_unit(&output_unit, &default_out_device);
|
|
*layout = audiounit_get_current_channel_layout(output_unit);
|
|
}
|
|
}
|
|
|
|
if (*layout == CUBEB_LAYOUT_UNDEFINED) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static OSStatus audiounit_remove_device_listener(cubeb * context);
|
|
|
|
static void
|
|
audiounit_destroy(cubeb * ctx)
|
|
{
|
|
// Disabling this assert for bug 1083664 -- we seem to leak a stream
|
|
// assert(ctx->active_streams == 0);
|
|
if (ctx->active_streams > 0) {
|
|
LOG("(%p) API misuse, %d streams active when context destroyed!", ctx, ctx->active_streams.load());
|
|
}
|
|
|
|
{
|
|
auto_lock lock(ctx->mutex);
|
|
/* Unregister the callback if necessary. */
|
|
if (ctx->collection_changed_callback) {
|
|
audiounit_remove_device_listener(ctx);
|
|
}
|
|
}
|
|
|
|
delete ctx;
|
|
}
|
|
|
|
static void audiounit_stream_destroy(cubeb_stream * stm);
|
|
|
|
static int
|
|
audio_stream_desc_init(AudioStreamBasicDescription * ss,
|
|
const cubeb_stream_params * stream_params)
|
|
{
|
|
switch (stream_params->format) {
|
|
case CUBEB_SAMPLE_S16LE:
|
|
ss->mBitsPerChannel = 16;
|
|
ss->mFormatFlags = kAudioFormatFlagIsSignedInteger;
|
|
break;
|
|
case CUBEB_SAMPLE_S16BE:
|
|
ss->mBitsPerChannel = 16;
|
|
ss->mFormatFlags = kAudioFormatFlagIsSignedInteger |
|
|
kAudioFormatFlagIsBigEndian;
|
|
break;
|
|
case CUBEB_SAMPLE_FLOAT32LE:
|
|
ss->mBitsPerChannel = 32;
|
|
ss->mFormatFlags = kAudioFormatFlagIsFloat;
|
|
break;
|
|
case CUBEB_SAMPLE_FLOAT32BE:
|
|
ss->mBitsPerChannel = 32;
|
|
ss->mFormatFlags = kAudioFormatFlagIsFloat |
|
|
kAudioFormatFlagIsBigEndian;
|
|
break;
|
|
default:
|
|
return CUBEB_ERROR_INVALID_FORMAT;
|
|
}
|
|
|
|
ss->mFormatID = kAudioFormatLinearPCM;
|
|
ss->mFormatFlags |= kLinearPCMFormatFlagIsPacked;
|
|
ss->mSampleRate = stream_params->rate;
|
|
ss->mChannelsPerFrame = stream_params->channels;
|
|
|
|
ss->mBytesPerFrame = (ss->mBitsPerChannel / 8) * ss->mChannelsPerFrame;
|
|
ss->mFramesPerPacket = 1;
|
|
ss->mBytesPerPacket = ss->mBytesPerFrame * ss->mFramesPerPacket;
|
|
|
|
ss->mReserved = 0;
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
void
|
|
audiounit_init_mixer(cubeb_stream * stm)
|
|
{
|
|
// We only handle downmixing for now.
|
|
// The audio rendering mechanism on OS X will drop the extra channels beyond
|
|
// the channels that audio device can provide, so we need to downmix the
|
|
// audio data by ourselves to keep all the information.
|
|
stm->mixer.reset(cubeb_mixer_create(stm->output_stream_params.format,
|
|
CUBEB_MIXER_DIRECTION_DOWNMIX));
|
|
}
|
|
|
|
static int
|
|
audiounit_set_channel_layout(AudioUnit unit,
|
|
io_side side,
|
|
const cubeb_stream_params * stream_params)
|
|
{
|
|
if (side != OUTPUT) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
assert(stream_params->layout != CUBEB_LAYOUT_UNDEFINED);
|
|
assert(stream_params->channels == CUBEB_CHANNEL_LAYOUT_MAPS[stream_params->layout].channels);
|
|
|
|
OSStatus r;
|
|
size_t size = sizeof(AudioChannelLayout);
|
|
auto layout = make_sized_audio_channel_layout(size);
|
|
|
|
switch (stream_params->layout) {
|
|
case CUBEB_LAYOUT_DUAL_MONO:
|
|
case CUBEB_LAYOUT_STEREO:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_Stereo;
|
|
break;
|
|
case CUBEB_LAYOUT_MONO:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_Mono;
|
|
break;
|
|
case CUBEB_LAYOUT_3F:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_ITU_3_0;
|
|
break;
|
|
case CUBEB_LAYOUT_2F1:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_ITU_2_1;
|
|
break;
|
|
case CUBEB_LAYOUT_3F1:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_ITU_3_1;
|
|
break;
|
|
case CUBEB_LAYOUT_2F2:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_ITU_2_2;
|
|
break;
|
|
case CUBEB_LAYOUT_3F2:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_ITU_3_2;
|
|
break;
|
|
case CUBEB_LAYOUT_3F2_LFE:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_AudioUnit_5_1;
|
|
break;
|
|
default:
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_Unknown;
|
|
break;
|
|
}
|
|
|
|
// For those layouts that can't be matched to coreaudio's predefined layout,
|
|
// we use customized layout.
|
|
if (layout->mChannelLayoutTag == kAudioChannelLayoutTag_Unknown) {
|
|
size = offsetof(AudioChannelLayout, mChannelDescriptions[stream_params->channels]);
|
|
layout = make_sized_audio_channel_layout(size);
|
|
layout->mChannelLayoutTag = kAudioChannelLayoutTag_UseChannelDescriptions;
|
|
layout->mNumberChannelDescriptions = stream_params->channels;
|
|
for (UInt32 i = 0 ; i < stream_params->channels ; ++i) {
|
|
layout->mChannelDescriptions[i].mChannelLabel =
|
|
cubeb_channel_to_channel_label(CHANNEL_INDEX_TO_ORDER[stream_params->layout][i]);
|
|
layout->mChannelDescriptions[i].mChannelFlags = kAudioChannelFlags_AllOff;
|
|
}
|
|
}
|
|
|
|
r = AudioUnitSetProperty(unit,
|
|
kAudioUnitProperty_AudioChannelLayout,
|
|
kAudioUnitScope_Input,
|
|
AU_OUT_BUS,
|
|
layout.get(),
|
|
size);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/%s/kAudioUnitProperty_AudioChannelLayout rv=%d", to_string(side), r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
void
|
|
audiounit_layout_init(cubeb_stream * stm, io_side side)
|
|
{
|
|
// We currently don't support the input layout setting.
|
|
if (side == INPUT) {
|
|
return;
|
|
}
|
|
|
|
audiounit_set_channel_layout(stm->output_unit, OUTPUT, &stm->output_stream_params);
|
|
|
|
// Update the current used channel layout for the cubeb context.
|
|
// Notice that this channel layout may be different from the layout we set above,
|
|
// because OSX doesn't return error when the output device can NOT provide
|
|
// our desired layout. Thus, we update the layout evertime when the cubeb_stream
|
|
// is created and use it when we need to mix audio data.
|
|
stm->context->layout = audiounit_get_current_channel_layout(stm->output_unit);
|
|
}
|
|
|
|
static std::vector<AudioObjectID>
|
|
audiounit_get_sub_devices(AudioDeviceID device_id)
|
|
{
|
|
std::vector<AudioDeviceID> sub_devices;
|
|
AudioObjectPropertyAddress property_address = { kAudioAggregateDevicePropertyActiveSubDeviceList,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
UInt32 size = 0;
|
|
OSStatus rv = AudioObjectGetPropertyDataSize(device_id,
|
|
&property_address,
|
|
0,
|
|
nullptr,
|
|
&size);
|
|
|
|
if (rv != noErr) {
|
|
sub_devices.push_back(device_id);
|
|
return sub_devices;
|
|
}
|
|
|
|
uint32_t count = static_cast<uint32_t>(size / sizeof(AudioObjectID));
|
|
sub_devices.resize(count);
|
|
rv = AudioObjectGetPropertyData(device_id,
|
|
&property_address,
|
|
0,
|
|
nullptr,
|
|
&size,
|
|
sub_devices.data());
|
|
if (rv != noErr) {
|
|
sub_devices.clear();
|
|
sub_devices.push_back(device_id);
|
|
} else {
|
|
LOG("Found %u sub-devices", count);
|
|
}
|
|
return sub_devices;
|
|
}
|
|
|
|
static int
|
|
audiounit_create_blank_aggregate_device(AudioObjectID * plugin_id, AudioDeviceID * aggregate_device_id)
|
|
{
|
|
AudioObjectPropertyAddress address_plugin_bundle_id = { kAudioHardwarePropertyPlugInForBundleID,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
UInt32 size = 0;
|
|
OSStatus r = AudioObjectGetPropertyDataSize(kAudioObjectSystemObject,
|
|
&address_plugin_bundle_id,
|
|
0, NULL,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioHardwareGetPropertyInfo/kAudioHardwarePropertyPlugInForBundleID, rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
AudioValueTranslation translation_value;
|
|
CFStringRef in_bundle_ref = CFSTR("com.apple.audio.CoreAudio");
|
|
translation_value.mInputData = &in_bundle_ref;
|
|
translation_value.mInputDataSize = sizeof(in_bundle_ref);
|
|
translation_value.mOutputData = plugin_id;
|
|
translation_value.mOutputDataSize = sizeof(*plugin_id);
|
|
|
|
r = AudioObjectGetPropertyData(kAudioObjectSystemObject,
|
|
&address_plugin_bundle_id,
|
|
0,
|
|
nullptr,
|
|
&size,
|
|
&translation_value);
|
|
if (r != noErr) {
|
|
LOG("AudioHardwareGetProperty/kAudioHardwarePropertyPlugInForBundleID, rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
AudioObjectPropertyAddress create_aggregate_device_address = { kAudioPlugInCreateAggregateDevice,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
r = AudioObjectGetPropertyDataSize(*plugin_id,
|
|
&create_aggregate_device_address,
|
|
0,
|
|
nullptr,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioObjectGetPropertyDataSize/kAudioPlugInCreateAggregateDevice, rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
CFMutableDictionaryRef aggregate_device_dict = CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
|
|
&kCFTypeDictionaryKeyCallBacks,
|
|
&kCFTypeDictionaryValueCallBacks);
|
|
struct timeval timestamp;
|
|
gettimeofday(×tamp, NULL);
|
|
long long int time_id = timestamp.tv_sec * 1000000LL + timestamp.tv_usec;
|
|
CFStringRef aggregate_device_name = CFStringCreateWithFormat(NULL, NULL, CFSTR("CubebAggregateDevice_%llx"), time_id);
|
|
CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceNameKey), aggregate_device_name);
|
|
CFRelease(aggregate_device_name);
|
|
|
|
CFStringRef aggregate_device_UID = CFStringCreateWithFormat(NULL, NULL, CFSTR("org.mozilla.CubebAggregateDevice_%llx"), time_id);
|
|
CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceUIDKey), aggregate_device_UID);
|
|
CFRelease(aggregate_device_UID);
|
|
|
|
int private_value = 1;
|
|
CFNumberRef aggregate_device_private_key = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &private_value);
|
|
CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceIsPrivateKey), aggregate_device_private_key);
|
|
CFRelease(aggregate_device_private_key);
|
|
|
|
int stacked_value = 0;
|
|
CFNumberRef aggregate_device_stacked_key = CFNumberCreate(kCFAllocatorDefault, kCFNumberIntType, &stacked_value);
|
|
CFDictionaryAddValue(aggregate_device_dict, CFSTR(kAudioAggregateDeviceIsStackedKey), aggregate_device_stacked_key);
|
|
CFRelease(aggregate_device_stacked_key);
|
|
|
|
r = AudioObjectGetPropertyData(*plugin_id,
|
|
&create_aggregate_device_address,
|
|
sizeof(aggregate_device_dict),
|
|
&aggregate_device_dict,
|
|
&size,
|
|
aggregate_device_id);
|
|
CFRelease(aggregate_device_dict);
|
|
if (r != noErr) {
|
|
LOG("AudioObjectGetPropertyData/kAudioPlugInCreateAggregateDevice, rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
LOG("New aggregate device %u", *aggregate_device_id);
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static CFStringRef
|
|
get_device_name(AudioDeviceID id)
|
|
{
|
|
UInt32 size = sizeof(CFStringRef);
|
|
CFStringRef UIname;
|
|
AudioObjectPropertyAddress address_uuid = { kAudioDevicePropertyDeviceUID,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
OSStatus err = AudioObjectGetPropertyData(id, &address_uuid, 0, nullptr, &size, &UIname);
|
|
return (err == noErr) ? UIname : NULL;
|
|
}
|
|
|
|
static int
|
|
audiounit_set_aggregate_sub_device_list(AudioDeviceID aggregate_device_id,
|
|
AudioDeviceID input_device_id,
|
|
AudioDeviceID output_device_id)
|
|
{
|
|
LOG("Add devices input %u and output %u into aggregate device %u",
|
|
input_device_id, output_device_id, aggregate_device_id);
|
|
const std::vector<AudioDeviceID> output_sub_devices = audiounit_get_sub_devices(output_device_id);
|
|
const std::vector<AudioDeviceID> input_sub_devices = audiounit_get_sub_devices(input_device_id);
|
|
|
|
CFMutableArrayRef aggregate_sub_devices_array = CFArrayCreateMutable(NULL, 0, &kCFTypeArrayCallBacks);
|
|
/* The order of the items in the array is significant and is used to determine the order of the streams
|
|
of the AudioAggregateDevice. */
|
|
for (UInt32 i = 0; i < output_sub_devices.size(); i++) {
|
|
CFStringRef ref = get_device_name(output_sub_devices[i]);
|
|
if (ref == NULL) {
|
|
CFRelease(aggregate_sub_devices_array);
|
|
return CUBEB_ERROR;
|
|
}
|
|
CFArrayAppendValue(aggregate_sub_devices_array, ref);
|
|
}
|
|
for (UInt32 i = 0; i < input_sub_devices.size(); i++) {
|
|
CFStringRef ref = get_device_name(input_sub_devices[i]);
|
|
if (ref == NULL) {
|
|
CFRelease(aggregate_sub_devices_array);
|
|
return CUBEB_ERROR;
|
|
}
|
|
CFArrayAppendValue(aggregate_sub_devices_array, ref);
|
|
}
|
|
|
|
AudioObjectPropertyAddress aggregate_sub_device_list = { kAudioAggregateDevicePropertyFullSubDeviceList,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
UInt32 size = sizeof(CFMutableArrayRef);
|
|
OSStatus rv = AudioObjectSetPropertyData(aggregate_device_id,
|
|
&aggregate_sub_device_list,
|
|
0,
|
|
nullptr,
|
|
size,
|
|
&aggregate_sub_devices_array);
|
|
CFRelease(aggregate_sub_devices_array);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectSetPropertyData/kAudioAggregateDevicePropertyFullSubDeviceList, rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_set_master_aggregate_device(const AudioDeviceID aggregate_device_id)
|
|
{
|
|
assert(aggregate_device_id);
|
|
AudioObjectPropertyAddress master_aggregate_sub_device = { kAudioAggregateDevicePropertyMasterSubDevice,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
|
|
// Master become the 1st output sub device
|
|
AudioDeviceID output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
const std::vector<AudioDeviceID> output_sub_devices = audiounit_get_sub_devices(output_device_id);
|
|
CFStringRef master_sub_device = get_device_name(output_sub_devices[0]);
|
|
|
|
UInt32 size = sizeof(CFStringRef);
|
|
OSStatus rv = AudioObjectSetPropertyData(aggregate_device_id,
|
|
&master_aggregate_sub_device,
|
|
0,
|
|
NULL,
|
|
size,
|
|
&master_sub_device);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectSetPropertyData/kAudioAggregateDevicePropertyMasterSubDevice, rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_activate_clock_drift_compensation(const AudioDeviceID aggregate_device_id)
|
|
{
|
|
assert(aggregate_device_id);
|
|
AudioObjectPropertyAddress address_owned = { kAudioObjectPropertyOwnedObjects,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
|
|
UInt32 qualifier_data_size = sizeof(AudioObjectID);
|
|
AudioClassID class_id = kAudioSubDeviceClassID;
|
|
void * qualifier_data = &class_id;
|
|
UInt32 size = 0;
|
|
OSStatus rv = AudioObjectGetPropertyDataSize(aggregate_device_id,
|
|
&address_owned,
|
|
qualifier_data_size,
|
|
qualifier_data,
|
|
&size);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectGetPropertyDataSize/kAudioObjectPropertyOwnedObjects, rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
UInt32 subdevices_num = 0;
|
|
subdevices_num = size / sizeof(AudioObjectID);
|
|
AudioObjectID sub_devices[subdevices_num];
|
|
size = sizeof(sub_devices);
|
|
|
|
rv = AudioObjectGetPropertyData(aggregate_device_id,
|
|
&address_owned,
|
|
qualifier_data_size,
|
|
qualifier_data,
|
|
&size,
|
|
sub_devices);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectGetPropertyData/kAudioObjectPropertyOwnedObjects, rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
AudioObjectPropertyAddress address_drift = { kAudioSubDevicePropertyDriftCompensation,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
|
|
// Start from the second device since the first is the master clock
|
|
for (UInt32 i = 1; i < subdevices_num; ++i) {
|
|
UInt32 drift_compensation_value = 1;
|
|
rv = AudioObjectSetPropertyData(sub_devices[i],
|
|
&address_drift,
|
|
0,
|
|
nullptr,
|
|
sizeof(UInt32),
|
|
&drift_compensation_value);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectSetPropertyData/kAudioSubDevicePropertyDriftCompensation, rv=%d", rv);
|
|
return CUBEB_OK;
|
|
}
|
|
}
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int audiounit_destroy_aggregate_device(AudioObjectID plugin_id, AudioDeviceID * aggregate_device_id);
|
|
|
|
/*
|
|
* Aggregate Device is a virtual audio interface which utilizes inputs and outputs
|
|
* of one or more physical audio interfaces. It is possible to use the clock of
|
|
* one of the devices as a master clock for all the combined devices and enable
|
|
* drift compensation for the devices that are not designated clock master.
|
|
*
|
|
* Creating a new aggregate device programmatically requires [0][1]:
|
|
* 1. Locate the base plug-in ("com.apple.audio.CoreAudio")
|
|
* 2. Create a dictionary that describes the aggregate device
|
|
* (don't add sub-devices in that step, prone to fail [0])
|
|
* 3. Ask the base plug-in to create the aggregate device (blank)
|
|
* 4. Add the array of sub-devices.
|
|
* 5. Set the master device (1st output device in our case)
|
|
* 6. Enable drift compensation for the non-master devices
|
|
*
|
|
* [0] https://lists.apple.com/archives/coreaudio-api/2006/Apr/msg00092.html
|
|
* [1] https://lists.apple.com/archives/coreaudio-api/2005/Jul/msg00150.html
|
|
* [2] CoreAudio.framework/Headers/AudioHardware.h
|
|
* */
|
|
static int
|
|
audiounit_create_aggregate_device(cubeb_stream * stm)
|
|
{
|
|
int r = audiounit_create_blank_aggregate_device(&stm->plugin_id, &stm->aggregate_device_id);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Failed to create blank aggregate device", stm);
|
|
audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
r = audiounit_set_aggregate_sub_device_list(stm->aggregate_device_id, stm->input_device.id, stm->output_device.id);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Failed to set aggregate sub-device list", stm);
|
|
audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
r = audiounit_set_master_aggregate_device(stm->aggregate_device_id);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Failed to set master sub-device for aggregate device", stm);
|
|
audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
r = audiounit_activate_clock_drift_compensation(stm->aggregate_device_id);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Failed to activate clock drift compensation for aggregate device", stm);
|
|
audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_destroy_aggregate_device(AudioObjectID plugin_id, AudioDeviceID * aggregate_device_id)
|
|
{
|
|
assert(aggregate_device_id &&
|
|
*aggregate_device_id != kAudioDeviceUnknown &&
|
|
plugin_id != kAudioObjectUnknown);
|
|
AudioObjectPropertyAddress destroy_aggregate_device_addr = { kAudioPlugInDestroyAggregateDevice,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster};
|
|
UInt32 size;
|
|
OSStatus rv = AudioObjectGetPropertyDataSize(plugin_id,
|
|
&destroy_aggregate_device_addr,
|
|
0,
|
|
NULL,
|
|
&size);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectGetPropertyDataSize/kAudioPlugInDestroyAggregateDevice, rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
rv = AudioObjectGetPropertyData(plugin_id,
|
|
&destroy_aggregate_device_addr,
|
|
0,
|
|
NULL,
|
|
&size,
|
|
aggregate_device_id);
|
|
if (rv != noErr) {
|
|
LOG("AudioObjectGetPropertyData/kAudioPlugInDestroyAggregateDevice, rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
LOG("Destroyed aggregate device %d", *aggregate_device_id);
|
|
*aggregate_device_id = 0;
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_new_unit_instance(AudioUnit * unit, device_info * device)
|
|
{
|
|
AudioComponentDescription desc;
|
|
AudioComponent comp;
|
|
OSStatus rv;
|
|
|
|
desc.componentType = kAudioUnitType_Output;
|
|
#if TARGET_OS_IPHONE
|
|
desc.componentSubType = kAudioUnitSubType_RemoteIO;
|
|
#else
|
|
// Use the DefaultOutputUnit for output when no device is specified
|
|
// so we retain automatic output device switching when the default
|
|
// changes. Once we have complete support for device notifications
|
|
// and switching, we can use the AUHAL for everything.
|
|
if ((device->flags & DEV_SYSTEM_DEFAULT)
|
|
&& (device->flags & DEV_OUTPUT)) {
|
|
desc.componentSubType = kAudioUnitSubType_DefaultOutput;
|
|
} else {
|
|
desc.componentSubType = kAudioUnitSubType_HALOutput;
|
|
}
|
|
#endif
|
|
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
|
|
desc.componentFlags = 0;
|
|
desc.componentFlagsMask = 0;
|
|
comp = AudioComponentFindNext(NULL, &desc);
|
|
if (comp == NULL) {
|
|
LOG("Could not find matching audio hardware.");
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
rv = AudioComponentInstanceNew(comp, unit);
|
|
if (rv != noErr) {
|
|
LOG("AudioComponentInstanceNew rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
enum enable_state {
|
|
DISABLE,
|
|
ENABLE,
|
|
};
|
|
|
|
static int
|
|
audiounit_enable_unit_scope(AudioUnit * unit, io_side side, enable_state state)
|
|
{
|
|
OSStatus rv;
|
|
UInt32 enable = state;
|
|
rv = AudioUnitSetProperty(*unit, kAudioOutputUnitProperty_EnableIO,
|
|
(side == INPUT) ? kAudioUnitScope_Input : kAudioUnitScope_Output,
|
|
(side == INPUT) ? AU_IN_BUS : AU_OUT_BUS,
|
|
&enable,
|
|
sizeof(UInt32));
|
|
if (rv != noErr) {
|
|
LOG("AudioUnitSetProperty/kAudioOutputUnitProperty_EnableIO rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_create_unit(AudioUnit * unit, device_info * device)
|
|
{
|
|
assert(*unit == nullptr);
|
|
assert(device);
|
|
|
|
OSStatus rv;
|
|
int r;
|
|
|
|
r = audiounit_new_unit_instance(unit, device);
|
|
if (r != CUBEB_OK) {
|
|
return r;
|
|
}
|
|
assert(*unit);
|
|
|
|
if ((device->flags & DEV_SYSTEM_DEFAULT)
|
|
&& (device->flags & DEV_OUTPUT)) {
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
|
|
if (device->flags & DEV_INPUT) {
|
|
r = audiounit_enable_unit_scope(unit, INPUT, ENABLE);
|
|
if (r != CUBEB_OK) {
|
|
LOG("Failed to enable audiounit input scope ");
|
|
return r;
|
|
}
|
|
r = audiounit_enable_unit_scope(unit, OUTPUT, DISABLE);
|
|
if (r != CUBEB_OK) {
|
|
LOG("Failed to disable audiounit output scope ");
|
|
return r;
|
|
}
|
|
} else if (device->flags & DEV_OUTPUT) {
|
|
r = audiounit_enable_unit_scope(unit, OUTPUT, ENABLE);
|
|
if (r != CUBEB_OK) {
|
|
LOG("Failed to enable audiounit output scope ");
|
|
return r;
|
|
}
|
|
r = audiounit_enable_unit_scope(unit, INPUT, DISABLE);
|
|
if (r != CUBEB_OK) {
|
|
LOG("Failed to disable audiounit input scope ");
|
|
return r;
|
|
}
|
|
} else {
|
|
assert(false);
|
|
}
|
|
|
|
rv = AudioUnitSetProperty(*unit,
|
|
kAudioOutputUnitProperty_CurrentDevice,
|
|
kAudioUnitScope_Global,
|
|
0,
|
|
&device->id, sizeof(AudioDeviceID));
|
|
if (rv != noErr) {
|
|
LOG("AudioUnitSetProperty/kAudioOutputUnitProperty_CurrentDevice rv=%d", rv);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_init_input_linear_buffer(cubeb_stream * stream, uint32_t capacity)
|
|
{
|
|
uint32_t size = capacity * stream->input_buffer_frames * stream->input_desc.mChannelsPerFrame;
|
|
if (stream->input_desc.mFormatFlags & kAudioFormatFlagIsSignedInteger) {
|
|
stream->input_linear_buffer.reset(new auto_array_wrapper_impl<short>(size));
|
|
} else {
|
|
stream->input_linear_buffer.reset(new auto_array_wrapper_impl<float>(size));
|
|
}
|
|
assert(stream->input_linear_buffer->length() == 0);
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static uint32_t
|
|
audiounit_clamp_latency(cubeb_stream * stm, uint32_t latency_frames)
|
|
{
|
|
// For the 1st stream set anything within safe min-max
|
|
assert(stm->context->active_streams > 0);
|
|
if (stm->context->active_streams == 1) {
|
|
return std::max(std::min<uint32_t>(latency_frames, SAFE_MAX_LATENCY_FRAMES),
|
|
SAFE_MIN_LATENCY_FRAMES);
|
|
}
|
|
assert(stm->output_unit);
|
|
|
|
// If more than one stream operates in parallel
|
|
// allow only lower values of latency
|
|
int r;
|
|
UInt32 output_buffer_size = 0;
|
|
UInt32 size = sizeof(output_buffer_size);
|
|
if (stm->output_unit) {
|
|
r = AudioUnitGetProperty(stm->output_unit,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
kAudioUnitScope_Output,
|
|
AU_OUT_BUS,
|
|
&output_buffer_size,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetProperty/output/kAudioDevicePropertyBufferFrameSize rv=%d", r);
|
|
return 0;
|
|
}
|
|
|
|
output_buffer_size = std::max(std::min<uint32_t>(output_buffer_size, SAFE_MAX_LATENCY_FRAMES),
|
|
SAFE_MIN_LATENCY_FRAMES);
|
|
}
|
|
|
|
UInt32 input_buffer_size = 0;
|
|
if (stm->input_unit) {
|
|
r = AudioUnitGetProperty(stm->input_unit,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
kAudioUnitScope_Input,
|
|
AU_IN_BUS,
|
|
&input_buffer_size,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetProperty/input/kAudioDevicePropertyBufferFrameSize rv=%d", r);
|
|
return 0;
|
|
}
|
|
|
|
input_buffer_size = std::max(std::min<uint32_t>(input_buffer_size, SAFE_MAX_LATENCY_FRAMES),
|
|
SAFE_MIN_LATENCY_FRAMES);
|
|
}
|
|
|
|
// Every following active streams can only set smaller latency
|
|
UInt32 upper_latency_limit = 0;
|
|
if (input_buffer_size != 0 && output_buffer_size != 0) {
|
|
upper_latency_limit = std::min<uint32_t>(input_buffer_size, output_buffer_size);
|
|
} else if (input_buffer_size != 0) {
|
|
upper_latency_limit = input_buffer_size;
|
|
} else if (output_buffer_size != 0) {
|
|
upper_latency_limit = output_buffer_size;
|
|
} else {
|
|
upper_latency_limit = SAFE_MAX_LATENCY_FRAMES;
|
|
}
|
|
|
|
return std::max(std::min<uint32_t>(latency_frames, upper_latency_limit),
|
|
SAFE_MIN_LATENCY_FRAMES);
|
|
}
|
|
|
|
/*
|
|
* Change buffer size is prone to deadlock thus we change it
|
|
* following the steps:
|
|
* - register a listener for the buffer size property
|
|
* - change the property
|
|
* - wait until the listener is executed
|
|
* - property has changed, remove the listener
|
|
* */
|
|
static void
|
|
buffer_size_changed_callback(void * inClientData,
|
|
AudioUnit inUnit,
|
|
AudioUnitPropertyID inPropertyID,
|
|
AudioUnitScope inScope,
|
|
AudioUnitElement inElement)
|
|
{
|
|
cubeb_stream * stm = (cubeb_stream *)inClientData;
|
|
|
|
AudioUnit au = inUnit;
|
|
AudioUnitScope au_scope = kAudioUnitScope_Input;
|
|
AudioUnitElement au_element = inElement;
|
|
char const * au_type = "output";
|
|
|
|
if (AU_IN_BUS == inElement) {
|
|
au_scope = kAudioUnitScope_Output;
|
|
au_type = "input";
|
|
}
|
|
|
|
switch (inPropertyID) {
|
|
|
|
case kAudioDevicePropertyBufferFrameSize: {
|
|
if (inScope != au_scope) {
|
|
break;
|
|
}
|
|
UInt32 new_buffer_size;
|
|
UInt32 outSize = sizeof(UInt32);
|
|
OSStatus r = AudioUnitGetProperty(au,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
au_scope,
|
|
au_element,
|
|
&new_buffer_size,
|
|
&outSize);
|
|
if (r != noErr) {
|
|
LOG("(%p) Event: kAudioDevicePropertyBufferFrameSize: Cannot get current buffer size", stm);
|
|
} else {
|
|
LOG("(%p) Event: kAudioDevicePropertyBufferFrameSize: New %s buffer size = %d for scope %d", stm,
|
|
au_type, new_buffer_size, inScope);
|
|
}
|
|
stm->buffer_size_change_state = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
audiounit_set_buffer_size(cubeb_stream * stm, uint32_t new_size_frames, io_side side)
|
|
{
|
|
AudioUnit au = stm->output_unit;
|
|
AudioUnitScope au_scope = kAudioUnitScope_Input;
|
|
AudioUnitElement au_element = AU_OUT_BUS;
|
|
|
|
if (side == INPUT) {
|
|
au = stm->input_unit;
|
|
au_scope = kAudioUnitScope_Output;
|
|
au_element = AU_IN_BUS;
|
|
}
|
|
|
|
uint32_t buffer_frames = 0;
|
|
UInt32 size = sizeof(buffer_frames);
|
|
int r = AudioUnitGetProperty(au,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
au_scope,
|
|
au_element,
|
|
&buffer_frames,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetProperty/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
if (new_size_frames == buffer_frames) {
|
|
LOG("(%p) No need to update %s buffer size already %u frames", stm, to_string(side), buffer_frames);
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
r = AudioUnitAddPropertyListener(au,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
buffer_size_changed_callback,
|
|
stm);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitAddPropertyListener/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
stm->buffer_size_change_state = false;
|
|
|
|
r = AudioUnitSetProperty(au,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
au_scope,
|
|
au_element,
|
|
&new_size_frames,
|
|
sizeof(new_size_frames));
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
|
|
|
|
r = AudioUnitRemovePropertyListenerWithUserData(au,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
buffer_size_changed_callback,
|
|
stm);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitAddPropertyListener/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
|
|
}
|
|
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
int count = 0;
|
|
while (!stm->buffer_size_change_state && count++ < 30) {
|
|
struct timespec req, rem;
|
|
req.tv_sec = 0;
|
|
req.tv_nsec = 100000000L; // 0.1 sec
|
|
if (nanosleep(&req , &rem) < 0 ) {
|
|
LOG("(%p) Warning: nanosleep call failed or interrupted. Remaining time %ld nano secs \n", stm, rem.tv_nsec);
|
|
}
|
|
LOG("(%p) audiounit_set_buffer_size : wait count = %d", stm, count);
|
|
}
|
|
|
|
r = AudioUnitRemovePropertyListenerWithUserData(au,
|
|
kAudioDevicePropertyBufferFrameSize,
|
|
buffer_size_changed_callback,
|
|
stm);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitAddPropertyListener/%s/kAudioDevicePropertyBufferFrameSize rv=%d", to_string(side), r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
if (!stm->buffer_size_change_state && count >= 30) {
|
|
LOG("(%p) Error, did not get buffer size change callback ...", stm);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
LOG("(%p) %s buffer size changed to %u frames.", stm, to_string(side), new_size_frames);
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_configure_input(cubeb_stream * stm)
|
|
{
|
|
assert(stm && stm->input_unit);
|
|
|
|
int r = 0;
|
|
UInt32 size;
|
|
AURenderCallbackStruct aurcbs_in;
|
|
|
|
LOG("(%p) Opening input side: rate %u, channels %u, format %d, latency in frames %u.",
|
|
stm, stm->input_stream_params.rate, stm->input_stream_params.channels,
|
|
stm->input_stream_params.format, stm->latency_frames);
|
|
|
|
/* Get input device sample rate. */
|
|
AudioStreamBasicDescription input_hw_desc;
|
|
size = sizeof(AudioStreamBasicDescription);
|
|
r = AudioUnitGetProperty(stm->input_unit,
|
|
kAudioUnitProperty_StreamFormat,
|
|
kAudioUnitScope_Input,
|
|
AU_IN_BUS,
|
|
&input_hw_desc,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetProperty/input/kAudioUnitProperty_StreamFormat rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
stm->input_hw_rate = input_hw_desc.mSampleRate;
|
|
LOG("(%p) Input device sampling rate: %.2f", stm, stm->input_hw_rate);
|
|
|
|
/* Set format description according to the input params. */
|
|
r = audio_stream_desc_init(&stm->input_desc, &stm->input_stream_params);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Setting format description for input failed.", stm);
|
|
return r;
|
|
}
|
|
|
|
// Use latency to set buffer size
|
|
stm->input_buffer_frames = stm->latency_frames;
|
|
r = audiounit_set_buffer_size(stm, stm->input_buffer_frames, INPUT);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Error in change input buffer size.", stm);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
AudioStreamBasicDescription src_desc = stm->input_desc;
|
|
/* Input AudioUnit must be configured with device's sample rate.
|
|
we will resample inside input callback. */
|
|
src_desc.mSampleRate = stm->input_hw_rate;
|
|
|
|
r = AudioUnitSetProperty(stm->input_unit,
|
|
kAudioUnitProperty_StreamFormat,
|
|
kAudioUnitScope_Output,
|
|
AU_IN_BUS,
|
|
&src_desc,
|
|
sizeof(AudioStreamBasicDescription));
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/input/kAudioUnitProperty_StreamFormat rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
/* Frames per buffer in the input callback. */
|
|
r = AudioUnitSetProperty(stm->input_unit,
|
|
kAudioUnitProperty_MaximumFramesPerSlice,
|
|
kAudioUnitScope_Global,
|
|
AU_IN_BUS,
|
|
&stm->input_buffer_frames,
|
|
sizeof(UInt32));
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/input/kAudioUnitProperty_MaximumFramesPerSlice rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
// Input only capacity
|
|
unsigned int array_capacity = 1;
|
|
if (has_output(stm)) {
|
|
// Full-duplex increase capacity
|
|
array_capacity = 8;
|
|
}
|
|
if (audiounit_init_input_linear_buffer(stm, array_capacity) != CUBEB_OK) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
aurcbs_in.inputProc = audiounit_input_callback;
|
|
aurcbs_in.inputProcRefCon = stm;
|
|
|
|
r = AudioUnitSetProperty(stm->input_unit,
|
|
kAudioOutputUnitProperty_SetInputCallback,
|
|
kAudioUnitScope_Global,
|
|
AU_OUT_BUS,
|
|
&aurcbs_in,
|
|
sizeof(aurcbs_in));
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/input/kAudioOutputUnitProperty_SetInputCallback rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
LOG("(%p) Input audiounit init successfully.", stm);
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_configure_output(cubeb_stream * stm)
|
|
{
|
|
assert(stm && stm->output_unit);
|
|
|
|
int r;
|
|
AURenderCallbackStruct aurcbs_out;
|
|
UInt32 size;
|
|
|
|
|
|
LOG("(%p) Opening output side: rate %u, channels %u, format %d, latency in frames %u.",
|
|
stm, stm->output_stream_params.rate, stm->output_stream_params.channels,
|
|
stm->output_stream_params.format, stm->latency_frames);
|
|
|
|
r = audio_stream_desc_init(&stm->output_desc, &stm->output_stream_params);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Could not initialize the audio stream description.", stm);
|
|
return r;
|
|
}
|
|
|
|
/* Get output device sample rate. */
|
|
AudioStreamBasicDescription output_hw_desc;
|
|
size = sizeof(AudioStreamBasicDescription);
|
|
memset(&output_hw_desc, 0, size);
|
|
r = AudioUnitGetProperty(stm->output_unit,
|
|
kAudioUnitProperty_StreamFormat,
|
|
kAudioUnitScope_Output,
|
|
AU_OUT_BUS,
|
|
&output_hw_desc,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetProperty/output/kAudioUnitProperty_StreamFormat rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
stm->output_hw_rate = output_hw_desc.mSampleRate;
|
|
LOG("(%p) Output device sampling rate: %.2f", stm, output_hw_desc.mSampleRate);
|
|
|
|
r = AudioUnitSetProperty(stm->output_unit,
|
|
kAudioUnitProperty_StreamFormat,
|
|
kAudioUnitScope_Input,
|
|
AU_OUT_BUS,
|
|
&stm->output_desc,
|
|
sizeof(AudioStreamBasicDescription));
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/output/kAudioUnitProperty_StreamFormat rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
r = audiounit_set_buffer_size(stm, stm->latency_frames, OUTPUT);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Error in change output buffer size.", stm);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
/* Frames per buffer in the input callback. */
|
|
r = AudioUnitSetProperty(stm->output_unit,
|
|
kAudioUnitProperty_MaximumFramesPerSlice,
|
|
kAudioUnitScope_Global,
|
|
AU_OUT_BUS,
|
|
&stm->latency_frames,
|
|
sizeof(UInt32));
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/output/kAudioUnitProperty_MaximumFramesPerSlice rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
aurcbs_out.inputProc = audiounit_output_callback;
|
|
aurcbs_out.inputProcRefCon = stm;
|
|
r = AudioUnitSetProperty(stm->output_unit,
|
|
kAudioUnitProperty_SetRenderCallback,
|
|
kAudioUnitScope_Global,
|
|
AU_OUT_BUS,
|
|
&aurcbs_out,
|
|
sizeof(aurcbs_out));
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetProperty/output/kAudioUnitProperty_SetRenderCallback rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
if (stm->output_stream_params.layout != CUBEB_LAYOUT_UNDEFINED) {
|
|
audiounit_layout_init(stm, OUTPUT);
|
|
audiounit_init_mixer(stm);
|
|
}
|
|
LOG("(%p) Output audiounit init successfully.", stm);
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_setup_stream(cubeb_stream * stm)
|
|
{
|
|
stm->mutex.assert_current_thread_owns();
|
|
|
|
int r = 0;
|
|
|
|
device_info in_dev_info = stm->input_device;
|
|
device_info out_dev_info = stm->output_device;
|
|
|
|
if (has_input(stm) && has_output(stm) &&
|
|
stm->input_device.id != stm->output_device.id) {
|
|
r = audiounit_create_aggregate_device(stm);
|
|
if (r != CUBEB_OK) {
|
|
stm->aggregate_device_id = 0;
|
|
LOG("(%p) Create aggregate devices failed.", stm);
|
|
// !!!NOTE: It is not necessary to return here. If it does not
|
|
// return it will fallback to the old implementation. The intention
|
|
// is to investigate how often it fails. I plan to remove
|
|
// it after a couple of weeks.
|
|
return r;
|
|
} else {
|
|
in_dev_info.id = out_dev_info.id = stm->aggregate_device_id;
|
|
in_dev_info.flags = DEV_INPUT;
|
|
out_dev_info.flags = DEV_OUTPUT;
|
|
}
|
|
}
|
|
|
|
if (has_input(stm)) {
|
|
r = audiounit_create_unit(&stm->input_unit, &in_dev_info);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) AudioUnit creation for input failed.", stm);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
if (has_output(stm)) {
|
|
r = audiounit_create_unit(&stm->output_unit, &out_dev_info);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) AudioUnit creation for output failed.", stm);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
/* Latency cannot change if another stream is operating in parallel. In this case
|
|
* latecy is set to the other stream value. */
|
|
if (stm->context->active_streams > 1) {
|
|
LOG("(%p) More than one active stream, use global latency.", stm);
|
|
stm->latency_frames = stm->context->global_latency_frames;
|
|
} else {
|
|
/* Silently clamp the latency down to the platform default, because we
|
|
* synthetize the clock from the callbacks, and we want the clock to update
|
|
* often. */
|
|
stm->latency_frames = audiounit_clamp_latency(stm, stm->latency_frames);
|
|
assert(stm->latency_frames); // Ungly error check
|
|
audiounit_set_global_latency(stm, stm->latency_frames);
|
|
}
|
|
|
|
/* Configure I/O stream */
|
|
if (has_input(stm)) {
|
|
r = audiounit_configure_input(stm);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Configure audiounit input failed.", stm);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
if (has_output(stm)) {
|
|
r = audiounit_configure_output(stm);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Configure audiounit output failed.", stm);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
// Setting the latency doesn't work well for USB headsets (eg. plantronics).
|
|
// Keep the default latency for now.
|
|
#if 0
|
|
buffer_size = latency;
|
|
|
|
/* Get the range of latency this particular device can work with, and clamp
|
|
* the requested latency to this acceptable range. */
|
|
#if !TARGET_OS_IPHONE
|
|
if (audiounit_get_acceptable_latency_range(&latency_range) != CUBEB_OK) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
if (buffer_size < (unsigned int) latency_range.mMinimum) {
|
|
buffer_size = (unsigned int) latency_range.mMinimum;
|
|
} else if (buffer_size > (unsigned int) latency_range.mMaximum) {
|
|
buffer_size = (unsigned int) latency_range.mMaximum;
|
|
}
|
|
|
|
/**
|
|
* Get the default buffer size. If our latency request is below the default,
|
|
* set it. Otherwise, use the default latency.
|
|
**/
|
|
size = sizeof(default_buffer_size);
|
|
if (AudioUnitGetProperty(stm->output_unit, kAudioDevicePropertyBufferFrameSize,
|
|
kAudioUnitScope_Output, 0, &default_buffer_size, &size) != 0) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
if (buffer_size < default_buffer_size) {
|
|
/* Set the maximum number of frame that the render callback will ask for,
|
|
* effectively setting the latency of the stream. This is process-wide. */
|
|
if (AudioUnitSetProperty(stm->output_unit, kAudioDevicePropertyBufferFrameSize,
|
|
kAudioUnitScope_Output, 0, &buffer_size, sizeof(buffer_size)) != 0) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
}
|
|
#else // TARGET_OS_IPHONE
|
|
//TODO: [[AVAudioSession sharedInstance] inputLatency]
|
|
// http://stackoverflow.com/questions/13157523/kaudiodevicepropertybufferframesize-replacement-for-ios
|
|
#endif
|
|
#endif
|
|
|
|
/* We use a resampler because input AudioUnit operates
|
|
* reliable only in the capture device sample rate.
|
|
* Resampler will convert it to the user sample rate
|
|
* and deliver it to the callback. */
|
|
uint32_t target_sample_rate;
|
|
if (has_input(stm)) {
|
|
target_sample_rate = stm->input_stream_params.rate;
|
|
} else {
|
|
assert(has_output(stm));
|
|
target_sample_rate = stm->output_stream_params.rate;
|
|
}
|
|
|
|
cubeb_stream_params input_unconverted_params;
|
|
if (has_input(stm)) {
|
|
input_unconverted_params = stm->input_stream_params;
|
|
/* Use the rate of the input device. */
|
|
input_unconverted_params.rate = stm->input_hw_rate;
|
|
}
|
|
|
|
/* Create resampler. Output params are unchanged
|
|
* because we do not need conversion on the output. */
|
|
stm->resampler.reset(cubeb_resampler_create(stm,
|
|
has_input(stm) ? &input_unconverted_params : NULL,
|
|
has_output(stm) ? &stm->output_stream_params : NULL,
|
|
target_sample_rate,
|
|
stm->data_callback,
|
|
stm->user_ptr,
|
|
CUBEB_RESAMPLER_QUALITY_DESKTOP));
|
|
if (!stm->resampler) {
|
|
LOG("(%p) Could not create resampler.", stm);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
if (stm->input_unit != NULL) {
|
|
r = AudioUnitInitialize(stm->input_unit);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitInitialize/input rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
if (stm->output_unit != NULL) {
|
|
r = AudioUnitInitialize(stm->output_unit);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitInitialize/output rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
}
|
|
|
|
if (stm->input_unit && stm->output_unit) {
|
|
// According to the I/O hardware rate it is expected a specific pattern of callbacks
|
|
// for example is input is 44100 and output is 48000 we expected no more than 2
|
|
// out callback in a row.
|
|
stm->expected_output_callbacks_in_a_row = ceilf(stm->output_hw_rate / stm->input_hw_rate);
|
|
}
|
|
|
|
r = audiounit_install_device_changed_callback(stm);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Could not install all device change callback.", stm);
|
|
}
|
|
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
cubeb_stream::cubeb_stream(cubeb * context)
|
|
: context(context)
|
|
, resampler(nullptr, cubeb_resampler_destroy)
|
|
, mixer(nullptr, cubeb_mixer_destroy)
|
|
{
|
|
PodZero(&input_desc, 1);
|
|
PodZero(&output_desc, 1);
|
|
}
|
|
|
|
static int
|
|
audiounit_stream_init(cubeb * context,
|
|
cubeb_stream ** stream,
|
|
char const * /* stream_name */,
|
|
cubeb_devid input_device,
|
|
cubeb_stream_params * input_stream_params,
|
|
cubeb_devid output_device,
|
|
cubeb_stream_params * output_stream_params,
|
|
unsigned int latency_frames,
|
|
cubeb_data_callback data_callback,
|
|
cubeb_state_callback state_callback,
|
|
void * user_ptr)
|
|
{
|
|
std::unique_ptr<cubeb_stream, decltype(&audiounit_stream_destroy)> stm(new cubeb_stream(context),
|
|
audiounit_stream_destroy);
|
|
context->active_streams += 1;
|
|
int r;
|
|
|
|
assert(context);
|
|
*stream = NULL;
|
|
assert(latency_frames > 0);
|
|
if ((input_device && !input_stream_params) ||
|
|
(output_device && !output_stream_params)) {
|
|
return CUBEB_ERROR_INVALID_PARAMETER;
|
|
}
|
|
|
|
/* These could be different in the future if we have both
|
|
* full-duplex stream and different devices for input vs output. */
|
|
stm->data_callback = data_callback;
|
|
stm->state_callback = state_callback;
|
|
stm->user_ptr = user_ptr;
|
|
stm->latency_frames = latency_frames;
|
|
if (input_stream_params) {
|
|
stm->input_stream_params = *input_stream_params;
|
|
r = audiounit_set_device_info(stm.get(), reinterpret_cast<uintptr_t>(input_device), INPUT);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Fail to set device info for input.", stm.get());
|
|
return r;
|
|
}
|
|
}
|
|
if (output_stream_params) {
|
|
stm->output_stream_params = *output_stream_params;
|
|
r = audiounit_set_device_info(stm.get(), reinterpret_cast<uintptr_t>(output_device), OUTPUT);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Fail to set device info for output.", stm.get());
|
|
return r;
|
|
}
|
|
}
|
|
|
|
auto_lock context_lock(context->mutex);
|
|
{
|
|
// It's not critical to lock here, because no other thread has been started
|
|
// yet, but it allows to assert that the lock has been taken in
|
|
// `audiounit_setup_stream`.
|
|
auto_lock lock(stm->mutex);
|
|
r = audiounit_setup_stream(stm.get());
|
|
}
|
|
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Could not setup the audiounit stream.", stm.get());
|
|
return r;
|
|
}
|
|
|
|
r = audiounit_install_system_changed_callback(stm.get());
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Could not install the device change callback.", stm.get());
|
|
return r;
|
|
}
|
|
|
|
*stream = stm.release();
|
|
LOG("(%p) Cubeb stream init successful.", *stream);
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static void
|
|
audiounit_close_stream(cubeb_stream *stm)
|
|
{
|
|
stm->mutex.assert_current_thread_owns();
|
|
|
|
if (stm->input_unit) {
|
|
AudioUnitUninitialize(stm->input_unit);
|
|
AudioComponentInstanceDispose(stm->input_unit);
|
|
stm->input_unit = nullptr;
|
|
}
|
|
|
|
stm->input_linear_buffer.reset();
|
|
|
|
if (stm->output_unit) {
|
|
AudioUnitUninitialize(stm->output_unit);
|
|
AudioComponentInstanceDispose(stm->output_unit);
|
|
stm->output_unit = nullptr;
|
|
}
|
|
|
|
stm->resampler.reset();
|
|
stm->mixer.reset();
|
|
|
|
if (stm->aggregate_device_id) {
|
|
audiounit_destroy_aggregate_device(stm->plugin_id, &stm->aggregate_device_id);
|
|
stm->aggregate_device_id = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
audiounit_stream_destroy(cubeb_stream * stm)
|
|
{
|
|
stm->shutdown = true;
|
|
|
|
int r = audiounit_uninstall_system_changed_callback(stm);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Could not uninstall the device changed callback", stm);
|
|
}
|
|
|
|
r = audiounit_uninstall_device_changed_callback(stm);
|
|
if (r != CUBEB_OK) {
|
|
LOG("(%p) Could not uninstall all device change listeners", stm);
|
|
}
|
|
|
|
auto_lock context_lock(stm->context->mutex);
|
|
audiounit_stream_stop_internal(stm);
|
|
|
|
// Execute close in serial queue to avoid collision
|
|
// with reinit when un/plug devices
|
|
dispatch_sync(stm->context->serial_queue, ^() {
|
|
auto_lock lock(stm->mutex);
|
|
audiounit_close_stream(stm);
|
|
});
|
|
|
|
assert(stm->context->active_streams >= 1);
|
|
stm->context->active_streams -= 1;
|
|
|
|
LOG("Cubeb stream (%p) destroyed successful.", stm);
|
|
delete stm;
|
|
}
|
|
|
|
void
|
|
audiounit_stream_start_internal(cubeb_stream * stm)
|
|
{
|
|
OSStatus r;
|
|
if (stm->input_unit != NULL) {
|
|
r = AudioOutputUnitStart(stm->input_unit);
|
|
assert(r == 0);
|
|
}
|
|
if (stm->output_unit != NULL) {
|
|
r = AudioOutputUnitStart(stm->output_unit);
|
|
assert(r == 0);
|
|
}
|
|
}
|
|
|
|
static int
|
|
audiounit_stream_start(cubeb_stream * stm)
|
|
{
|
|
auto_lock context_lock(stm->context->mutex);
|
|
stm->shutdown = false;
|
|
stm->draining = false;
|
|
|
|
audiounit_stream_start_internal(stm);
|
|
|
|
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STARTED);
|
|
|
|
LOG("Cubeb stream (%p) started successfully.", stm);
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
void
|
|
audiounit_stream_stop_internal(cubeb_stream * stm)
|
|
{
|
|
OSStatus r;
|
|
if (stm->input_unit != NULL) {
|
|
r = AudioOutputUnitStop(stm->input_unit);
|
|
assert(r == 0);
|
|
}
|
|
if (stm->output_unit != NULL) {
|
|
r = AudioOutputUnitStop(stm->output_unit);
|
|
assert(r == 0);
|
|
}
|
|
}
|
|
|
|
static int
|
|
audiounit_stream_stop(cubeb_stream * stm)
|
|
{
|
|
auto_lock context_lock(stm->context->mutex);
|
|
stm->shutdown = true;
|
|
|
|
audiounit_stream_stop_internal(stm);
|
|
|
|
stm->state_callback(stm, stm->user_ptr, CUBEB_STATE_STOPPED);
|
|
|
|
LOG("Cubeb stream (%p) stopped successfully.", stm);
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_stream_get_position(cubeb_stream * stm, uint64_t * position)
|
|
{
|
|
assert(stm);
|
|
*position = stm->frames_played;
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
int
|
|
audiounit_stream_get_latency(cubeb_stream * stm, uint32_t * latency)
|
|
{
|
|
#if TARGET_OS_IPHONE
|
|
//TODO
|
|
return CUBEB_ERROR_NOT_SUPPORTED;
|
|
#else
|
|
auto_lock lock(stm->mutex);
|
|
if (stm->hw_latency_frames == UINT64_MAX) {
|
|
UInt32 size;
|
|
uint32_t device_latency_frames, device_safety_offset;
|
|
double unit_latency_sec;
|
|
AudioDeviceID output_device_id;
|
|
OSStatus r;
|
|
AudioObjectPropertyAddress latency_address = {
|
|
kAudioDevicePropertyLatency,
|
|
kAudioDevicePropertyScopeOutput,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
AudioObjectPropertyAddress safety_offset_address = {
|
|
kAudioDevicePropertySafetyOffset,
|
|
kAudioDevicePropertyScopeOutput,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
if (output_device_id == kAudioObjectUnknown) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
size = sizeof(unit_latency_sec);
|
|
r = AudioUnitGetProperty(stm->output_unit,
|
|
kAudioUnitProperty_Latency,
|
|
kAudioUnitScope_Global,
|
|
0,
|
|
&unit_latency_sec,
|
|
&size);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetProperty/kAudioUnitProperty_Latency rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
size = sizeof(device_latency_frames);
|
|
r = AudioObjectGetPropertyData(output_device_id,
|
|
&latency_address,
|
|
0,
|
|
NULL,
|
|
&size,
|
|
&device_latency_frames);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetPropertyData/latency_frames rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
size = sizeof(device_safety_offset);
|
|
r = AudioObjectGetPropertyData(output_device_id,
|
|
&safety_offset_address,
|
|
0,
|
|
NULL,
|
|
&size,
|
|
&device_safety_offset);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetPropertyData/safety_offset rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
/* This part is fixed and depend on the stream parameter and the hardware. */
|
|
stm->hw_latency_frames =
|
|
static_cast<uint32_t>(unit_latency_sec * stm->output_desc.mSampleRate)
|
|
+ device_latency_frames
|
|
+ device_safety_offset;
|
|
}
|
|
|
|
*latency = stm->hw_latency_frames + stm->current_latency_frames;
|
|
|
|
return CUBEB_OK;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
audiounit_stream_get_volume(cubeb_stream * stm, float * volume)
|
|
{
|
|
assert(stm->output_unit);
|
|
OSStatus r = AudioUnitGetParameter(stm->output_unit,
|
|
kHALOutputParam_Volume,
|
|
kAudioUnitScope_Global,
|
|
0, volume);
|
|
if (r != noErr) {
|
|
LOG("AudioUnitGetParameter/kHALOutputParam_Volume rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_stream_set_volume(cubeb_stream * stm, float volume)
|
|
{
|
|
assert(stm->output_unit);
|
|
OSStatus r;
|
|
r = AudioUnitSetParameter(stm->output_unit,
|
|
kHALOutputParam_Volume,
|
|
kAudioUnitScope_Global,
|
|
0, volume, 0);
|
|
|
|
if (r != noErr) {
|
|
LOG("AudioUnitSetParameter/kHALOutputParam_Volume rv=%d", r);
|
|
return CUBEB_ERROR;
|
|
}
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
int audiounit_stream_set_panning(cubeb_stream * stm, float panning)
|
|
{
|
|
if (stm->output_desc.mChannelsPerFrame > 2) {
|
|
return CUBEB_ERROR_INVALID_PARAMETER;
|
|
}
|
|
|
|
stm->panning.store(panning, std::memory_order_relaxed);
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
int audiounit_stream_get_current_device(cubeb_stream * stm,
|
|
cubeb_device ** const device)
|
|
{
|
|
#if TARGET_OS_IPHONE
|
|
//TODO
|
|
return CUBEB_ERROR_NOT_SUPPORTED;
|
|
#else
|
|
OSStatus r;
|
|
UInt32 size;
|
|
UInt32 data;
|
|
char strdata[4];
|
|
AudioDeviceID output_device_id;
|
|
AudioDeviceID input_device_id;
|
|
|
|
AudioObjectPropertyAddress datasource_address = {
|
|
kAudioDevicePropertyDataSource,
|
|
kAudioDevicePropertyScopeOutput,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
AudioObjectPropertyAddress datasource_address_input = {
|
|
kAudioDevicePropertyDataSource,
|
|
kAudioDevicePropertyScopeInput,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
*device = NULL;
|
|
|
|
output_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
if (output_device_id == kAudioObjectUnknown) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
*device = new cubeb_device;
|
|
if (!*device) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
PodZero(*device, 1);
|
|
|
|
size = sizeof(UInt32);
|
|
/* This fails with some USB headset, so simply return an empty string. */
|
|
r = AudioObjectGetPropertyData(output_device_id,
|
|
&datasource_address,
|
|
0, NULL, &size, &data);
|
|
if (r != noErr) {
|
|
size = 0;
|
|
data = 0;
|
|
}
|
|
|
|
(*device)->output_name = new char[size + 1];
|
|
if (!(*device)->output_name) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
// Turn the four chars packed into a uint32 into a string
|
|
strdata[0] = (char)(data >> 24);
|
|
strdata[1] = (char)(data >> 16);
|
|
strdata[2] = (char)(data >> 8);
|
|
strdata[3] = (char)(data);
|
|
|
|
memcpy((*device)->output_name, strdata, size);
|
|
(*device)->output_name[size] = '\0';
|
|
|
|
input_device_id = audiounit_get_default_device_id(CUBEB_DEVICE_TYPE_INPUT);
|
|
if (input_device_id == kAudioObjectUnknown) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
size = sizeof(UInt32);
|
|
r = AudioObjectGetPropertyData(input_device_id, &datasource_address_input, 0, NULL, &size, &data);
|
|
if (r != noErr) {
|
|
LOG("(%p) Error when getting device !", stm);
|
|
size = 0;
|
|
data = 0;
|
|
}
|
|
|
|
(*device)->input_name = new char[size + 1];
|
|
if (!(*device)->input_name) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
// Turn the four chars packed into a uint32 into a string
|
|
strdata[0] = (char)(data >> 24);
|
|
strdata[1] = (char)(data >> 16);
|
|
strdata[2] = (char)(data >> 8);
|
|
strdata[3] = (char)(data);
|
|
|
|
memcpy((*device)->input_name, strdata, size);
|
|
(*device)->input_name[size] = '\0';
|
|
|
|
return CUBEB_OK;
|
|
#endif
|
|
}
|
|
|
|
int audiounit_stream_device_destroy(cubeb_stream * /* stream */,
|
|
cubeb_device * device)
|
|
{
|
|
delete [] device->output_name;
|
|
delete [] device->input_name;
|
|
delete device;
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
int audiounit_stream_register_device_changed_callback(cubeb_stream * stream,
|
|
cubeb_device_changed_callback device_changed_callback)
|
|
{
|
|
auto_lock dev_cb_lock(stream->device_changed_callback_lock);
|
|
/* Note: second register without unregister first causes 'nope' error.
|
|
* Current implementation requires unregister before register a new cb. */
|
|
assert(!stream->device_changed_callback);
|
|
stream->device_changed_callback = device_changed_callback;
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static char *
|
|
audiounit_strref_to_cstr_utf8(CFStringRef strref)
|
|
{
|
|
CFIndex len, size;
|
|
char * ret;
|
|
if (strref == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
len = CFStringGetLength(strref);
|
|
// Add 1 to size to allow for '\0' termination character.
|
|
size = CFStringGetMaximumSizeForEncoding(len, kCFStringEncodingUTF8) + 1;
|
|
ret = new char[size];
|
|
|
|
if (!CFStringGetCString(strref, ret, size, kCFStringEncodingUTF8)) {
|
|
delete [] ret;
|
|
ret = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t
|
|
audiounit_get_channel_count(AudioObjectID devid, AudioObjectPropertyScope scope)
|
|
{
|
|
AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
|
|
UInt32 size = 0;
|
|
uint32_t i, ret = 0;
|
|
|
|
adr.mSelector = kAudioDevicePropertyStreamConfiguration;
|
|
|
|
if (AudioObjectGetPropertyDataSize(devid, &adr, 0, NULL, &size) == noErr && size > 0) {
|
|
AudioBufferList * list = static_cast<AudioBufferList *>(alloca(size));
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, list) == noErr) {
|
|
for (i = 0; i < list->mNumberBuffers; i++)
|
|
ret += list->mBuffers[i].mNumberChannels;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
audiounit_get_available_samplerate(AudioObjectID devid, AudioObjectPropertyScope scope,
|
|
uint32_t * min, uint32_t * max, uint32_t * def)
|
|
{
|
|
AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
|
|
|
|
adr.mSelector = kAudioDevicePropertyNominalSampleRate;
|
|
if (AudioObjectHasProperty(devid, &adr)) {
|
|
UInt32 size = sizeof(Float64);
|
|
Float64 fvalue = 0.0;
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &fvalue) == noErr) {
|
|
*def = fvalue;
|
|
}
|
|
}
|
|
|
|
adr.mSelector = kAudioDevicePropertyAvailableNominalSampleRates;
|
|
UInt32 size = 0;
|
|
AudioValueRange range;
|
|
if (AudioObjectHasProperty(devid, &adr) &&
|
|
AudioObjectGetPropertyDataSize(devid, &adr, 0, NULL, &size) == noErr) {
|
|
uint32_t count = size / sizeof(AudioValueRange);
|
|
std::vector<AudioValueRange> ranges(count);
|
|
range.mMinimum = 9999999999.0;
|
|
range.mMaximum = 0.0;
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, ranges.data()) == noErr) {
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
if (ranges[i].mMaximum > range.mMaximum)
|
|
range.mMaximum = ranges[i].mMaximum;
|
|
if (ranges[i].mMinimum < range.mMinimum)
|
|
range.mMinimum = ranges[i].mMinimum;
|
|
}
|
|
}
|
|
*max = static_cast<uint32_t>(range.mMaximum);
|
|
*min = static_cast<uint32_t>(range.mMinimum);
|
|
} else {
|
|
*min = *max = 0;
|
|
}
|
|
|
|
}
|
|
|
|
static UInt32
|
|
audiounit_get_device_presentation_latency(AudioObjectID devid, AudioObjectPropertyScope scope)
|
|
{
|
|
AudioObjectPropertyAddress adr = { 0, scope, kAudioObjectPropertyElementMaster };
|
|
UInt32 size, dev, stream = 0, offset;
|
|
AudioStreamID sid[1];
|
|
|
|
adr.mSelector = kAudioDevicePropertyLatency;
|
|
size = sizeof(UInt32);
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &dev) != noErr) {
|
|
dev = 0;
|
|
}
|
|
|
|
adr.mSelector = kAudioDevicePropertyStreams;
|
|
size = sizeof(sid);
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, sid) == noErr) {
|
|
adr.mSelector = kAudioStreamPropertyLatency;
|
|
size = sizeof(UInt32);
|
|
AudioObjectGetPropertyData(sid[0], &adr, 0, NULL, &size, &stream);
|
|
}
|
|
|
|
adr.mSelector = kAudioDevicePropertySafetyOffset;
|
|
size = sizeof(UInt32);
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &offset) != noErr) {
|
|
offset = 0;
|
|
}
|
|
|
|
return dev + stream + offset;
|
|
}
|
|
|
|
static int
|
|
audiounit_create_device_from_hwdev(cubeb_device_info * ret, AudioObjectID devid, cubeb_device_type type)
|
|
{
|
|
AudioObjectPropertyAddress adr = { 0, 0, kAudioObjectPropertyElementMaster };
|
|
UInt32 size, ch, latency;
|
|
CFStringRef str = NULL;
|
|
AudioValueRange range;
|
|
|
|
if (type == CUBEB_DEVICE_TYPE_OUTPUT) {
|
|
adr.mScope = kAudioDevicePropertyScopeOutput;
|
|
} else if (type == CUBEB_DEVICE_TYPE_INPUT) {
|
|
adr.mScope = kAudioDevicePropertyScopeInput;
|
|
} else {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
ch = audiounit_get_channel_count(devid, adr.mScope);
|
|
if (ch == 0) {
|
|
return CUBEB_ERROR;
|
|
}
|
|
|
|
PodZero(ret, 1);
|
|
|
|
size = sizeof(CFStringRef);
|
|
adr.mSelector = kAudioDevicePropertyDeviceUID;
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &str) == noErr && str != NULL) {
|
|
ret->device_id = audiounit_strref_to_cstr_utf8(str);
|
|
static_assert(sizeof(cubeb_devid) >= sizeof(decltype(devid)), "cubeb_devid can't represent devid");
|
|
ret->devid = reinterpret_cast<cubeb_devid>(devid);
|
|
ret->group_id = ret->device_id;
|
|
CFRelease(str);
|
|
}
|
|
|
|
size = sizeof(CFStringRef);
|
|
adr.mSelector = kAudioObjectPropertyName;
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &str) == noErr && str != NULL) {
|
|
UInt32 ds;
|
|
size = sizeof(UInt32);
|
|
adr.mSelector = kAudioDevicePropertyDataSource;
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &ds) == noErr) {
|
|
CFStringRef dsname;
|
|
AudioValueTranslation trl = { &ds, sizeof(ds), &dsname, sizeof(dsname) };
|
|
adr.mSelector = kAudioDevicePropertyDataSourceNameForIDCFString;
|
|
size = sizeof(AudioValueTranslation);
|
|
// If there is a datasource for this device, use it instead of the device
|
|
// name.
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &trl) == noErr) {
|
|
CFRelease(str);
|
|
str = dsname;
|
|
}
|
|
}
|
|
|
|
ret->friendly_name = audiounit_strref_to_cstr_utf8(str);
|
|
CFRelease(str);
|
|
}
|
|
|
|
size = sizeof(CFStringRef);
|
|
adr.mSelector = kAudioObjectPropertyManufacturer;
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &str) == noErr && str != NULL) {
|
|
ret->vendor_name = audiounit_strref_to_cstr_utf8(str);
|
|
CFRelease(str);
|
|
}
|
|
|
|
ret->type = type;
|
|
ret->state = CUBEB_DEVICE_STATE_ENABLED;
|
|
ret->preferred = (devid == audiounit_get_default_device_id(type)) ?
|
|
CUBEB_DEVICE_PREF_ALL : CUBEB_DEVICE_PREF_NONE;
|
|
|
|
ret->max_channels = ch;
|
|
ret->format = (cubeb_device_fmt)CUBEB_DEVICE_FMT_ALL; /* CoreAudio supports All! */
|
|
/* kAudioFormatFlagsAudioUnitCanonical is deprecated, prefer floating point */
|
|
ret->default_format = CUBEB_DEVICE_FMT_F32NE;
|
|
audiounit_get_available_samplerate(devid, adr.mScope,
|
|
&ret->min_rate, &ret->max_rate, &ret->default_rate);
|
|
|
|
latency = audiounit_get_device_presentation_latency(devid, adr.mScope);
|
|
|
|
adr.mSelector = kAudioDevicePropertyBufferFrameSizeRange;
|
|
size = sizeof(AudioValueRange);
|
|
if (AudioObjectGetPropertyData(devid, &adr, 0, NULL, &size, &range) == noErr) {
|
|
ret->latency_lo = latency + range.mMinimum;
|
|
ret->latency_hi = latency + range.mMaximum;
|
|
} else {
|
|
ret->latency_lo = 10 * ret->default_rate / 1000; /* Default to 10ms */
|
|
ret->latency_hi = 100 * ret->default_rate / 1000; /* Default to 100ms */
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_enumerate_devices(cubeb * /* context */, cubeb_device_type type,
|
|
cubeb_device_collection * collection)
|
|
{
|
|
std::vector<AudioObjectID> input_devs;
|
|
std::vector<AudioObjectID> output_devs;
|
|
|
|
// Count number of input and output devices. This is not
|
|
// necessarily the same as the count of raw devices supported by the
|
|
// system since, for example, with Soundflower installed, some
|
|
// devices may report as being both input *and* output and cubeb
|
|
// separates those into two different devices.
|
|
|
|
if (type & CUBEB_DEVICE_TYPE_OUTPUT) {
|
|
output_devs = audiounit_get_devices_of_type(CUBEB_DEVICE_TYPE_OUTPUT);
|
|
}
|
|
|
|
if (type & CUBEB_DEVICE_TYPE_INPUT) {
|
|
input_devs = audiounit_get_devices_of_type(CUBEB_DEVICE_TYPE_INPUT);
|
|
}
|
|
|
|
auto devices = new cubeb_device_info[output_devs.size() + input_devs.size()];
|
|
collection->count = 0;
|
|
|
|
if (type & CUBEB_DEVICE_TYPE_OUTPUT) {
|
|
for (auto dev: output_devs) {
|
|
auto device = &devices[collection->count];
|
|
auto err = audiounit_create_device_from_hwdev(device, dev, CUBEB_DEVICE_TYPE_OUTPUT);
|
|
if (err != CUBEB_OK) {
|
|
continue;
|
|
}
|
|
collection->count += 1;
|
|
}
|
|
}
|
|
|
|
if (type & CUBEB_DEVICE_TYPE_INPUT) {
|
|
for (auto dev: input_devs) {
|
|
auto device = &devices[collection->count];
|
|
auto err = audiounit_create_device_from_hwdev(device, dev, CUBEB_DEVICE_TYPE_INPUT);
|
|
if (err != CUBEB_OK) {
|
|
continue;
|
|
}
|
|
collection->count += 1;
|
|
}
|
|
}
|
|
|
|
if (collection->count > 0) {
|
|
collection->device = devices;
|
|
} else {
|
|
delete [] devices;
|
|
collection->device = NULL;
|
|
}
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static int
|
|
audiounit_device_collection_destroy(cubeb * /* context */,
|
|
cubeb_device_collection * collection)
|
|
{
|
|
for (size_t i = 0; i < collection->count; i++) {
|
|
delete [] collection->device[i].device_id;
|
|
delete [] collection->device[i].friendly_name;
|
|
delete [] collection->device[i].vendor_name;
|
|
}
|
|
delete [] collection->device;
|
|
|
|
return CUBEB_OK;
|
|
}
|
|
|
|
static std::vector<AudioObjectID>
|
|
audiounit_get_devices_of_type(cubeb_device_type devtype)
|
|
{
|
|
AudioObjectPropertyAddress adr = { kAudioHardwarePropertyDevices,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster };
|
|
UInt32 size = 0;
|
|
OSStatus ret = AudioObjectGetPropertyDataSize(kAudioObjectSystemObject, &adr, 0, NULL, &size);
|
|
if (ret != noErr) {
|
|
return std::vector<AudioObjectID>();
|
|
}
|
|
/* Total number of input and output devices. */
|
|
uint32_t count = (uint32_t)(size / sizeof(AudioObjectID));
|
|
|
|
std::vector<AudioObjectID> devices(count);
|
|
ret = AudioObjectGetPropertyData(kAudioObjectSystemObject, &adr, 0, NULL, &size, devices.data());
|
|
if (ret != noErr) {
|
|
return std::vector<AudioObjectID>();
|
|
}
|
|
/* Expected sorted but did not find anything in the docs. */
|
|
std::sort(devices.begin(), devices.end(), [](AudioObjectID a, AudioObjectID b) {
|
|
return a < b;
|
|
});
|
|
|
|
if (devtype == (CUBEB_DEVICE_TYPE_INPUT | CUBEB_DEVICE_TYPE_OUTPUT)) {
|
|
return devices;
|
|
}
|
|
|
|
AudioObjectPropertyScope scope = (devtype == CUBEB_DEVICE_TYPE_INPUT) ?
|
|
kAudioDevicePropertyScopeInput :
|
|
kAudioDevicePropertyScopeOutput;
|
|
|
|
std::vector<AudioObjectID> devices_in_scope;
|
|
for (uint32_t i = 0; i < count; ++i) {
|
|
/* For device in the given scope channel must be > 0. */
|
|
if (audiounit_get_channel_count(devices[i], scope) > 0) {
|
|
devices_in_scope.push_back(devices[i]);
|
|
}
|
|
}
|
|
|
|
return devices_in_scope;
|
|
}
|
|
|
|
static OSStatus
|
|
audiounit_collection_changed_callback(AudioObjectID /* inObjectID */,
|
|
UInt32 /* inNumberAddresses */,
|
|
const AudioObjectPropertyAddress * /* inAddresses */,
|
|
void * inClientData)
|
|
{
|
|
cubeb * context = static_cast<cubeb *>(inClientData);
|
|
auto_lock lock(context->mutex);
|
|
|
|
if (context->collection_changed_callback == NULL) {
|
|
/* Listener removed while waiting in mutex, abort. */
|
|
return noErr;
|
|
}
|
|
|
|
/* Differentiate input from output changes. */
|
|
if (context->collection_changed_devtype == CUBEB_DEVICE_TYPE_INPUT ||
|
|
context->collection_changed_devtype == CUBEB_DEVICE_TYPE_OUTPUT) {
|
|
std::vector<AudioObjectID> devices = audiounit_get_devices_of_type(context->collection_changed_devtype);
|
|
/* When count is the same examine the devid for the case of coalescing. */
|
|
if (context->devtype_device_array == devices) {
|
|
/* Device changed for the other scope, ignore. */
|
|
return noErr;
|
|
}
|
|
/* Device on desired scope changed. */
|
|
context->devtype_device_array = devices;
|
|
}
|
|
|
|
context->collection_changed_callback(context, context->collection_changed_user_ptr);
|
|
return noErr;
|
|
}
|
|
|
|
static OSStatus
|
|
audiounit_add_device_listener(cubeb * context,
|
|
cubeb_device_type devtype,
|
|
cubeb_device_collection_changed_callback collection_changed_callback,
|
|
void * user_ptr)
|
|
{
|
|
/* Note: second register without unregister first causes 'nope' error.
|
|
* Current implementation requires unregister before register a new cb. */
|
|
assert(context->collection_changed_callback == NULL);
|
|
|
|
AudioObjectPropertyAddress devAddr;
|
|
devAddr.mSelector = kAudioHardwarePropertyDevices;
|
|
devAddr.mScope = kAudioObjectPropertyScopeGlobal;
|
|
devAddr.mElement = kAudioObjectPropertyElementMaster;
|
|
|
|
OSStatus ret = AudioObjectAddPropertyListener(kAudioObjectSystemObject,
|
|
&devAddr,
|
|
audiounit_collection_changed_callback,
|
|
context);
|
|
if (ret == noErr) {
|
|
/* Expected empty after unregister. */
|
|
assert(context->devtype_device_array.empty());
|
|
/* Listener works for input and output.
|
|
* When requested one of them we need to differentiate. */
|
|
if (devtype == CUBEB_DEVICE_TYPE_INPUT ||
|
|
devtype == CUBEB_DEVICE_TYPE_OUTPUT) {
|
|
/* Used to differentiate input from output device changes. */
|
|
context->devtype_device_array = audiounit_get_devices_of_type(devtype);
|
|
}
|
|
context->collection_changed_devtype = devtype;
|
|
context->collection_changed_callback = collection_changed_callback;
|
|
context->collection_changed_user_ptr = user_ptr;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static OSStatus
|
|
audiounit_remove_device_listener(cubeb * context)
|
|
{
|
|
AudioObjectPropertyAddress devAddr;
|
|
devAddr.mSelector = kAudioHardwarePropertyDevices;
|
|
devAddr.mScope = kAudioObjectPropertyScopeGlobal;
|
|
devAddr.mElement = kAudioObjectPropertyElementMaster;
|
|
|
|
/* Note: unregister a non registered cb is not a problem, not checking. */
|
|
OSStatus ret = AudioObjectRemovePropertyListener(kAudioObjectSystemObject,
|
|
&devAddr,
|
|
audiounit_collection_changed_callback,
|
|
context);
|
|
if (ret == noErr) {
|
|
/* Reset all values. */
|
|
context->collection_changed_devtype = CUBEB_DEVICE_TYPE_UNKNOWN;
|
|
context->collection_changed_callback = NULL;
|
|
context->collection_changed_user_ptr = NULL;
|
|
context->devtype_device_array.clear();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int audiounit_register_device_collection_changed(cubeb * context,
|
|
cubeb_device_type devtype,
|
|
cubeb_device_collection_changed_callback collection_changed_callback,
|
|
void * user_ptr)
|
|
{
|
|
OSStatus ret;
|
|
auto_lock lock(context->mutex);
|
|
if (collection_changed_callback) {
|
|
ret = audiounit_add_device_listener(context, devtype,
|
|
collection_changed_callback,
|
|
user_ptr);
|
|
} else {
|
|
ret = audiounit_remove_device_listener(context);
|
|
}
|
|
return (ret == noErr) ? CUBEB_OK : CUBEB_ERROR;
|
|
}
|
|
|
|
cubeb_ops const audiounit_ops = {
|
|
/*.init =*/ audiounit_init,
|
|
/*.get_backend_id =*/ audiounit_get_backend_id,
|
|
/*.get_max_channel_count =*/ audiounit_get_max_channel_count,
|
|
/*.get_min_latency =*/ audiounit_get_min_latency,
|
|
/*.get_preferred_sample_rate =*/ audiounit_get_preferred_sample_rate,
|
|
/*.get_preferred_channel_layout =*/ audiounit_get_preferred_channel_layout,
|
|
/*.enumerate_devices =*/ audiounit_enumerate_devices,
|
|
/*.device_collection_destroy =*/ audiounit_device_collection_destroy,
|
|
/*.destroy =*/ audiounit_destroy,
|
|
/*.stream_init =*/ audiounit_stream_init,
|
|
/*.stream_destroy =*/ audiounit_stream_destroy,
|
|
/*.stream_start =*/ audiounit_stream_start,
|
|
/*.stream_stop =*/ audiounit_stream_stop,
|
|
/*.stream_reset_default_device =*/ nullptr,
|
|
/*.stream_get_position =*/ audiounit_stream_get_position,
|
|
/*.stream_get_latency =*/ audiounit_stream_get_latency,
|
|
/*.stream_set_volume =*/ audiounit_stream_set_volume,
|
|
/*.stream_set_panning =*/ audiounit_stream_set_panning,
|
|
/*.stream_get_current_device =*/ audiounit_stream_get_current_device,
|
|
/*.stream_device_destroy =*/ audiounit_stream_device_destroy,
|
|
/*.stream_register_device_changed_callback =*/ audiounit_stream_register_device_changed_callback,
|
|
/*.register_device_collection_changed =*/ audiounit_register_device_collection_changed
|
|
};
|