dolphin/Source/Core/Common/Atomic_Win32.h

84 lines
2.5 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// IWYU pragma: private, include "Common/Atomic.h"
#pragma once
#include <intrin.h>
#include <Windows.h>
#include "Common/Common.h"
// Atomic operations are performed in a single step by the CPU. It is
// impossible for other threads to see the operation "half-done."
//
// Some atomic operations can be combined with different types of memory
// barriers called "Acquire semantics" and "Release semantics", defined below.
//
// Acquire semantics: Future memory accesses cannot be relocated to before the
// operation.
//
// Release semantics: Past memory accesses cannot be relocated to after the
// operation.
//
// These barriers affect not only the compiler, but also the CPU.
//
// NOTE: Acquire and Release are not differentiated right now. They perform a
// full memory barrier instead of a "one-way" memory barrier. The newest
// Windows SDK has Acquire and Release versions of some Interlocked* functions.
namespace Common
{
inline void AtomicAdd(volatile u32& target, u32 value) {
_InterlockedExchangeAdd((volatile LONG*)&target, (LONG)value);
}
inline void AtomicAnd(volatile u32& target, u32 value) {
_InterlockedAnd((volatile LONG*)&target, (LONG)value);
}
inline void AtomicIncrement(volatile u32& target) {
_InterlockedIncrement((volatile LONG*)&target);
}
inline void AtomicDecrement(volatile u32& target) {
_InterlockedDecrement((volatile LONG*)&target);
}
inline void AtomicOr(volatile u32& target, u32 value) {
_InterlockedOr((volatile LONG*)&target, (LONG)value);
}
template <typename T>
inline T AtomicLoad(volatile T& src) {
return src; // 32-bit reads are always atomic.
}
template <typename T>
inline T AtomicLoadAcquire(volatile T& src) {
T result = src; // 32-bit reads are always atomic.
_ReadBarrier(); // Compiler instruction only. x86 loads always have acquire semantics.
return result;
}
template <typename T, typename U>
inline void AtomicStore(volatile T& dest, U value) {
dest = (T) value; // 32-bit writes are always atomic.
}
template <typename T, typename U>
inline void AtomicStoreRelease(volatile T& dest, U value) {
_WriteBarrier(); // Compiler instruction only. x86 stores always have release semantics.
dest = (T) value; // 32-bit writes are always atomic.
}
template <typename T, typename U>
inline T* AtomicExchangeAcquire(T* volatile& loc, U newval) {
return (T*) _InterlockedExchangePointer_acq((void* volatile*) &loc, (void*) newval);
}
}