969 lines
43 KiB
C++
969 lines
43 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "VideoBackends/Vulkan/TextureCache.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
|
|
#include "VideoBackends/Vulkan/CommandBufferManager.h"
|
|
#include "VideoBackends/Vulkan/FramebufferManager.h"
|
|
#include "VideoBackends/Vulkan/ObjectCache.h"
|
|
#include "VideoBackends/Vulkan/PaletteTextureConverter.h"
|
|
#include "VideoBackends/Vulkan/Renderer.h"
|
|
#include "VideoBackends/Vulkan/StagingTexture2D.h"
|
|
#include "VideoBackends/Vulkan/StateTracker.h"
|
|
#include "VideoBackends/Vulkan/StreamBuffer.h"
|
|
#include "VideoBackends/Vulkan/Texture2D.h"
|
|
#include "VideoBackends/Vulkan/TextureEncoder.h"
|
|
#include "VideoBackends/Vulkan/Util.h"
|
|
#include "VideoBackends/Vulkan/VulkanContext.h"
|
|
|
|
#include "VideoCommon/ImageWrite.h"
|
|
|
|
namespace Vulkan
|
|
{
|
|
TextureCache::TextureCache()
|
|
{
|
|
}
|
|
|
|
TextureCache::~TextureCache()
|
|
{
|
|
if (m_initialize_render_pass != VK_NULL_HANDLE)
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_initialize_render_pass, nullptr);
|
|
if (m_update_render_pass != VK_NULL_HANDLE)
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_update_render_pass, nullptr);
|
|
TextureCache::DeleteShaders();
|
|
}
|
|
|
|
TextureCache* TextureCache::GetInstance()
|
|
{
|
|
return static_cast<TextureCache*>(g_texture_cache.get());
|
|
}
|
|
|
|
bool TextureCache::Initialize()
|
|
{
|
|
m_texture_upload_buffer =
|
|
StreamBuffer::Create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, INITIAL_TEXTURE_UPLOAD_BUFFER_SIZE,
|
|
MAXIMUM_TEXTURE_UPLOAD_BUFFER_SIZE);
|
|
if (!m_texture_upload_buffer)
|
|
{
|
|
PanicAlert("Failed to create texture upload buffer");
|
|
return false;
|
|
}
|
|
|
|
if (!CreateRenderPasses())
|
|
{
|
|
PanicAlert("Failed to create copy render pass");
|
|
return false;
|
|
}
|
|
|
|
m_texture_encoder = std::make_unique<TextureEncoder>();
|
|
if (!m_texture_encoder->Initialize())
|
|
{
|
|
PanicAlert("Failed to initialize texture encoder.");
|
|
return false;
|
|
}
|
|
|
|
m_palette_texture_converter = std::make_unique<PaletteTextureConverter>();
|
|
if (!m_palette_texture_converter->Initialize())
|
|
{
|
|
PanicAlert("Failed to initialize palette texture converter");
|
|
return false;
|
|
}
|
|
|
|
if (!CompileShaders())
|
|
{
|
|
PanicAlert("Failed to compile one or more shaders");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void TextureCache::ConvertTexture(TCacheEntryBase* base_entry, TCacheEntryBase* base_unconverted,
|
|
void* palette, TlutFormat format)
|
|
{
|
|
TCacheEntry* entry = static_cast<TCacheEntry*>(base_entry);
|
|
TCacheEntry* unconverted = static_cast<TCacheEntry*>(base_unconverted);
|
|
_assert_(entry->config.rendertarget);
|
|
|
|
// EFB copies can be used as paletted textures as well. For these, we can't assume them to be
|
|
// contain the correct data before the frame begins (when the init command buffer is executed),
|
|
// so we must convert them at the appropriate time, during the drawing command buffer.
|
|
VkCommandBuffer command_buffer;
|
|
if (unconverted->IsEfbCopy())
|
|
{
|
|
command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
}
|
|
else
|
|
{
|
|
// Use initialization command buffer and perform conversion before the drawing commands.
|
|
command_buffer = g_command_buffer_mgr->GetCurrentInitCommandBuffer();
|
|
}
|
|
|
|
m_palette_texture_converter->ConvertTexture(
|
|
command_buffer, GetRenderPassForTextureUpdate(entry->GetTexture()), entry->GetFramebuffer(),
|
|
unconverted->GetTexture(), entry->config.width, entry->config.height, palette, format,
|
|
unconverted->format);
|
|
|
|
// Render pass transitions to SHADER_READ_ONLY.
|
|
entry->GetTexture()->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
}
|
|
|
|
static bool IsDepthCopyFormat(PEControl::PixelFormat format)
|
|
{
|
|
return format == PEControl::Z24;
|
|
}
|
|
|
|
void TextureCache::CopyEFB(u8* dst, u32 format, u32 native_width, u32 bytes_per_row,
|
|
u32 num_blocks_y, u32 memory_stride, PEControl::PixelFormat src_format,
|
|
const EFBRectangle& src_rect, bool is_intensity, bool scale_by_half)
|
|
{
|
|
// Flush EFB pokes first, as they're expected to be included.
|
|
FramebufferManager::GetInstance()->FlushEFBPokes();
|
|
|
|
// MSAA case where we need to resolve first.
|
|
// TODO: Do in one pass.
|
|
TargetRectangle scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect);
|
|
VkRect2D region = {{scaled_src_rect.left, scaled_src_rect.top},
|
|
{static_cast<u32>(scaled_src_rect.GetWidth()),
|
|
static_cast<u32>(scaled_src_rect.GetHeight())}};
|
|
Texture2D* src_texture;
|
|
if (IsDepthCopyFormat(src_format))
|
|
src_texture = FramebufferManager::GetInstance()->ResolveEFBDepthTexture(region);
|
|
else
|
|
src_texture = FramebufferManager::GetInstance()->ResolveEFBColorTexture(region);
|
|
|
|
// End render pass before barrier (since we have no self-dependencies).
|
|
// The barrier has to happen after the render pass, not inside it, as we are going to be
|
|
// reading from the texture immediately afterwards.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->OnReadback();
|
|
|
|
// Transition to shader resource before reading.
|
|
VkImageLayout original_layout = src_texture->GetLayout();
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
m_texture_encoder->EncodeTextureToRam(src_texture->GetView(), dst, format, native_width,
|
|
bytes_per_row, num_blocks_y, memory_stride, src_format,
|
|
is_intensity, scale_by_half, src_rect);
|
|
|
|
// Transition back to original state
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), original_layout);
|
|
}
|
|
|
|
void TextureCache::CopyRectangleFromTexture(TCacheEntry* dst_texture,
|
|
const MathUtil::Rectangle<int>& dst_rect,
|
|
Texture2D* src_texture,
|
|
const MathUtil::Rectangle<int>& src_rect)
|
|
{
|
|
// Fast path when not scaling the image.
|
|
if (src_rect.GetWidth() == dst_rect.GetWidth() && src_rect.GetHeight() == dst_rect.GetHeight())
|
|
CopyTextureRectangle(dst_texture, dst_rect, src_texture, src_rect);
|
|
else
|
|
ScaleTextureRectangle(dst_texture, dst_rect, src_texture, src_rect);
|
|
}
|
|
|
|
void TextureCache::CopyTextureRectangle(TCacheEntry* dst_texture,
|
|
const MathUtil::Rectangle<int>& dst_rect,
|
|
Texture2D* src_texture,
|
|
const MathUtil::Rectangle<int>& src_rect)
|
|
{
|
|
_assert_msg_(VIDEO, static_cast<u32>(src_rect.GetWidth()) <= src_texture->GetWidth() &&
|
|
static_cast<u32>(src_rect.GetHeight()) <= src_texture->GetHeight(),
|
|
"Source rect is too large for CopyRectangleFromTexture");
|
|
|
|
_assert_msg_(VIDEO, static_cast<u32>(dst_rect.GetWidth()) <= dst_texture->config.width &&
|
|
static_cast<u32>(dst_rect.GetHeight()) <= dst_texture->config.height,
|
|
"Dest rect is too large for CopyRectangleFromTexture");
|
|
|
|
VkImageCopy image_copy = {
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0,
|
|
src_texture->GetLayers()}, // VkImageSubresourceLayers srcSubresource
|
|
{src_rect.left, src_rect.top, 0}, // VkOffset3D srcOffset
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, // VkImageSubresourceLayers dstSubresource
|
|
dst_texture->config.layers},
|
|
{dst_rect.left, dst_rect.top, 0}, // VkOffset3D dstOffset
|
|
{static_cast<uint32_t>(src_rect.GetWidth()), static_cast<uint32_t>(src_rect.GetHeight()),
|
|
1} // VkExtent3D extent
|
|
};
|
|
|
|
// Must be called outside of a render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
dst_texture->GetTexture()->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
|
|
vkCmdCopyImage(g_command_buffer_mgr->GetCurrentCommandBuffer(), src_texture->GetImage(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_texture->GetTexture()->GetImage(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
|
|
}
|
|
|
|
void TextureCache::ScaleTextureRectangle(TCacheEntry* dst_texture,
|
|
const MathUtil::Rectangle<int>& dst_rect,
|
|
Texture2D* src_texture,
|
|
const MathUtil::Rectangle<int>& src_rect)
|
|
{
|
|
// Can't do this within a game render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
|
|
// Can't render to a non-rendertarget (no framebuffer).
|
|
_assert_msg_(VIDEO, dst_texture->config.rendertarget,
|
|
"Destination texture for partial copy is not a rendertarget");
|
|
|
|
// Render pass expects dst_texture to be in SHADER_READ_ONLY state.
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
dst_texture->GetTexture()->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetStandardPipelineLayout(),
|
|
GetRenderPassForTextureUpdate(dst_texture->GetTexture()),
|
|
g_object_cache->GetPassthroughVertexShader(),
|
|
g_object_cache->GetPassthroughGeometryShader(), m_copy_shader);
|
|
|
|
VkRect2D region = {
|
|
{dst_rect.left, dst_rect.top},
|
|
{static_cast<u32>(dst_rect.GetWidth()), static_cast<u32>(dst_rect.GetHeight())}};
|
|
draw.BeginRenderPass(dst_texture->GetFramebuffer(), region);
|
|
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
|
|
draw.DrawQuad(dst_rect.left, dst_rect.top, dst_rect.GetWidth(), dst_rect.GetHeight(),
|
|
src_rect.left, src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
|
|
static_cast<int>(src_texture->GetWidth()),
|
|
static_cast<int>(src_texture->GetHeight()));
|
|
draw.EndRenderPass();
|
|
|
|
// Render pass transitions destination texture to SHADER_READ_ONLY.
|
|
dst_texture->GetTexture()->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
}
|
|
|
|
TextureCacheBase::TCacheEntryBase* TextureCache::CreateTexture(const TCacheEntryConfig& config)
|
|
{
|
|
// Determine image usage, we need to flag as an attachment if it can be used as a rendertarget.
|
|
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
if (config.rendertarget)
|
|
usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
|
|
// Allocate texture object
|
|
std::unique_ptr<Texture2D> texture = Texture2D::Create(
|
|
config.width, config.height, config.levels, config.layers, TEXTURECACHE_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL, usage);
|
|
|
|
if (!texture)
|
|
return nullptr;
|
|
|
|
// If this is a render target (for efb copies), allocate a framebuffer
|
|
VkFramebuffer framebuffer = VK_NULL_HANDLE;
|
|
if (config.rendertarget)
|
|
{
|
|
VkImageView framebuffer_attachments[] = {texture->GetView()};
|
|
VkFramebufferCreateInfo framebuffer_info = {
|
|
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
m_initialize_render_pass,
|
|
static_cast<u32>(ArraySize(framebuffer_attachments)),
|
|
framebuffer_attachments,
|
|
texture->GetWidth(),
|
|
texture->GetHeight(),
|
|
texture->GetLayers()};
|
|
|
|
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
|
|
&framebuffer);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
|
|
return nullptr;
|
|
}
|
|
|
|
// Clear render targets before use to prevent reading uninitialized memory.
|
|
VkClearColorValue clear_value = {{0.0f, 0.0f, 0.0f, 1.0f}};
|
|
VkImageSubresourceRange clear_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, config.levels, 0,
|
|
config.layers};
|
|
texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
vkCmdClearColorImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), texture->GetImage(),
|
|
texture->GetLayout(), &clear_value, 1, &clear_range);
|
|
}
|
|
|
|
return new TCacheEntry(config, std::move(texture), framebuffer);
|
|
}
|
|
|
|
bool TextureCache::CreateRenderPasses()
|
|
{
|
|
static constexpr VkAttachmentDescription initialize_attachment = {
|
|
0,
|
|
TEXTURECACHE_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_STORE,
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_DONT_CARE,
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL};
|
|
|
|
static constexpr VkAttachmentDescription update_attachment = {
|
|
0,
|
|
TEXTURECACHE_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_STORE,
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_DONT_CARE,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL};
|
|
|
|
static constexpr VkAttachmentReference color_attachment_reference = {
|
|
0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
|
|
|
|
static constexpr VkSubpassDescription subpass_description = {
|
|
0, VK_PIPELINE_BIND_POINT_GRAPHICS,
|
|
0, nullptr,
|
|
1, &color_attachment_reference,
|
|
nullptr, nullptr,
|
|
0, nullptr};
|
|
|
|
static constexpr VkSubpassDependency initialize_dependancies[] = {
|
|
{VK_SUBPASS_EXTERNAL, 0, VK_PIPELINE_STAGE_TRANSFER_BIT,
|
|
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
|
|
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
|
VK_DEPENDENCY_BY_REGION_BIT},
|
|
{0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
|
VK_ACCESS_SHADER_READ_BIT, VK_DEPENDENCY_BY_REGION_BIT}};
|
|
|
|
static constexpr VkSubpassDependency update_dependancies[] = {
|
|
{VK_SUBPASS_EXTERNAL, 0, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_ACCESS_SHADER_READ_BIT,
|
|
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
|
VK_DEPENDENCY_BY_REGION_BIT},
|
|
{0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
|
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
|
|
VK_ACCESS_SHADER_READ_BIT, VK_DEPENDENCY_BY_REGION_BIT}};
|
|
|
|
VkRenderPassCreateInfo initialize_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
1,
|
|
&initialize_attachment,
|
|
1,
|
|
&subpass_description,
|
|
static_cast<u32>(ArraySize(initialize_dependancies)),
|
|
initialize_dependancies};
|
|
|
|
VkRenderPassCreateInfo update_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
1,
|
|
&update_attachment,
|
|
1,
|
|
&subpass_description,
|
|
static_cast<u32>(ArraySize(update_dependancies)),
|
|
update_dependancies};
|
|
|
|
VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &initialize_info, nullptr,
|
|
&m_initialize_render_pass);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (initialize) failed: ");
|
|
return false;
|
|
}
|
|
|
|
res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &update_info, nullptr,
|
|
&m_update_render_pass);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (update) failed: ");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
VkRenderPass TextureCache::GetRenderPassForTextureUpdate(const Texture2D* texture) const
|
|
{
|
|
// EFB copies can be re-used as part of the texture pool. If this is the case, we need to insert
|
|
// a pipeline barrier to ensure that all reads from the texture expecting the old data have
|
|
// completed before overwriting the texture's contents. New textures will be in TRANSFER_DST
|
|
// due to the clear after creation.
|
|
|
|
// These two render passes are compatible, so even though the framebuffer was created with
|
|
// the initialize render pass it's still allowed.
|
|
|
|
if (texture->GetLayout() == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL)
|
|
return m_initialize_render_pass;
|
|
else
|
|
return m_update_render_pass;
|
|
}
|
|
|
|
TextureCache::TCacheEntry::TCacheEntry(const TCacheEntryConfig& config_,
|
|
std::unique_ptr<Texture2D> texture,
|
|
VkFramebuffer framebuffer)
|
|
: TCacheEntryBase(config_), m_texture(std::move(texture)), m_framebuffer(framebuffer)
|
|
{
|
|
}
|
|
|
|
TextureCache::TCacheEntry::~TCacheEntry()
|
|
{
|
|
// Texture is automatically cleaned up, however, we don't want to leave it bound.
|
|
StateTracker::GetInstance()->UnbindTexture(m_texture->GetView());
|
|
if (m_framebuffer != VK_NULL_HANDLE)
|
|
g_command_buffer_mgr->DeferFramebufferDestruction(m_framebuffer);
|
|
}
|
|
|
|
void TextureCache::TCacheEntry::Load(unsigned int width, unsigned int height,
|
|
unsigned int expanded_width, unsigned int level)
|
|
{
|
|
// Can't copy data larger than the texture extents.
|
|
width = std::max(1u, std::min(width, m_texture->GetWidth() >> level));
|
|
height = std::max(1u, std::min(height, m_texture->GetHeight() >> level));
|
|
|
|
// We don't care about the existing contents of the texture, so we set the image layout to
|
|
// VK_IMAGE_LAYOUT_UNDEFINED here. However, if this texture is being re-used from the texture
|
|
// pool, it may still be in use. We assume that it's not, as non-efb-copy textures are only
|
|
// returned to the pool when the frame number is different, furthermore, we're doing this
|
|
// on the initialize command buffer, so a texture being re-used mid-frame would have undesirable
|
|
// effects regardless.
|
|
VkImageMemoryBarrier barrier = {
|
|
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkAccessFlags srcAccessMask
|
|
VK_ACCESS_TRANSFER_WRITE_BIT, // VkAccessFlags dstAccessMask
|
|
VK_IMAGE_LAYOUT_UNDEFINED, // VkImageLayout oldLayout
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // VkImageLayout newLayout
|
|
VK_QUEUE_FAMILY_IGNORED, // uint32_t srcQueueFamilyIndex
|
|
VK_QUEUE_FAMILY_IGNORED, // uint32_t dstQueueFamilyIndex
|
|
m_texture->GetImage(), // VkImage image
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, level, 1, 0, 1}, // VkImageSubresourceRange subresourceRange
|
|
};
|
|
vkCmdPipelineBarrier(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
|
|
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0,
|
|
nullptr, 0, nullptr, 1, &barrier);
|
|
|
|
// Does this texture data fit within the streaming buffer?
|
|
u32 upload_width = width;
|
|
u32 upload_pitch = upload_width * sizeof(u32);
|
|
u32 upload_size = upload_pitch * height;
|
|
u32 upload_alignment = static_cast<u32>(g_vulkan_context->GetBufferImageGranularity());
|
|
u32 source_pitch = expanded_width * 4;
|
|
if ((upload_size + upload_alignment) <= STAGING_TEXTURE_UPLOAD_THRESHOLD &&
|
|
(upload_size + upload_alignment) <= MAXIMUM_TEXTURE_UPLOAD_BUFFER_SIZE)
|
|
{
|
|
// Assume tightly packed rows, with no padding as the buffer source.
|
|
StreamBuffer* upload_buffer = TextureCache::GetInstance()->m_texture_upload_buffer.get();
|
|
|
|
// Allocate memory from the streaming buffer for the texture data.
|
|
if (!upload_buffer->ReserveMemory(upload_size, g_vulkan_context->GetBufferImageGranularity()))
|
|
{
|
|
// Execute the command buffer first.
|
|
WARN_LOG(VIDEO, "Executing command list while waiting for space in texture upload buffer");
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false);
|
|
|
|
// Try allocating again. This may cause a fence wait.
|
|
if (!upload_buffer->ReserveMemory(upload_size, g_vulkan_context->GetBufferImageGranularity()))
|
|
PanicAlert("Failed to allocate space in texture upload buffer");
|
|
}
|
|
|
|
// Grab buffer pointers
|
|
VkBuffer image_upload_buffer = upload_buffer->GetBuffer();
|
|
VkDeviceSize image_upload_buffer_offset = upload_buffer->GetCurrentOffset();
|
|
u8* image_upload_buffer_pointer = upload_buffer->GetCurrentHostPointer();
|
|
|
|
// Copy to the buffer using the stride from the subresource layout
|
|
const u8* source_ptr = TextureCache::temp;
|
|
if (upload_pitch != source_pitch)
|
|
{
|
|
VkDeviceSize copy_pitch = std::min(source_pitch, upload_pitch);
|
|
for (unsigned int row = 0; row < height; row++)
|
|
{
|
|
memcpy(image_upload_buffer_pointer + row * upload_pitch, source_ptr + row * source_pitch,
|
|
copy_pitch);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Can copy the whole thing in one block, the pitch matches
|
|
memcpy(image_upload_buffer_pointer, source_ptr, upload_size);
|
|
}
|
|
|
|
// Flush buffer memory if necessary
|
|
upload_buffer->CommitMemory(upload_size);
|
|
|
|
// Copy from the streaming buffer to the actual image.
|
|
VkBufferImageCopy image_copy = {
|
|
image_upload_buffer_offset, // VkDeviceSize bufferOffset
|
|
0, // uint32_t bufferRowLength
|
|
0, // uint32_t bufferImageHeight
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, level, 0, 1}, // VkImageSubresourceLayers imageSubresource
|
|
{0, 0, 0}, // VkOffset3D imageOffset
|
|
{width, height, 1} // VkExtent3D imageExtent
|
|
};
|
|
vkCmdCopyBufferToImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(), image_upload_buffer,
|
|
m_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
|
|
&image_copy);
|
|
}
|
|
else
|
|
{
|
|
// Slow path. The data for the image is too large to fit in the streaming buffer, so we need
|
|
// to allocate a temporary texture to store the data in, then copy to the real texture.
|
|
std::unique_ptr<StagingTexture2D> staging_texture = StagingTexture2D::Create(
|
|
STAGING_BUFFER_TYPE_UPLOAD, width, height, TEXTURECACHE_TEXTURE_FORMAT);
|
|
|
|
if (!staging_texture || !staging_texture->Map())
|
|
{
|
|
PanicAlert("Failed to allocate staging texture for large texture upload.");
|
|
return;
|
|
}
|
|
|
|
// Copy data to staging texture first, then to the "real" texture.
|
|
staging_texture->WriteTexels(0, 0, width, height, TextureCache::temp, source_pitch);
|
|
staging_texture->CopyToImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
|
|
m_texture->GetImage(), VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, width,
|
|
height, level, 0);
|
|
}
|
|
|
|
// Transition to shader read only.
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
|
|
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
|
vkCmdPipelineBarrier(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
|
|
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, 0,
|
|
nullptr, 0, nullptr, 1, &barrier);
|
|
m_texture->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
}
|
|
|
|
void TextureCache::TCacheEntry::FromRenderTarget(u8* dst, PEControl::PixelFormat src_format,
|
|
const EFBRectangle& src_rect, bool scale_by_half,
|
|
unsigned int cbufid, const float* colmat)
|
|
{
|
|
// A better way of doing this would be nice.
|
|
FramebufferManager* framebuffer_mgr =
|
|
static_cast<FramebufferManager*>(g_framebuffer_manager.get());
|
|
TargetRectangle scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect);
|
|
bool is_depth_copy = IsDepthCopyFormat(src_format);
|
|
|
|
// Flush EFB pokes first, as they're expected to be included.
|
|
framebuffer_mgr->FlushEFBPokes();
|
|
|
|
// Has to be flagged as a render target.
|
|
_assert_(m_framebuffer != VK_NULL_HANDLE);
|
|
|
|
// Can't be done in a render pass, since we're doing our own render pass!
|
|
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
// Transition EFB to shader resource before binding
|
|
VkRect2D region = {{scaled_src_rect.left, scaled_src_rect.top},
|
|
{static_cast<u32>(scaled_src_rect.GetWidth()),
|
|
static_cast<u32>(scaled_src_rect.GetHeight())}};
|
|
Texture2D* src_texture;
|
|
if (is_depth_copy)
|
|
src_texture = FramebufferManager::GetInstance()->ResolveEFBDepthTexture(region);
|
|
else
|
|
src_texture = FramebufferManager::GetInstance()->ResolveEFBColorTexture(region);
|
|
|
|
VkSampler src_sampler =
|
|
scale_by_half ? g_object_cache->GetLinearSampler() : g_object_cache->GetPointSampler();
|
|
VkImageLayout original_layout = src_texture->GetLayout();
|
|
src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
UtilityShaderDraw draw(
|
|
command_buffer, g_object_cache->GetPushConstantPipelineLayout(),
|
|
TextureCache::GetInstance()->GetRenderPassForTextureUpdate(m_texture.get()),
|
|
g_object_cache->GetPassthroughVertexShader(), g_object_cache->GetPassthroughGeometryShader(),
|
|
is_depth_copy ? TextureCache::GetInstance()->m_efb_depth_to_tex_shader :
|
|
TextureCache::GetInstance()->m_efb_color_to_tex_shader);
|
|
|
|
draw.SetPushConstants(colmat, (is_depth_copy ? sizeof(float) * 20 : sizeof(float) * 28));
|
|
draw.SetPSSampler(0, src_texture->GetView(), src_sampler);
|
|
|
|
VkRect2D dest_region = {{0, 0}, {m_texture->GetWidth(), m_texture->GetHeight()}};
|
|
|
|
draw.BeginRenderPass(m_framebuffer, dest_region);
|
|
|
|
draw.DrawQuad(0, 0, config.width, config.height, scaled_src_rect.left, scaled_src_rect.top, 0,
|
|
scaled_src_rect.GetWidth(), scaled_src_rect.GetHeight(),
|
|
framebuffer_mgr->GetEFBWidth(), framebuffer_mgr->GetEFBHeight());
|
|
|
|
draw.EndRenderPass();
|
|
|
|
// We touched everything, so put it back.
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
|
|
// Transition the EFB back to its original layout.
|
|
src_texture->TransitionToLayout(command_buffer, original_layout);
|
|
|
|
// Render pass transitions texture to SHADER_READ_ONLY.
|
|
m_texture->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
}
|
|
|
|
void TextureCache::TCacheEntry::CopyRectangleFromTexture(const TCacheEntryBase* source,
|
|
const MathUtil::Rectangle<int>& src_rect,
|
|
const MathUtil::Rectangle<int>& dst_rect)
|
|
{
|
|
const TCacheEntry* source_vk = static_cast<const TCacheEntry*>(source);
|
|
TextureCache::GetInstance()->CopyRectangleFromTexture(this, dst_rect, source_vk->GetTexture(),
|
|
src_rect);
|
|
|
|
// Ensure textures are ready for use again.
|
|
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
source_vk->GetTexture()->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
}
|
|
|
|
void TextureCache::TCacheEntry::Bind(unsigned int stage)
|
|
{
|
|
StateTracker::GetInstance()->SetTexture(stage, m_texture->GetView());
|
|
}
|
|
|
|
bool TextureCache::TCacheEntry::Save(const std::string& filename, unsigned int level)
|
|
{
|
|
_assert_(level < config.levels);
|
|
|
|
// Determine dimensions of image we want to save.
|
|
u32 level_width = std::max(1u, config.width >> level);
|
|
u32 level_height = std::max(1u, config.height >> level);
|
|
|
|
// Use a temporary staging texture for the download. Certainly not optimal,
|
|
// but since we have to idle the GPU anyway it doesn't really matter.
|
|
std::unique_ptr<StagingTexture2D> staging_texture = StagingTexture2D::Create(
|
|
STAGING_BUFFER_TYPE_READBACK, level_width, level_height, TEXTURECACHE_TEXTURE_FORMAT);
|
|
|
|
// Transition image to transfer source, and invalidate the current state,
|
|
// since we'll be executing the command buffer.
|
|
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
// Copy to download buffer.
|
|
staging_texture->CopyFromImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
m_texture->GetImage(), VK_IMAGE_ASPECT_COLOR_BIT, 0, 0,
|
|
level_width, level_height, level, 0);
|
|
|
|
// Restore original state of texture.
|
|
m_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
// Block until the GPU has finished copying to the staging texture.
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
|
|
|
|
// Map the staging texture so we can copy the contents out.
|
|
if (staging_texture->Map())
|
|
{
|
|
PanicAlert("Failed to map staging texture");
|
|
return false;
|
|
}
|
|
|
|
// Write texture out to file.
|
|
// It's okay to throw this texture away immediately, since we're done with it, and
|
|
// we blocked until the copy completed on the GPU anyway.
|
|
bool result = TextureToPng(reinterpret_cast<u8*>(staging_texture->GetMapPointer()),
|
|
staging_texture->GetRowStride(), filename, level_width, level_height);
|
|
|
|
staging_texture->Unmap();
|
|
return result;
|
|
}
|
|
|
|
bool TextureCache::CompileShaders()
|
|
{
|
|
static const char COPY_SHADER_SOURCE[] = R"(
|
|
layout(set = 1, binding = 0) uniform sampler2DArray samp0;
|
|
|
|
layout(location = 0) in float3 uv0;
|
|
layout(location = 1) in float4 col0;
|
|
layout(location = 0) out float4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
ocol0 = texture(samp0, uv0);
|
|
}
|
|
)";
|
|
|
|
static const char EFB_COLOR_TO_TEX_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
|
|
|
|
layout(std140, push_constant) uniform PSBlock
|
|
{
|
|
vec4 colmat[7];
|
|
} C;
|
|
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 1) in vec4 col0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
float4 texcol = texture(samp0, uv0);
|
|
texcol = round(texcol * C.colmat[5]) * C.colmat[6];
|
|
ocol0 = texcol * mat4(C.colmat[0], C.colmat[1], C.colmat[2], C.colmat[3]) + C.colmat[4];
|
|
}
|
|
)";
|
|
|
|
static const char EFB_DEPTH_TO_TEX_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
|
|
|
|
layout(std140, push_constant) uniform PSBlock
|
|
{
|
|
vec4 colmat[5];
|
|
} C;
|
|
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 1) in vec4 col0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
#if MONO_DEPTH
|
|
vec4 texcol = texture(samp0, vec3(uv0.xy, 0.0f));
|
|
#else
|
|
vec4 texcol = texture(samp0, uv0);
|
|
#endif
|
|
int depth = int((1.0 - texcol.x) * 16777216.0);
|
|
|
|
// Convert to Z24 format
|
|
ivec4 workspace;
|
|
workspace.r = (depth >> 16) & 255;
|
|
workspace.g = (depth >> 8) & 255;
|
|
workspace.b = depth & 255;
|
|
|
|
// Convert to Z4 format
|
|
workspace.a = (depth >> 16) & 0xF0;
|
|
|
|
// Normalize components to [0.0..1.0]
|
|
texcol = vec4(workspace) / 255.0;
|
|
|
|
ocol0 = texcol * mat4(C.colmat[0], C.colmat[1], C.colmat[2], C.colmat[3]) + C.colmat[4];
|
|
}
|
|
)";
|
|
|
|
static const char RGB_TO_YUYV_SHADER_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2DArray source;
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
const vec3 y_const = vec3(0.257,0.504,0.098);
|
|
const vec3 u_const = vec3(-0.148,-0.291,0.439);
|
|
const vec3 v_const = vec3(0.439,-0.368,-0.071);
|
|
const vec4 const3 = vec4(0.0625,0.5,0.0625,0.5);
|
|
|
|
void main()
|
|
{
|
|
vec3 c0 = texture(source, vec3(uv0.xy - dFdx(uv0.xy) * 0.25, 0.0)).rgb;
|
|
vec3 c1 = texture(source, vec3(uv0.xy + dFdx(uv0.xy) * 0.25, 0.0)).rgb;
|
|
vec3 c01 = (c0 + c1) * 0.5;
|
|
ocol0 = vec4(dot(c1, y_const),
|
|
dot(c01,u_const),
|
|
dot(c0,y_const),
|
|
dot(c01, v_const)) + const3;
|
|
}
|
|
)";
|
|
|
|
static const char YUYV_TO_RGB_SHADER_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2D source;
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
ivec2 uv = ivec2(gl_FragCoord.xy);
|
|
vec4 c0 = texelFetch(source, ivec2(uv.x / 2, uv.y), 0);
|
|
|
|
// The texture used to stage the upload is in BGRA order.
|
|
c0 = c0.zyxw;
|
|
|
|
float y = mix(c0.r, c0.b, (uv.x & 1) == 1);
|
|
float yComp = 1.164 * (y - 0.0625);
|
|
float uComp = c0.g - 0.5;
|
|
float vComp = c0.a - 0.5;
|
|
ocol0 = vec4(yComp + (1.596 * vComp),
|
|
yComp - (0.813 * vComp) - (0.391 * uComp),
|
|
yComp + (2.018 * uComp),
|
|
1.0);
|
|
}
|
|
)";
|
|
|
|
std::string header = g_object_cache->GetUtilityShaderHeader();
|
|
std::string source;
|
|
|
|
source = header + COPY_SHADER_SOURCE;
|
|
m_copy_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
source = header + EFB_COLOR_TO_TEX_SOURCE;
|
|
m_efb_color_to_tex_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
if (g_ActiveConfig.bStereoEFBMonoDepth)
|
|
source = header + "#define MONO_DEPTH 1\n" + EFB_DEPTH_TO_TEX_SOURCE;
|
|
else
|
|
source = header + EFB_DEPTH_TO_TEX_SOURCE;
|
|
m_efb_depth_to_tex_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
source = header + RGB_TO_YUYV_SHADER_SOURCE;
|
|
m_rgb_to_yuyv_shader = Util::CompileAndCreateFragmentShader(source);
|
|
source = header + YUYV_TO_RGB_SHADER_SOURCE;
|
|
m_yuyv_to_rgb_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
return (m_copy_shader != VK_NULL_HANDLE && m_efb_color_to_tex_shader != VK_NULL_HANDLE &&
|
|
m_efb_depth_to_tex_shader != VK_NULL_HANDLE && m_rgb_to_yuyv_shader != VK_NULL_HANDLE &&
|
|
m_yuyv_to_rgb_shader != VK_NULL_HANDLE);
|
|
}
|
|
|
|
void TextureCache::DeleteShaders()
|
|
{
|
|
// It is safe to destroy shader modules after they are consumed by creating a pipeline.
|
|
// Therefore, no matter where this function is called from, it won't cause an issue due to
|
|
// pending commands, although at the time of writing should only be called at the end of
|
|
// a frame. See Vulkan spec, section 2.3.1. Object Lifetime.
|
|
if (m_copy_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_copy_shader, nullptr);
|
|
m_copy_shader = VK_NULL_HANDLE;
|
|
}
|
|
if (m_efb_color_to_tex_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_efb_color_to_tex_shader, nullptr);
|
|
m_efb_color_to_tex_shader = VK_NULL_HANDLE;
|
|
}
|
|
if (m_efb_depth_to_tex_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_efb_depth_to_tex_shader, nullptr);
|
|
m_efb_depth_to_tex_shader = VK_NULL_HANDLE;
|
|
}
|
|
if (m_rgb_to_yuyv_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_rgb_to_yuyv_shader, nullptr);
|
|
m_rgb_to_yuyv_shader = VK_NULL_HANDLE;
|
|
}
|
|
if (m_yuyv_to_rgb_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_yuyv_to_rgb_shader, nullptr);
|
|
m_yuyv_to_rgb_shader = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void TextureCache::EncodeYUYVTextureToMemory(void* dst_ptr, u32 dst_width, u32 dst_stride,
|
|
u32 dst_height, Texture2D* src_texture,
|
|
const MathUtil::Rectangle<int>& src_rect)
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
// Borrow framebuffer from EFB2RAM encoder.
|
|
Texture2D* encoding_texture = m_texture_encoder->GetEncodingTexture();
|
|
StagingTexture2D* download_texture = m_texture_encoder->GetDownloadTexture();
|
|
encoding_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
// Use fragment shader to convert RGBA to YUYV.
|
|
// Use linear sampler for downscaling. This texture is in BGRA order, so the data is already in
|
|
// the order the guest is expecting and we don't have to swap it at readback time. The width
|
|
// is halved because we're using an RGBA8 texture, but the YUYV data is two bytes per pixel.
|
|
u32 output_width = dst_width / 2;
|
|
UtilityShaderDraw draw(command_buffer, g_object_cache->GetStandardPipelineLayout(),
|
|
m_texture_encoder->GetEncodingRenderPass(),
|
|
g_object_cache->GetPassthroughVertexShader(), VK_NULL_HANDLE,
|
|
m_rgb_to_yuyv_shader);
|
|
VkRect2D region = {{0, 0}, {output_width, dst_height}};
|
|
draw.BeginRenderPass(m_texture_encoder->GetEncodingTextureFramebuffer(), region);
|
|
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
|
|
draw.DrawQuad(0, 0, static_cast<int>(output_width), static_cast<int>(dst_height), src_rect.left,
|
|
src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
|
|
static_cast<int>(src_texture->GetWidth()),
|
|
static_cast<int>(src_texture->GetHeight()));
|
|
draw.EndRenderPass();
|
|
|
|
// Render pass transitions to TRANSFER_SRC.
|
|
encoding_texture->OverrideImageLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
|
|
// Copy from encoding texture to download buffer.
|
|
download_texture->CopyFromImage(command_buffer, encoding_texture->GetImage(),
|
|
VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, output_width, dst_height, 0, 0);
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
|
|
|
|
// Finally, copy to guest memory. This may have a different stride.
|
|
download_texture->ReadTexels(0, 0, output_width, dst_height, dst_ptr, dst_stride);
|
|
}
|
|
|
|
void TextureCache::DecodeYUYVTextureFromMemory(TCacheEntry* dst_texture, const void* src_ptr,
|
|
u32 src_width, u32 src_stride, u32 src_height)
|
|
{
|
|
// Copies (and our decoding step) cannot be done inside a render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
// We share the upload buffer with normal textures here, since the XFB buffers aren't very large.
|
|
u32 upload_size = src_stride * src_height;
|
|
if (!m_texture_upload_buffer->ReserveMemory(upload_size,
|
|
g_vulkan_context->GetBufferImageGranularity()))
|
|
{
|
|
// Execute the command buffer first.
|
|
WARN_LOG(VIDEO, "Executing command list while waiting for space in texture upload buffer");
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false);
|
|
if (!m_texture_upload_buffer->ReserveMemory(upload_size,
|
|
g_vulkan_context->GetBufferImageGranularity()))
|
|
PanicAlert("Failed to allocate space in texture upload buffer");
|
|
}
|
|
|
|
// Assume that each source row is not padded.
|
|
_assert_(src_stride == (src_width * sizeof(u16)));
|
|
VkDeviceSize image_upload_buffer_offset = m_texture_upload_buffer->GetCurrentOffset();
|
|
std::memcpy(m_texture_upload_buffer->GetCurrentHostPointer(), src_ptr, upload_size);
|
|
m_texture_upload_buffer->CommitMemory(upload_size);
|
|
|
|
// Copy from the upload buffer to the intermediate texture. We borrow this from the encoder.
|
|
// The width is specified as half here because we have two pixels packed in each RGBA texel.
|
|
// In the future this could be skipped by reading the upload buffer as a uniform texel buffer.
|
|
VkBufferImageCopy image_copy = {
|
|
image_upload_buffer_offset, // VkDeviceSize bufferOffset
|
|
0, // uint32_t bufferRowLength
|
|
0, // uint32_t bufferImageHeight
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, // VkImageSubresourceLayers imageSubresource
|
|
{0, 0, 0}, // VkOffset3D imageOffset
|
|
{src_width / 2, src_height, 1} // VkExtent3D imageExtent
|
|
};
|
|
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
Texture2D* intermediate_texture = m_texture_encoder->GetEncodingTexture();
|
|
intermediate_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
vkCmdCopyBufferToImage(command_buffer, m_texture_upload_buffer->GetBuffer(),
|
|
intermediate_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1,
|
|
&image_copy);
|
|
intermediate_texture->TransitionToLayout(command_buffer,
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
dst_texture->GetTexture()->TransitionToLayout(command_buffer,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
// Convert from the YUYV data now in the intermediate texture to RGBA in the destination.
|
|
UtilityShaderDraw draw(command_buffer, g_object_cache->GetStandardPipelineLayout(),
|
|
m_texture_encoder->GetEncodingRenderPass(),
|
|
g_object_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE,
|
|
m_yuyv_to_rgb_shader);
|
|
VkRect2D region = {{0, 0}, {src_width, src_height}};
|
|
draw.BeginRenderPass(dst_texture->GetFramebuffer(), region);
|
|
draw.SetViewportAndScissor(0, 0, static_cast<int>(src_width), static_cast<int>(src_height));
|
|
draw.SetPSSampler(0, intermediate_texture->GetView(), g_object_cache->GetPointSampler());
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
}
|
|
|
|
} // namespace Vulkan
|