dolphin/Source/Core/VideoBackends/Vulkan/VulkanContext.cpp

1118 lines
42 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Vulkan/VulkanContext.h"
#include <algorithm>
#include <array>
#include <cstring>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/VideoCommon.h"
namespace Vulkan
{
static constexpr const char* VALIDATION_LAYER_NAME = "VK_LAYER_KHRONOS_validation";
std::unique_ptr<VulkanContext> g_vulkan_context;
template <typename Chain, typename Element>
static void InsertIntoChain(Chain* chain, Element* element)
{
element->pNext = chain->pNext;
chain->pNext = element;
}
VulkanContext::PhysicalDeviceInfo::PhysicalDeviceInfo(VkPhysicalDevice device)
{
VkPhysicalDeviceFeatures features;
VkPhysicalDeviceProperties2 properties2;
VkPhysicalDeviceProperties& properties = properties2.properties;
vkGetPhysicalDeviceProperties(device, &properties);
vkGetPhysicalDeviceFeatures(device, &features);
apiVersion = vkGetPhysicalDeviceProperties2 ? properties.apiVersion : VK_API_VERSION_1_0;
if (apiVersion >= VK_API_VERSION_1_1)
{
VkPhysicalDeviceSubgroupProperties properties_subgroup = {};
VkPhysicalDeviceVulkan12Properties properties_vk12 = {};
properties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
properties2.pNext = nullptr;
properties_subgroup.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
InsertIntoChain(&properties2, &properties_subgroup);
if (apiVersion >= VK_API_VERSION_1_2)
{
properties_vk12.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES;
InsertIntoChain(&properties2, &properties_vk12);
}
vkGetPhysicalDeviceProperties2(device, &properties2);
if (apiVersion >= VK_API_VERSION_1_2)
{
driverID = properties_vk12.driverID;
}
subgroupSize = properties_subgroup.subgroupSize;
// We require basic ops (for gl_SubgroupInvocationID), ballot (for subgroupBallot,
// subgroupBallotFindLSB), and arithmetic (for subgroupMin/subgroupMax).
// Shuffle is enabled as a workaround until SPIR-V >= 1.5 is enabled with broadcast(uniform)
// support.
constexpr VkSubgroupFeatureFlags required_operations =
VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
VK_SUBGROUP_FEATURE_BALLOT_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_BIT;
shaderSubgroupOperations =
(properties_subgroup.supportedOperations & required_operations) == required_operations &&
properties_subgroup.supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT;
}
memcpy(deviceName, properties.deviceName, sizeof(deviceName));
memcpy(pipelineCacheUUID, properties.pipelineCacheUUID, sizeof(pipelineCacheUUID));
vendorID = properties.vendorID;
deviceID = properties.deviceID;
minUniformBufferOffsetAlignment =
std::max<VkDeviceSize>(properties.limits.minUniformBufferOffsetAlignment, 1);
bufferImageGranularity = std::max<VkDeviceSize>(properties.limits.bufferImageGranularity, 1);
maxTexelBufferElements = properties.limits.maxTexelBufferElements;
maxImageDimension2D = properties.limits.maxImageDimension2D;
framebufferColorSampleCounts = properties.limits.framebufferColorSampleCounts;
framebufferDepthSampleCounts = properties.limits.framebufferDepthSampleCounts;
memcpy(pointSizeRange, properties.limits.pointSizeRange, sizeof(pointSizeRange));
maxSamplerAnisotropy = properties.limits.maxSamplerAnisotropy;
dualSrcBlend = features.dualSrcBlend != VK_FALSE;
geometryShader = features.geometryShader != VK_FALSE;
samplerAnisotropy = features.samplerAnisotropy != VK_FALSE;
logicOp = features.logicOp != VK_FALSE;
fragmentStoresAndAtomics = features.fragmentStoresAndAtomics != VK_FALSE;
sampleRateShading = features.sampleRateShading != VK_FALSE;
largePoints = features.largePoints != VK_FALSE;
shaderStorageImageMultisample = features.shaderStorageImageMultisample != VK_FALSE;
shaderTessellationAndGeometryPointSize =
features.shaderTessellationAndGeometryPointSize != VK_FALSE;
occlusionQueryPrecise = features.occlusionQueryPrecise != VK_FALSE;
shaderClipDistance = features.shaderClipDistance != VK_FALSE;
depthClamp = features.depthClamp != VK_FALSE;
textureCompressionBC = features.textureCompressionBC != VK_FALSE;
}
VkPhysicalDeviceFeatures VulkanContext::PhysicalDeviceInfo::features() const
{
VkPhysicalDeviceFeatures features;
memset(&features, 0, sizeof(features));
features.dualSrcBlend = dualSrcBlend ? VK_TRUE : VK_FALSE;
features.geometryShader = geometryShader ? VK_TRUE : VK_FALSE;
features.samplerAnisotropy = samplerAnisotropy ? VK_TRUE : VK_FALSE;
features.logicOp = logicOp ? VK_TRUE : VK_FALSE;
features.fragmentStoresAndAtomics = fragmentStoresAndAtomics ? VK_TRUE : VK_FALSE;
features.sampleRateShading = sampleRateShading ? VK_TRUE : VK_FALSE;
features.largePoints = largePoints ? VK_TRUE : VK_FALSE;
features.shaderStorageImageMultisample = shaderStorageImageMultisample ? VK_TRUE : VK_FALSE;
features.shaderTessellationAndGeometryPointSize =
shaderTessellationAndGeometryPointSize ? VK_TRUE : VK_FALSE;
features.occlusionQueryPrecise = occlusionQueryPrecise ? VK_TRUE : VK_FALSE;
features.shaderClipDistance = shaderClipDistance ? VK_TRUE : VK_FALSE;
features.depthClamp = depthClamp ? VK_TRUE : VK_FALSE;
features.textureCompressionBC = textureCompressionBC ? VK_TRUE : VK_FALSE;
return features;
}
VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_device)
: m_instance(instance), m_physical_device(physical_device), m_device_info(physical_device)
{
}
VulkanContext::~VulkanContext()
{
if (m_allocator != VK_NULL_HANDLE)
vmaDestroyAllocator(m_allocator);
if (m_device != VK_NULL_HANDLE)
vkDestroyDevice(m_device, nullptr);
if (m_debug_utils_messenger != VK_NULL_HANDLE)
DisableDebugUtils();
vkDestroyInstance(m_instance, nullptr);
}
bool VulkanContext::CheckValidationLayerAvailablility()
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkExtensionProperties> extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extension_list.data());
ASSERT(res == VK_SUCCESS);
u32 layer_count = 0;
res = vkEnumerateInstanceLayerProperties(&layer_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkLayerProperties> layer_list(layer_count);
res = vkEnumerateInstanceLayerProperties(&layer_count, layer_list.data());
ASSERT(res == VK_SUCCESS);
bool supports_validation_layers =
std::find_if(layer_list.begin(), layer_list.end(), [](const auto& it) {
return strcmp(it.layerName, VALIDATION_LAYER_NAME) == 0;
}) != layer_list.end();
bool supports_debug_utils =
std::find_if(extension_list.begin(), extension_list.end(), [](const auto& it) {
return strcmp(it.extensionName, VK_EXT_DEBUG_UTILS_EXTENSION_NAME) == 0;
}) != extension_list.end();
if (!supports_debug_utils && supports_validation_layers)
{
// If the instance doesn't support debug utils but we're using validation layers,
// try to use the implementation of the extension provided by the validation layers.
extension_count = 0;
res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
extension_list.resize(extension_count);
res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME, &extension_count,
extension_list.data());
ASSERT(res == VK_SUCCESS);
supports_debug_utils =
std::find_if(extension_list.begin(), extension_list.end(), [](const auto& it) {
return strcmp(it.extensionName, VK_EXT_DEBUG_UTILS_EXTENSION_NAME) == 0;
}) != extension_list.end();
}
// Check for both VK_EXT_debug_utils and VK_LAYER_KHRONOS_validation
return supports_debug_utils && supports_validation_layers;
}
static u32 getAPIVersion()
{
u32 supported_version;
u32 used_version = VK_API_VERSION_1_0;
if (vkEnumerateInstanceVersion && vkEnumerateInstanceVersion(&supported_version) == VK_SUCCESS)
{
// The device itself may not support 1.1, so we check that before using any 1.1 functionality.
if (supported_version >= VK_API_VERSION_1_2)
used_version = VK_API_VERSION_1_2;
else if (supported_version >= VK_API_VERSION_1_1)
used_version = VK_API_VERSION_1_1;
WARN_LOG_FMT(HOST_GPU, "Using Vulkan 1.{}, supported: {}.{}", VK_VERSION_MINOR(used_version),
VK_VERSION_MAJOR(supported_version), VK_VERSION_MINOR(supported_version));
}
else
{
WARN_LOG_FMT(HOST_GPU, "Using Vulkan 1.0");
}
return used_version;
}
VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_utils,
bool enable_validation_layer,
u32* out_vk_api_version)
{
std::vector<const char*> enabled_extensions;
if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_utils,
enable_validation_layer))
return VK_NULL_HANDLE;
VkApplicationInfo app_info = {};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pNext = nullptr;
app_info.pApplicationName = "Dolphin Emulator";
app_info.applicationVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.pEngineName = "Dolphin Emulator";
app_info.engineVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.apiVersion = getAPIVersion();
*out_vk_api_version = app_info.apiVersion;
VkInstanceCreateInfo instance_create_info = {};
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_create_info.pNext = nullptr;
instance_create_info.flags = 0;
instance_create_info.pApplicationInfo = &app_info;
instance_create_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
instance_create_info.ppEnabledExtensionNames = enabled_extensions.data();
instance_create_info.enabledLayerCount = 0;
instance_create_info.ppEnabledLayerNames = nullptr;
// Enable validation layer if the user enabled them in the settings
if (enable_validation_layer)
{
instance_create_info.enabledLayerCount = 1;
instance_create_info.ppEnabledLayerNames = &VALIDATION_LAYER_NAME;
}
VkInstance instance;
VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateInstance failed: ");
return nullptr;
}
return instance;
}
bool VulkanContext::SelectInstanceExtensions(std::vector<const char*>* extension_list,
WindowSystemType wstype, bool enable_debug_utils,
bool validation_layer_enabled)
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: No extensions supported by instance.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count,
available_extension_list.data());
ASSERT(res == VK_SUCCESS);
u32 validation_layer_extension_count = 0;
std::vector<VkExtensionProperties> validation_layer_extension_list;
if (validation_layer_enabled)
{
res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME,
&validation_layer_extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res,
"vkEnumerateInstanceExtensionProperties failed for validation layers: ");
}
else
{
validation_layer_extension_list.resize(validation_layer_extension_count);
res = vkEnumerateInstanceExtensionProperties(VALIDATION_LAYER_NAME,
&validation_layer_extension_count,
validation_layer_extension_list.data());
ASSERT(res == VK_SUCCESS);
}
}
for (const auto& extension_properties : available_extension_list)
INFO_LOG_FMT(VIDEO, "Available extension: {}", extension_properties.extensionName);
for (const auto& extension_properties : validation_layer_extension_list)
{
INFO_LOG_FMT(VIDEO, "Available extension in validation layer: {}",
extension_properties.extensionName);
}
auto AddExtension = [&](const char* name, bool required) {
bool extension_supported =
std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end();
extension_supported =
extension_supported ||
std::find_if(validation_layer_extension_list.begin(), validation_layer_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != validation_layer_extension_list.end();
if (extension_supported)
{
INFO_LOG_FMT(VIDEO, "Enabling extension: {}", name);
extension_list->push_back(name);
return true;
}
if (required)
ERROR_LOG_FMT(VIDEO, "Vulkan: Missing required extension {}.", name);
return false;
};
// Common extensions
if (wstype != WindowSystemType::Headless && !AddExtension(VK_KHR_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (wstype == WindowSystemType::Windows &&
!AddExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
if (wstype == WindowSystemType::X11 && !AddExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
if (wstype == WindowSystemType::Android &&
!AddExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_METAL_EXT)
if (wstype == WindowSystemType::MacOS && !AddExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false);
if (wstype != WindowSystemType::Headless)
{
AddExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false);
}
// VK_EXT_debug_utils
if (AddExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, false))
{
g_Config.backend_info.bSupportsSettingObjectNames = true;
}
else if (enable_debug_utils)
{
WARN_LOG_FMT(VIDEO, "Vulkan: Debug utils requested, but extension is not available.");
}
return true;
}
VulkanContext::GPUList VulkanContext::EnumerateGPUs(VkInstance instance)
{
u32 gpu_count = 0;
VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
GPUList gpus;
gpus.resize(gpu_count);
res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
return gpus;
}
void VulkanContext::PopulateBackendInfo(VideoConfig* config)
{
config->backend_info.api_type = APIType::Vulkan;
config->backend_info.bSupports3DVision = false; // D3D-exclusive.
config->backend_info.bSupportsEarlyZ = true; // Assumed support.
config->backend_info.bSupportsPrimitiveRestart = true; // Assumed support.
config->backend_info.bSupportsBindingLayout = false; // Assumed support.
config->backend_info.bSupportsPaletteConversion = true; // Assumed support.
config->backend_info.bSupportsClipControl = true; // Assumed support.
config->backend_info.bSupportsMultithreading = true; // Assumed support.
config->backend_info.bSupportsComputeShaders = true; // Assumed support.
config->backend_info.bSupportsGPUTextureDecoding = true; // Assumed support.
config->backend_info.bSupportsBitfield = true; // Assumed support.
config->backend_info.bSupportsPartialDepthCopies = true; // Assumed support.
config->backend_info.bSupportsShaderBinaries = true; // Assumed support.
config->backend_info.bSupportsPipelineCacheData = false; // Handled via pipeline caches.
config->backend_info.bSupportsDynamicSamplerIndexing = true; // Assumed support.
config->backend_info.bSupportsPostProcessing = true; // Assumed support.
config->backend_info.bSupportsBackgroundCompiling = true; // Assumed support.
config->backend_info.bSupportsCopyToVram = true; // Assumed support.
config->backend_info.bSupportsReversedDepthRange = true; // Assumed support.
config->backend_info.bSupportsExclusiveFullscreen = false; // Dependent on OS and features.
config->backend_info.bSupportsDualSourceBlend = false; // Dependent on features.
config->backend_info.bSupportsGeometryShaders = false; // Dependent on features.
config->backend_info.bSupportsGSInstancing = false; // Dependent on features.
config->backend_info.bSupportsBBox = false; // Dependent on features.
config->backend_info.bSupportsFragmentStoresAndAtomics = false; // Dependent on features.
config->backend_info.bSupportsSSAA = false; // Dependent on features.
config->backend_info.bSupportsDepthClamp = false; // Dependent on features.
config->backend_info.bSupportsST3CTextures = false; // Dependent on features.
config->backend_info.bSupportsBPTCTextures = false; // Dependent on features.
config->backend_info.bSupportsLogicOp = false; // Dependent on features.
config->backend_info.bSupportsLargePoints = false; // Dependent on features.
config->backend_info.bSupportsFramebufferFetch = false; // Dependent on OS and features.
config->backend_info.bSupportsCoarseDerivatives = true; // Assumed support.
config->backend_info.bSupportsTextureQueryLevels = true; // Assumed support.
config->backend_info.bSupportsLodBiasInSampler = false; // Dependent on OS.
config->backend_info.bSupportsSettingObjectNames = false; // Dependent on features.
config->backend_info.bSupportsPartialMultisampleResolve = true; // Assumed support.
config->backend_info.bSupportsDynamicVertexLoader = true; // Assumed support.
config->backend_info.bSupportsVSLinePointExpand = true; // Assumed support.
config->backend_info.bSupportsHDROutput = true; // Assumed support.
}
void VulkanContext::PopulateBackendInfoAdapters(VideoConfig* config, const GPUList& gpu_list)
{
config->backend_info.Adapters.clear();
for (VkPhysicalDevice physical_device : gpu_list)
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(physical_device, &properties);
config->backend_info.Adapters.push_back(properties.deviceName);
}
}
void VulkanContext::PopulateBackendInfoFeatures(VideoConfig* config, VkPhysicalDevice gpu,
const PhysicalDeviceInfo& info)
{
config->backend_info.MaxTextureSize = info.maxImageDimension2D;
config->backend_info.bUsesLowerLeftOrigin = false;
config->backend_info.bSupportsDualSourceBlend = info.dualSrcBlend;
config->backend_info.bSupportsGeometryShaders = info.geometryShader;
config->backend_info.bSupportsGSInstancing = info.geometryShader;
config->backend_info.bSupportsBBox = config->backend_info.bSupportsFragmentStoresAndAtomics =
info.fragmentStoresAndAtomics;
config->backend_info.bSupportsSSAA = info.sampleRateShading;
config->backend_info.bSupportsLogicOp = info.logicOp;
// Metal doesn't support this.
config->backend_info.bSupportsLodBiasInSampler = info.driverID != VK_DRIVER_ID_MOLTENVK;
// Disable geometry shader when shaderTessellationAndGeometryPointSize is not supported.
// Seems this is needed for gl_Layer.
if (!info.shaderTessellationAndGeometryPointSize)
{
config->backend_info.bSupportsGeometryShaders = VK_FALSE;
config->backend_info.bSupportsGSInstancing = VK_FALSE;
}
// Depth clamping implies shaderClipDistance and depthClamp
config->backend_info.bSupportsDepthClamp = info.depthClamp && info.shaderClipDistance;
// textureCompressionBC implies BC1 through BC7, which is a superset of DXT1/3/5, which we need.
config->backend_info.bSupportsST3CTextures = info.textureCompressionBC;
config->backend_info.bSupportsBPTCTextures = info.textureCompressionBC;
// Some devices don't support point sizes >1 (e.g. Adreno).
// If we can't use a point size above our maximum IR, use triangles instead for EFB pokes.
// This means a 6x increase in the size of the vertices, though.
config->backend_info.bSupportsLargePoints =
info.largePoints && info.pointSizeRange[0] <= 1.0f && info.pointSizeRange[1] >= 16;
std::string device_name = info.deviceName;
u32 vendor_id = info.vendorID;
bool is_moltenvk = info.driverID == VK_DRIVER_ID_MOLTENVK;
// Only Apple family GPUs support framebuffer fetch.
// We currently use a hacked MoltenVK to implement this, so don't attempt outside of MVK
if (is_moltenvk && (vendor_id == 0x106B || device_name.find("Apple") != std::string::npos))
{
config->backend_info.bSupportsFramebufferFetch = true;
}
// Our usage of primitive restart appears to be broken on AMD's binary drivers.
// Seems to be fine on GCN Gen 1-2, unconfirmed on GCN Gen 3, causes driver resets on GCN Gen 4.
if (DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART))
config->backend_info.bSupportsPrimitiveRestart = false;
// Reversed depth range is broken on some drivers, or is broken when used in combination
// with depth clamping. Fall back to inverted depth range for these.
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_REVERSED_DEPTH_RANGE))
config->backend_info.bSupportsReversedDepthRange = false;
// Dynamic sampler indexing locks up Intel GPUs on MoltenVK/Metal
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_DYNAMIC_SAMPLER_INDEXING))
config->backend_info.bSupportsDynamicSamplerIndexing = false;
}
void VulkanContext::PopulateBackendInfoMultisampleModes(VideoConfig* config, VkPhysicalDevice gpu,
const PhysicalDeviceInfo& info)
{
// Query image support for the EFB texture formats.
VkImageFormatProperties efb_color_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &efb_color_properties);
VkImageFormatProperties efb_depth_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &efb_depth_properties);
// We can only support MSAA if it's supported on our render target formats.
VkSampleCountFlags supported_sample_counts =
info.framebufferColorSampleCounts & info.framebufferDepthSampleCounts &
efb_color_properties.sampleCounts & efb_depth_properties.sampleCounts;
// No AA
config->backend_info.AAModes.clear();
config->backend_info.AAModes.emplace_back(1);
// 2xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_2_BIT)
config->backend_info.AAModes.emplace_back(2);
// 4xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_4_BIT)
config->backend_info.AAModes.emplace_back(4);
// 8xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_8_BIT)
config->backend_info.AAModes.emplace_back(8);
// 16xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_16_BIT)
config->backend_info.AAModes.emplace_back(16);
// 32xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_32_BIT)
config->backend_info.AAModes.emplace_back(32);
// 64xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_64_BIT)
config->backend_info.AAModes.emplace_back(64);
}
std::unique_ptr<VulkanContext> VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu,
VkSurfaceKHR surface, bool enable_debug_utils,
bool enable_validation_layer,
u32 vk_api_version)
{
std::unique_ptr<VulkanContext> context = std::make_unique<VulkanContext>(instance, gpu);
// Initialize DriverDetails so that we can check for bugs to disable features if needed.
context->InitDriverDetails();
// Enable debug messages if the "Host GPU" log category is enabled.
if (enable_debug_utils)
context->EnableDebugUtils();
// Attempt to create the device.
if (!context->CreateDevice(surface, enable_validation_layer) ||
!context->CreateAllocator(vk_api_version))
{
// Since we are destroying the instance, we're also responsible for destroying the surface.
if (surface != VK_NULL_HANDLE)
vkDestroySurfaceKHR(instance, surface, nullptr);
return nullptr;
}
return context;
}
bool VulkanContext::SelectDeviceExtensions(bool enable_surface)
{
u32 extension_count = 0;
VkResult res =
vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: No extensions supported by device.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count,
available_extension_list.data());
ASSERT(res == VK_SUCCESS);
for (const auto& extension_properties : available_extension_list)
INFO_LOG_FMT(VIDEO, "Available extension: {}", extension_properties.extensionName);
auto AddExtension = [&](const char* name, bool required) {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
INFO_LOG_FMT(VIDEO, "Enabling extension: {}", name);
m_device_extensions.push_back(name);
return true;
}
if (required)
ERROR_LOG_FMT(VIDEO, "Vulkan: Missing required extension {}.", name);
return false;
};
if (enable_surface && !AddExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true))
return false;
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
// VK_EXT_full_screen_exclusive
if (AddExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, true))
INFO_LOG_FMT(VIDEO, "Using VK_EXT_full_screen_exclusive for exclusive fullscreen.");
#endif
AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false);
AddExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, false);
return true;
}
void VulkanContext::WarnMissingDeviceFeatures()
{
if (!m_device_info.largePoints)
WARN_LOG_FMT(VIDEO, "Vulkan: Missing large points feature. CPU EFB writes will be slower.");
if (!m_device_info.occlusionQueryPrecise)
{
WARN_LOG_FMT(VIDEO,
"Vulkan: Missing precise occlusion queries. Perf queries will be inaccurate.");
}
}
bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer)
{
u32 queue_family_count;
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr);
if (queue_family_count == 0)
{
ERROR_LOG_FMT(VIDEO, "No queue families found on specified vulkan physical device.");
return false;
}
std::vector<VkQueueFamilyProperties> queue_family_properties(queue_family_count);
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count,
queue_family_properties.data());
INFO_LOG_FMT(VIDEO, "{} vulkan queue families", queue_family_count);
// Find graphics and present queues.
m_graphics_queue_family_index = queue_family_count;
m_present_queue_family_index = queue_family_count;
for (uint32_t i = 0; i < queue_family_count; i++)
{
VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT;
if (graphics_supported)
{
m_graphics_queue_family_index = i;
// Quit now, no need for a present queue.
if (!surface)
{
break;
}
}
if (surface)
{
VkBool32 present_supported;
VkResult res =
vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
return false;
}
if (present_supported)
{
m_present_queue_family_index = i;
}
// Prefer one queue family index that does both graphics and present.
if (graphics_supported && present_supported)
{
break;
}
}
}
if (m_graphics_queue_family_index == queue_family_count)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: Failed to find an acceptable graphics queue.");
return false;
}
if (surface && m_present_queue_family_index == queue_family_count)
{
ERROR_LOG_FMT(VIDEO, "Vulkan: Failed to find an acceptable present queue.");
return false;
}
VkDeviceCreateInfo device_info = {};
device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device_info.pNext = nullptr;
device_info.flags = 0;
static constexpr float queue_priorities[] = {1.0f};
VkDeviceQueueCreateInfo graphics_queue_info = {};
graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
graphics_queue_info.pNext = nullptr;
graphics_queue_info.flags = 0;
graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index;
graphics_queue_info.queueCount = 1;
graphics_queue_info.pQueuePriorities = queue_priorities;
VkDeviceQueueCreateInfo present_queue_info = {};
present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
present_queue_info.pNext = nullptr;
present_queue_info.flags = 0;
present_queue_info.queueFamilyIndex = m_present_queue_family_index;
present_queue_info.queueCount = 1;
present_queue_info.pQueuePriorities = queue_priorities;
std::array<VkDeviceQueueCreateInfo, 2> queue_infos = {{
graphics_queue_info,
present_queue_info,
}};
device_info.queueCreateInfoCount = 1;
if (m_graphics_queue_family_index != m_present_queue_family_index &&
m_present_queue_family_index != queue_family_count)
{
device_info.queueCreateInfoCount = 2;
}
device_info.pQueueCreateInfos = queue_infos.data();
if (!SelectDeviceExtensions(surface != VK_NULL_HANDLE))
return false;
// convert std::string list to a char pointer list which we can feed in
std::vector<const char*> extension_name_pointers;
for (const std::string& name : m_device_extensions)
extension_name_pointers.push_back(name.c_str());
device_info.enabledLayerCount = 0;
device_info.ppEnabledLayerNames = nullptr;
device_info.enabledExtensionCount = static_cast<uint32_t>(extension_name_pointers.size());
device_info.ppEnabledExtensionNames = extension_name_pointers.data();
WarnMissingDeviceFeatures();
VkPhysicalDeviceFeatures device_features = m_device_info.features();
device_info.pEnabledFeatures = &device_features;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
device_info.enabledLayerCount = 1;
device_info.ppEnabledLayerNames = &VALIDATION_LAYER_NAME;
}
VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDevice failed: ");
return false;
}
// With the device created, we can fill the remaining entry points.
if (!LoadVulkanDeviceFunctions(m_device))
return false;
// Grab the graphics and present queues.
vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue);
if (surface)
{
vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue);
}
return true;
}
bool VulkanContext::CreateAllocator(u32 vk_api_version)
{
VmaAllocatorCreateInfo allocator_info = {};
allocator_info.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT;
allocator_info.physicalDevice = m_physical_device;
allocator_info.device = m_device;
allocator_info.preferredLargeHeapBlockSize = 64 << 20;
allocator_info.pAllocationCallbacks = nullptr;
allocator_info.pDeviceMemoryCallbacks = nullptr;
allocator_info.pHeapSizeLimit = nullptr;
allocator_info.pVulkanFunctions = nullptr;
allocator_info.instance = m_instance;
allocator_info.vulkanApiVersion = vk_api_version;
allocator_info.pTypeExternalMemoryHandleTypes = nullptr;
if (SupportsDeviceExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME))
allocator_info.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT;
VkResult res = vmaCreateAllocator(&allocator_info, &m_allocator);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vmaCreateAllocator failed: ");
return false;
}
return true;
}
static VKAPI_ATTR VkBool32 VKAPI_CALL
DebugUtilsCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData)
{
const std::string log_message = fmt::format("Vulkan debug message: {}", pCallbackData->pMessage);
if (messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT)
ERROR_LOG_FMT(HOST_GPU, "{}", log_message);
else if (messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT)
WARN_LOG_FMT(HOST_GPU, "{}", log_message);
else if (messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT)
INFO_LOG_FMT(HOST_GPU, "{}", log_message);
else
DEBUG_LOG_FMT(HOST_GPU, "{}", log_message);
return VK_FALSE;
}
bool VulkanContext::EnableDebugUtils()
{
// Already enabled?
if (m_debug_utils_messenger != VK_NULL_HANDLE)
return true;
// Check for presence of the functions before calling
if (!vkCreateDebugUtilsMessengerEXT || !vkDestroyDebugUtilsMessengerEXT ||
!vkSubmitDebugUtilsMessageEXT)
{
return false;
}
VkDebugUtilsMessengerCreateInfoEXT messenger_info = {
VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
nullptr,
0,
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT,
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT,
DebugUtilsCallback,
nullptr};
VkResult res = vkCreateDebugUtilsMessengerEXT(m_instance, &messenger_info, nullptr,
&m_debug_utils_messenger);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDebugUtilsMessengerEXT failed: ");
return false;
}
return true;
}
void VulkanContext::DisableDebugUtils()
{
if (m_debug_utils_messenger != VK_NULL_HANDLE)
{
vkDestroyDebugUtilsMessengerEXT(m_instance, m_debug_utils_messenger, nullptr);
m_debug_utils_messenger = VK_NULL_HANDLE;
}
}
bool VulkanContext::SupportsDeviceExtension(const char* name) const
{
return std::any_of(m_device_extensions.begin(), m_device_extensions.end(),
[name](const std::string& extension) { return extension == name; });
}
static bool DriverIsMesa(VkDriverId driver_id)
{
switch (driver_id)
{
case VK_DRIVER_ID_MESA_RADV:
case VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA:
case VK_DRIVER_ID_MESA_LLVMPIPE:
case VK_DRIVER_ID_MESA_TURNIP:
case VK_DRIVER_ID_MESA_V3DV:
case VK_DRIVER_ID_MESA_PANVK:
case VK_DRIVER_ID_MESA_VENUS:
case VK_DRIVER_ID_MESA_DOZEN:
case VK_DRIVER_ID_MESA_NVK:
case VK_DRIVER_ID_IMAGINATION_OPEN_SOURCE_MESA:
case VK_DRIVER_ID_MESA_HONEYKRISP:
return true;
default:
return false;
}
}
static DriverDetails::Driver GetMesaDriver(VkDriverId driver_id)
{
switch (driver_id)
{
// clang-format off
case VK_DRIVER_ID_MESA_RADV: return DriverDetails::DRIVER_R600;
case VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA: return DriverDetails::DRIVER_I965;
case VK_DRIVER_ID_MESA_NVK: return DriverDetails::DRIVER_NOUVEAU;
case VK_DRIVER_ID_MESA_TURNIP: return DriverDetails::DRIVER_FREEDRENO;
default: return DriverDetails::DRIVER_UNKNOWN;
// clang-format on
}
}
void VulkanContext::InitDriverDetails()
{
DriverDetails::Vendor vendor;
DriverDetails::Driver driver;
// String comparisons aren't ideal, but there doesn't seem to be any other way to tell
// which vendor a driver is for. These names are based on the reports submitted to
// vulkan.gpuinfo.org, as of 19/09/2017.
std::string device_name = m_device_info.deviceName;
u32 vendor_id = m_device_info.vendorID;
// Note: driver_id may be 0 on vulkan < 1.2
VkDriverId driver_id = m_device_info.driverID;
if (DriverIsMesa(driver_id))
{
vendor = DriverDetails::VENDOR_MESA;
driver = GetMesaDriver(driver_id);
}
else if (vendor_id == 0x10DE)
{
// Currently, there is only the official NV binary driver.
// "NVIDIA" does not appear in the device name.
vendor = DriverDetails::VENDOR_NVIDIA;
driver = DriverDetails::DRIVER_NVIDIA;
}
else if (vendor_id == 0x1002 || vendor_id == 0x1022 ||
device_name.find("AMD") != std::string::npos)
{
// RADV always advertises its name in the device string.
// If not RADV, assume the AMD binary driver.
if (device_name.find("RADV") != std::string::npos)
{
vendor = DriverDetails::VENDOR_MESA;
driver = DriverDetails::DRIVER_R600;
}
else
{
vendor = DriverDetails::VENDOR_ATI;
driver = DriverDetails::DRIVER_ATI;
}
}
else if (vendor_id == 0x8086 || vendor_id == 0x8087 ||
device_name.find("Intel") != std::string::npos)
{
// Apart from the driver version, Intel does not appear to provide a way to
// differentiate between anv and the binary driver (Skylake+). Assume to be
// using anv if we're not running on Windows or macOS.
#if defined(WIN32) || defined(__APPLE__)
vendor = DriverDetails::VENDOR_INTEL;
driver = DriverDetails::DRIVER_INTEL;
#else
vendor = DriverDetails::VENDOR_MESA;
driver = DriverDetails::DRIVER_I965;
#endif
}
else if (vendor_id == 0x5143 || device_name.find("Adreno") != std::string::npos)
{
// Currently only the Qualcomm binary driver exists for Adreno.
vendor = DriverDetails::VENDOR_QUALCOMM;
driver = DriverDetails::DRIVER_QUALCOMM;
}
else if (vendor_id == 0x13B6 || device_name.find("Mali") != std::string::npos)
{
// Currently only the ARM binary driver exists for Mali.
vendor = DriverDetails::VENDOR_ARM;
driver = DriverDetails::DRIVER_ARM;
}
else if (vendor_id == 0x1010 || device_name.find("PowerVR") != std::string::npos)
{
// Currently only the binary driver exists for PowerVR.
vendor = DriverDetails::VENDOR_IMGTEC;
driver = DriverDetails::DRIVER_IMGTEC;
}
else if (device_name.find("Apple") != std::string::npos)
{
vendor = DriverDetails::VENDOR_APPLE;
driver = DriverDetails::DRIVER_PORTABILITY;
}
else
{
WARN_LOG_FMT(VIDEO, "Unknown Vulkan driver vendor, please report it to us.");
WARN_LOG_FMT(VIDEO, "Vendor ID: {:#X}, Device Name: {}", vendor_id, device_name);
vendor = DriverDetails::VENDOR_UNKNOWN;
driver = DriverDetails::DRIVER_UNKNOWN;
}
// Vulkan on macOS goes through Metal, and is not susceptible to the same bugs
// as the vendor's native Vulkan drivers. We use a different driver fields to
// differentiate MoltenVK.
if (driver_id == VK_DRIVER_ID_MOLTENVK)
driver = DriverDetails::DRIVER_PORTABILITY;
DriverDetails::Init(DriverDetails::API_VULKAN, vendor, driver,
static_cast<double>(m_device_info.driverVersion),
DriverDetails::Family::UNKNOWN, std::move(device_name));
}
bool VulkanContext::SupportsExclusiveFullscreen(const WindowSystemInfo& wsi, VkSurfaceKHR surface)
{
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
if (!surface || !vkGetPhysicalDeviceSurfaceCapabilities2KHR ||
!SupportsDeviceExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME))
{
return false;
}
VkPhysicalDeviceSurfaceInfo2KHR si = {};
si.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR;
si.surface = surface;
auto platform_info = GetPlatformExclusiveFullscreenInfo(wsi);
si.pNext = &platform_info;
VkSurfaceCapabilities2KHR caps = {};
caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR;
VkSurfaceCapabilitiesFullScreenExclusiveEXT fullscreen_caps = {};
fullscreen_caps.sType = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_FULL_SCREEN_EXCLUSIVE_EXT;
fullscreen_caps.fullScreenExclusiveSupported = VK_TRUE;
caps.pNext = &fullscreen_caps;
VkResult res = vkGetPhysicalDeviceSurfaceCapabilities2KHR(m_physical_device, &si, &caps);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilities2KHR failed:");
return false;
}
return fullscreen_caps.fullScreenExclusiveSupported;
#else
return false;
#endif
}
#ifdef WIN32
VkSurfaceFullScreenExclusiveWin32InfoEXT
VulkanContext::GetPlatformExclusiveFullscreenInfo(const WindowSystemInfo& wsi)
{
VkSurfaceFullScreenExclusiveWin32InfoEXT info = {};
info.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_WIN32_INFO_EXT;
info.hmonitor =
MonitorFromWindow(static_cast<HWND>(wsi.render_surface), MONITOR_DEFAULTTOPRIMARY);
return info;
}
#endif
} // namespace Vulkan